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Lecture 7: Strang’s framework for Applied Math.: Graph models 
 
We have seen the model 
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for mechanical equilibrium, with C a positive definite (often diagonal: spring constants) f 
external “forces”, y the internal “forces” or Lagrange multipliers. The matrix A will now be 
studied in more detail. 

A line of springs 
  
 
 
 
 
For each mass point mi, Newton’s law:  
 nifFFxm e

iiiii ,...,1,1 =+−= +&&      (1) 
where f e are the external forces. The springs are assumed linearly elastic (Hookean) so 
 )( 0

iiii llkF −=       (2) 
where l0 is the length of the unloaded spring, and finally, the relation between spring length 
and the coordinates xi 
 nniii xLlnixxlxl −==−== +− 1111 ;,...,2,;       (3) 
The equations are of very different origin: (1) is a “law of Nature”, (3) is an obvious 
consequence of how we choose to parametrize the model, and (2) captures the physics. The 
relation between extension and force is an expression of observations, and holds only for 
limited extension, etc. This is an example of an empirical “constitutive equation” needed to 
close the system of equations, and it can of course be challenged, refined, etc. But (1) and (3) 
are not subject to discussion. 
Making the obvious vectors out of the l, x, and F,  
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where A is the difference matrix (shown for n = 4, so there are 5 springs) 
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The block system becomes 
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A is also the edge-node incidence matrix for the directed graph whose vertices are the mass 
points and the edges are the springs. The Schur complement system to solve, after we 
eliminate the forces, has coefficient (= stiffness) matrix K = AtCA. It is symmetric and 
positive definite, because its columns are independent (easy to see). Here are its elements: 

• If an edge, say number k, runs between nodes i and j then Kij = –kk. 
• All rows but the first and last sum to zero:  A takes differenes, so A1 = 0, except in 

     k1,l1   … mi-1 ki,li  mi ki+1,li+1 mi+1 …     kn+1,ln+1 
 
x0=0…         xi-1  Fi    xi   Fi+1    xi+1   … xn             xn+1= L 

x 
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rows 1 and n+1.  
• Indeed, Kjj = sum of the spring constants of all edges connected to node j. 
• It is tri-diagonal  
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• K is an M-matrix: Its inverse has all positive elements. 

Exercise: Prove the M-matrix property by considering ∑
∞

=

− =−
0

1)(
k

kBBI which is true 

whenever ||B|| < 1. 

Equilibrium problems described by directed graphs 
One may think of an electric circuit as the prototype model in the following: current flows in 
its branches, driven by electric potential differences between the vertices; Ohm’s law for a 
resistive branch is V = RI. 
 
Consider a directed graph with n vertices and m edges, with “flow” yi in edge i, and 
“potential” xk at vertex k. The graph edge-node incidence matrix is A0 (the reason for the 0 
will be apparent shortly): edge k from node i to node j means Aki = –1, Akj = +1, the rest zeros. 
The vector of potential differences ej, j = 1,…,m, across the edges is given by 
 e = A0x 
A01 = 0 (row sums zero), so A0 has at most n-1 linearly independent columns. Since only 
potential differences matter, we may assign 0 to an arbitrary x, say xk Then only  n–1 x-values 
are unknown and we can remove column k from A0 to produce the reduced incidence matrix 
A, still e = Ax. 
The transpose AT acts on the flow variables y: 
 ATy = net flow into the vertices from the branches = external sinks 
In other words, Kirchhoff’s current law is 
 ATy = f 
where f is the external “current” source. This is a conservation law stating that electric charge 
is neither created nor destroyed.  
The system is closed by the flow vs. potential difference relation for each branch: 
 e = b – C–1y 
allowing for external driving “forces” (think of batteries) b. Putting it together: 
 Ax+C–1y = b 
 ATy = f 
… 

Small strain deformation of trusses 
A structure built from linear elements (“sticks”), joined so the joints cannot support any 
torque, is called a truss (Sv. “Fackverk”). The elements are compressed or extended and 
respond by forces, which we assume to be Hookean: Force is proportional to extension. 
“CEINOSTUV” was the anagram, for: Ut Tensio, Sic Vis. 
Let the vertices have coordinates Xj = (xj,yj) (2D plane) when no loads are present, and Xj + xj 
under load. The notation which will be used is that the change in distance between nodes i 
and j under loading is dij, which is small compared to the undeformed length Lij of the bar: 
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where the Yij is the unit vector )sin,(cos ijij θθ along the bar between i and j. 
The equilibrium is formulated by the Lagrange equations. Let there be external forces fe

j on 
vertex j: 
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Most of the possible n(n-1)/2 edges do not exist, so the double sums over “k,m” are actually a 
sum over only the m edges. To make that “Yhat” formula a little more transparent, write the 
derivatives for both x and y, 
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Leaving aside for the moment the “grounding” necessary to make a non-singular system, we 
let A be the edge-node incidence matrix for the graph, and replace the +-1’s by +-cosθ to 
produce the Acos matrix, and Asin, analogously. Sorting the unknowns in the order λ, x, y gives 
the matrix: 
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Is this system non-singular? Elimination of λ leads to 
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and the diagonal blocks are definite, if the columns of A are independent. Clearly, 



DN2266 Fall 09                           L7 p 4 (6) 
CSC Hanke, JO 090923 

(1,0)T and (0,1)T are in the null-space: translation in x- and y-direction do not deform the truss 
and create no forces. But also rotation of the graph as a rigid body gives no deformation. 
What (x,y) corresponds to (infinitesimal) rigid body rotation ε around, say, the point P? 
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makes the (x,y)T orthogonal to all rows of the matrix. 
 
The null space is three-dimensional so at least three constraints must be invoked, by setting 
selected displacements to zero (“grounding”) and removing the corresponding column(s) of 
Acos and Asin.  
 
Several cases: 
a) Stable, with unique solution, non-singular matrix 
1. Statically determinate: the force equation ATλ = f can be solved for λ. 
2. Indeterminate, the “standard” case, must solve for (x,y). 
 
b) Unstable, singular matrix 
1. Rigid body motions allowed: Solutions exist only if the net force and moment vanish. 
2. Mechanism: Constraints rule out rigid body motions, still 
there are deformations which do not change the length of the 
bars. Example, a slider mechanism, used in reciprocating 
engines to convert linear motion into rotation. 

Dynamics 
The equations are perfectly valid also for a moving truss, when we include the inertial and 
damping forces, as long as the assumption on small deformations of the bars is valid. In 
particular, there is no assumption of small displacements (x,y). We obtain 
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where the mass matrix M is diag(mi) if the masses are point masses at the vertices, and the 
damping matrix D, for a simplistic force proportional to the mass point velocity, is diag(Di). 
The state vector is (x,y) and (u,v), the velocities in x- and y-directions. The algorithm is as 
follows: From x and y compute the A-matrix, and then the bar forces from the first m rows, 
and the summed x- and y-forces on the vertices from the last rows; Then compute the 
accelerations, and take a time-step. 

Equilibrium of non-linear truss: bifurcation, hysteresis 
The non-linear truss-model can be used also for static 
analysis, and it is easy to find examples with non-unique 
solutions, and bifurcations. Here is a snap-through case: 
Two bars, both grounded, and a force acting perpendicularly 
to the line between the supports. Let the unloaded length of 
the bars be L0, and the spring constant K. 
Then, with p = F/(KL), a = L0/L > 1 
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The graph of the solution, right: Starting at p small, with 
φ close to 1, when p increases to 0.33, φ decreases to 
0.606, and then snaps through to –1.1; further increase of 
p decreases φ towards –π/2. If p is decreased again, the 
solution point follows the lower curve until p = –0.33,  
φ = –0.606 and then φ snaps through to +1.1: Hysteresis. 
The part of the solution curve marked ‘o’ is unstable, as 
the sign of the second derivative of W tells. 
 
 

Non-linear truss model 
The question arose on the relation of the snap-through geometrically non-linear model to 
Strang’s linear(ized) framework: We did the snap-through in a way to get as quickly as 
possible to the properties, taking whatever short-cuts made possible by the simplicity.  

• The coordinates /degrees of freedom were chosen (the angle) so the constraints 
necessary to remove rigid body motion are built in. The general truss model presented 
uses Cartesian coordinates of the joints, and needs explicit enforcement of constraints. 

• With only one state variable the “incidence matrix” which forms differences is hard 
to spot: it is a number. 

• We eliminated the “extension” variable immediately so the bar forces never appeared 
- the “Schur complement” ATCA came out immediately. 

 
So let us redo the model and linearize it after the formulation; in the linear Strang truss model 
we linearized the relationship between joint position and bar length and used that in the 
Lagrange equations. 
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Linearization around a solution θ*, λ*gives 
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which does fit Strang’s framework, with A the derivative of a. The replacement of a zero by a 
non-zero block comes from the repeated differentiation. 
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Root following (Homotopy, continuation, ...) 
The bifurcation analysis was illustrated by drawing curves (see last lecture notes). The 
linearized system brings the implicit function theorem to mind: 
 
Let f(x;p) =0 be n nonlinear equations in the n variables xi and p a parameter, and assume that 
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the equations define x as a function of p in a neighborhood of p* if J(x*,p*) is non-singular.  
 
So we may naively try to follow the solution by solving the system of ODE, 
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and continue at least as long as the matrix is non-singular. We know where the singular points 
should be: the “turning points” of the curve where the solution snaps. Hopefully that will 
come out of this analysis, too: 
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where we used that (θ,λ) is a solution.  
Note: DO NOT replace λ by the seemingly simpler F/sinθ, because that (re-)  introduces 
the varying parameter F; the expression above contains only the state  variable θ and 
constants.  

J is singular when
0
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θθ  which agrees with our earlier result. 

Negotiation of turning points? 
The naive root-follower will give up on approach to a turning point, or a pitchfork, or a Hopf 
bifurcation, or, indeed, on any interesting point where things happen quickly. One can make 
the root-follower negotiate turning points by introducing as independent variable the 
arclength along the curve traced by (x,p) in Rn x R; This gives a differential-algebraic system 
which can be differentiated again to produce an ODE system. 
In the f-example, 
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so: regularity of fx is no longer required! But there are n  n x n second derivative matrices 
involved so for n > 2 (1?) we need a symbolic differentiation package to make this practical. 
Numerical root followers do work in Rn+1 using arclength, but attack a discretized version of 
the original problem and do not use second derivatives, except possibly for figuring out what 
sort of singular point is approaching. 
 
 
 
 


