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Conservation laws

Flux vector ®

Fourier's law ® = —kOT

The 1D heat equation by separation of variables
Transport equation, characteristics

Second order wave equation in 1D; d’Alembert’s solution

The wave equation and Newton’s law; spring-mass
oscillator
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Conservation Laws

e Consider the flow of a fluid with velocity field

_ U(vavt)
u(x,y,t) = (v(x,y,t))

e Letc(x,y,t) denote the concentration of a species (e.g.,
number of molecules per m? in 2D)

e Q: How many molecules pass in time At across a line of
length | with normal n?
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Conservation Laws (Cont)

-

p% 7 |u|-At

e A=area of parallelogram = | |u|At cos@
e number of molecules: cA

e At every instant (number of molecules per second and
meter):
clujcosp=cu-n

Definition.  The flux vector is @ if the number of molecules
per length and time unit is ®-n.

In case of (passive) advection in velocity field u

d=cu
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Conservation Laws (Cont)

Consider the number ¢ of molecules in a fixed control
volume Q.

¢ can only change if molecules are going through (in/out)
of the boundary 0Q:

5/ dQ:f/dmndF.
dt
Q 0Q
Divergence theorem provides:
/ 9 dn—— / div odQ
pn = .
Q Q

This equation holds for any control volume.
Conservation law (continuity equation)

0 '
achdNCD_O
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Conservation Laws (Cont)

e Continuity equation:
0
—Cc+divd=0
atc+ iv

e Inintegral form:

/%cd§2+/¢-ndr=0
Q 0

e In our case:

d '
Fa div(cu) =0.
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The Heat Equation

Consider heat conduction: temperature T.
Conserved quantity is energy:

AH = pcp AT

(change in energy per volume).
Fourier’s law:

o =—kOT

Conservation of energy:

%(pcpT) —div(kOT) =0.

For constant p, cp, k:

oT
e aAT =0
with A = div O is the Laplacian operator.

This is the celebrated heat equation.
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The 1D Heat Equation

e LetQ=(0,1):
U = OlUxy, X € (0,1).
e Boundary conditions:
— prescribed temperature: Dirichlet condition (e.g.,
u(0) =0)
— isolated boundary: Neumann condition (no flux, e.g.,
ou/on = 0)
— partly isolated boundary: Robin condition
e Initial condition: u(x,0) = up(x) for x € (0,1).
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Solution by Separation of Variables Separation of Variables (Cont)

To be specific assume u(0,t) = u(1,t) =0. This leads to the (imaginary!!) values p= n- 2,
Ansatz: Find solutions of the form u(x,t) = T (t)X(x).
T'’X —aT X" =0yields A= -n’rPa,n=+1,42,...

T/ xll
— =0— : .
T X Solutions to the odes:

Since this identity must be fulfilled for all (x,t), the quotient Ta(t) = cne’“"z"z‘, Xn(X) = sinnmx.
must be constant. Denote this constant by A:
Superposition principle:

T/ =AT, x—2x o,
a

u(xt) = Zlcne’“‘”zn2l sinnmx
n—=

Solutions

_ cat _ X —HX _ ./
T(t)=ce', X(x)=Ae¢"+Be (H=A/a) Theorem: If uy permits a convergent Fourier series, then
this representation is the solution of the heat equation.

We must have X(0) = X(1) =0, hence A and B must fulfil o )
The coefficients ¢, can be determined from uy.

1 1)\ /A\ [0

et e*/\B) \O
In order to obtain nontrivial solutions, the system matrix
must be singular.
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The Heat Equation: Comments The Transport Equation

e Consider (in 2D)

— small n: low frequency components ¢ +div(cu) =0.

— large n: high frequency components e Assume that cis given on a curve I in the (x,y)-plane.
High frequency components decay very rapidly: like
exp(—an?me).

After some time, only the component for n=1is left.
The smoothing property is expected from intuition about
heat conduction.

The strong smoothing property makes solving the heat
equation backwards very difficult.

The initial value problem u; = —uy is ill-posed, i.e.,
perturbations of the initial state grow exponentially fast.

Heat conduction has a wide range of time scales
exp(—a?m@). Even on a grid (which limits n to a finite
number) it requires small time steps to follow the fastest
variations whereas the solution changes globally only like
exp(—atet). (A very stiff problem!)

Q: Can we determine c(x,y,t) in some region in (x,y,t)
from this?
A: In general, yes!
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The Material Derivative

The transport equation can be written as
C; + UG+ vg, = —cdiv u.

Definition.  The expression

IS the ate |a| de Ivative of c

The material derivative is the time rate of change of a fluid
particle which moves with the stream.

There is a nice discussion of the material derivative in Strang!
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The Transport Equation: Characteristics
Read: Strang, p 472-474

e Taylor expansion:
C(X+AX,y+ Ay, t+At) = c(X, Y, t) + At +cAx+cAy+h. o. t..

Let (x(t),y(t)) be the trajectory of a particle following the

stream: q q
X y
— =u(x,y,t —= =V
dt ( 7y7 )’ dt
This curve is called a characteristic.

In differentials: Ax = uAt, Ay = VAt.
Thus, on a characteristic it holds

% yt).

Ac = At(c; + uc+ vG)) +higher order terms
N i
—cdivu

Going to the limit:

dx_
dt
D

C
— = —cdivu
Dt

dy_

at =Y

u?

This is a system of ordinary differential equations (on the
characteristic!)
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Characteristics: Consequences

If we know c at (xo,¥o) €I, the values of c(x,y,t) can be
determined on the characteristic.

If I is not a characteristic, the solution is determined in a
region of (x,y,t)-space.

Incompressible flow means divu =0.

For an incompressible flow, ¢ is constant along
characteristics.

If there are sources and sinks Q(x,y,t), the transport
equation reads

Dc "
D —cdivu+Q.

c will be smooth along trajectories, but can be
discontinuous across.

Such a solution does not satisfy the differential equation,
but of course the integral form,

%/CdQ+/CU-ndr=Q.
Q 0Q
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Method of Characteristics: Example

e Burger’s equation:

W +uu=1fort >0,

u(x,0) =xfor x e R.

Characteristics

e Here, we have c = u. Hence, % = W + Uuy such that the

system becomes
dx Du

dt Dt
e Solutions (note: u(xo,0) = Xg):

=1

1
u:x0+t,x:x0+x0t+§t2.
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Example (Cont)

e Material derivative = moving with the particle. Hence, we
must go back in time to find the initial point on the
characteristics:

_ x—t%/2
o1+t

e Insert this into the expression for u:

X—12/2

u(x,t) =t+ Tt

Exercise: Verify this!

e Note: This is a pure initial-value problem, or Cauchy
problem.
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A Vibrating Bar: The Wave Equation

Read: Strang, p 546-548

Consider longitudinal vibrations of a bar. The
displacement is u, assumed to be small.

Let Sdenote the tension in the bar. Consider a small
element of length dx.
Force over that element: dS

Newton’s law: mass times acceleration equals force:

Going to differentials: puy; = S.
Hooke’s law (modulus of elasticity E):

du
S=E—.
ox
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The Vibrating Bar (Cont)

e Putting everything together,

2
Ugt = C"Uxx

where ¢ = E/p.

e This is the wave equation. Since it is second order in time,
we need two initial conditions,

u(x,0) = up(x), %(x, 0) = vo(x).
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Solution of The 1D Wave Equation

Read: Strang, p 485-486

e The standard way to solve the wave equation would be to
use the separation of variables approach.

e Here, we observe

e (3 )G

The equation v + cu, = 0 can be solved by the method of
characteristics which provides F (xFct).

e This motivates the change of variables
& =x+ct,n=x—ct.
Exercise: Show that the wave equations is % =0l
The general solution is (called d’Alembert’s solution)

u=Fy(§) + F(n) = Fa(x+ct) + Fy(x—ct)
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Consequences of d’Alembert’s Solution

e The solution consists of one wave traveling right F,(x— ct)
and one wave travelling left Fi(x+ct).
e [, is the general solution of u; — cu, = 0, while F, is the
general solution of u +cu,= 0.
e The wave equation (scalar of second order) has two sets
of characteristics,
dx dx

— =+cand

dt - ¢
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