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Plan

• Conservation laws

• Flux vector Φ
• Fourier’s law Φ = −k∇T

• The 1D heat equation by separation of variables

• Transport equation, characteristics

• Second order wave equation in 1D; d’Alembert’s solution

• The wave equation and Newton’s law; spring-mass
oscillator
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Conservation Laws

• Consider the flow of a fluid with velocity field

u(x,y, t) =

(
u(x,y, t)
v(x,y, t)

)

• Let c(x,y, t) denote the concentration of a species (e.g.,
number of molecules per m2 in 2D)

• Q: How many molecules pass in time ∆t across a line of
length l with normal n?
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Conservation Laws (Cont)

|u| ·∆tφ

*
u

j
n

l

• A = area of parallelogram = l |u|∆t cosφ
• number of molecules: cA

• At every instant (number of molecules per second and
meter):

c|u|cosφ = cu ·n

Definition. The flux vector is Φ if the number of molecules
per length and time unit is Φ ·n.

In case of (passive) advection in velocity field u

Φ = cu
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Conservation Laws (Cont)

• Consider the number c of molecules in a fixed control
volume Ω.

• c can only change if molecules are going through (in/out)
of the boundary ∂Ω:

d
dt

Z

Ω

cdΩ = −
Z

∂Ω

Φ ·ndΓ.

• Divergence theorem provides:

Z

Ω

∂
∂t

cdΩ = −
Z

Ω

div ΦdΩ.

This equation holds for any control volume.

• Conservation law (continuity equation)

∂
∂t

c+div Φ = 0
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Conservation Laws (Cont)

• Continuity equation:

∂
∂t

c+div Φ = 0

• In integral form:

Z

Ω

∂
∂t

cdΩ+
Z

∂Ω

Φ ·ndΓ = 0

• In our case:
∂
∂t

c+div(cu) = 0.
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The Heat Equation

• Consider heat conduction: temperature T.

• Conserved quantity is energy:

∆H = ρcp∆T

(change in energy per volume).

• Fourier’s law:
Φ = −k∇T

• Conservation of energy:

∂
∂t

(ρcpT)−div(k∇T) = 0.

• For constant ρ,cp,k:

∂T
∂t

−α∆T = 0

with ∆ ≡ div ∇ is the Laplacian operator.
This is the celebrated heat equation.
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The 1D Heat Equation

• Let Ω = (0,1):
ut = αuxx,x∈ (0,1).

• Boundary conditions:
– prescribed temperature: Dirichlet condition (e.g.,

u(0) = 0)
– isolated boundary: Neumann condition (no flux, e.g.,

∂u/∂n = 0)
– partly isolated boundary: Robin condition

• Initial condition: u(x,0) = u0(x) for x∈ (0,1).
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Solution by Separation of Variables

• To be specific assume u(0, t) = u(1, t) = 0.

• Ansatz: Find solutions of the form u(x, t) = T(t)X(x).

• T ′X−αTX′′ = 0 yields

T ′

T
= α

X′′

X

• Since this identity must be fulfilled for all (x, t), the quotient
must be constant. Denote this constant by λ:

T ′ = λT, X′′−
λ
α

X = 0.

• Solutions

T(t) = ceλt, X(x) = Aeµx+Be−µx (µ=
√

λ/α)

• We must have X(0) = X(1) = 0, hence A and B must fulfil

(
1 1
eµ e−µ

)(
A
B

)

=

(
0
0

)

In order to obtain nontrivial solutions, the system matrix
must be singular.
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Separation of Variables (Cont)

• This leads to the (imaginary!!) values µ= n ·2πi,

λ = −n2π2α,n = ±1,±2, . . .

• Solutions to the odes:

Tn(t) = cne
−αn2π2t, Xn(x) = sinnπx.

• Superposition principle:

u(x, t) =
∞

∑
n=1

cne
−αn2π2t sinnπx

• Theorem: If u0 permits a convergent Fourier series, then
this representation is the solution of the heat equation.

• The coefficients cn can be determined from u0.
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The Heat Equation: Comments

• – small n: low frequency components
– large n: high frequency components

• High frequency components decay very rapidly: like
exp(−αn2π2).

• After some time, only the component for n = 1 is left.

• The smoothing property is expected from intuition about
heat conduction.

• The strong smoothing property makes solving the heat
equation backwards very difficult.
The initial value problem ut = −uxx is ill-posed, i.e.,
perturbations of the initial state grow exponentially fast.

• Heat conduction has a wide range of time scales
exp(−α2π2). Even on a grid (which limits n to a finite
number) it requires small time steps to follow the fastest
variations whereas the solution changes globally only like
exp(−απ2t). (A very stiff problem!)
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The Transport Equation

• Consider (in 2D)
ct +div(cu) = 0.

• Assume that c is given on a curve Γ in the (x,y)-plane.

Q: Can we determine c(x,y, t) in some region in (x,y, t)
from this?
A: In general, yes!
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The Material Derivative

The transport equation can be written as

ct +ucx+vcy = −cdiv u.

Definition. The expression

Dc
Dt

= ct +ucx+vcy

is the material derivative of c.

The material derivative is the time rate of change of a fluid
particle which moves with the stream.

There is a nice discussion of the material derivative in Strang!
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The Transport Equation: Characteristics

Read: Strang, p 472–474

• Taylor expansion:

c(x+∆x,y+∆y, t +∆t)= c(x,y, t)+ct∆t +cx∆x+cy∆y+h. o. t..

• Let (x(t),y(t)) be the trajectory of a particle following the
stream:

dx
dt

= u(x,y, t),
dy
dt

= v(x,y, t).

This curve is called a characteristic.
• In differentials: ∆x = u∆t,∆y = v∆t.
• Thus, on a characteristic it holds

∆c = ∆t(ct +ucx+vcy)
︸ ︷︷ ︸

−cdiv u

+higher order terms

• Going to the limit:

dx
dt

= u,
dy
dt

= v

Dc
Dt

= −cdiv u

This is a system of ordinary differential equations (on the
characteristic!)
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Characteristics: Consequences

• If we know c at (x0,y0) ∈ Γ, the values of c(x,y, t) can be
determined on the characteristic.

• If Γ is not a characteristic, the solution is determined in a
region of (x,y, t)-space.

• Incompressible flow means div u = 0.
For an incompressible flow, c is constant along
characteristics.

• If there are sources and sinks Q(x,y, t), the transport
equation reads

Dc
Dt

= −cdiv u+Q.

• c will be smooth along trajectories, but can be
discontinuous across.
Such a solution does not satisfy the differential equation,
but of course the integral form,

d
dt

Z

Ω

cdΩ+
Z

∂Ω

cu ·ndΓ = Q.
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Method of Characteristics: Example

• Burger’s equation:

ut +uux = 1 for t ≥ 0,

u(x,0) = x for x∈ R.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5
Characteristics

x

t

• Here, we have c = u. Hence, Du
Dt = ut +uux such that the

system becomes
dx
dt

= u,
Du
Dt

= 1.

• Solutions (note: u(x0,0) = x0):

u = x0 + t,x = x0 +x0t +
1
2
t2.
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Example (Cont)

• Material derivative ≡ moving with the particle. Hence, we
must go back in time to find the initial point on the
characteristics:

x0 =
x− t2/2

1+ t
.

• Insert this into the expression for u:

u(x, t) = t +
x− t2/2

1+ t
.

Exercise: Verify this!

• Note: This is a pure initial-value problem, or Cauchy
problem.
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A Vibrating Bar: The Wave Equation

Read: Strang, p 546–548

• Consider longitudinal vibrations of a bar. The
displacement is u, assumed to be small.

• Let Sdenote the tension in the bar. Consider a small
element of length dx.
Force over that element: dS

• Newton’s law: mass times acceleration equals force:

ρdx·
∂2u
∂t2

= dS

Going to differentials: ρutt = Sx.

• Hooke’s law (modulus of elasticity E):

S= E
∂u
∂x

.
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The Vibrating Bar (Cont)

• Putting everything together,

utt = c2uxx

where c2 = E/ρ.

• This is the wave equation. Since it is second order in time,
we need two initial conditions,

u(x,0) = u0(x),
∂u
∂t

(x,0) = v0(x).

Michael Hanke, NADA, November 6, 2008 18

Solution of The 1D Wave Equation

Read: Strang, p 485–486

• The standard way to solve the wave equation would be to
use the separation of variables approach.

• Here, we observe

utt −c2uxx =
( ∂

∂t
−c

∂
∂x

)( ∂
∂t

+c
∂
∂x

)

u

The equation ut ±cux = 0 can be solved by the method of
characteristics which provides F(x∓ct).

• This motivates the change of variables

ξ = x+ct,η = x−ct.

Exercise: Show that the wave equations is ∂2u
∂ξ∂η = 0!

The general solution is (called d’Alembert’s solution)

u = F1(ξ)+F2(η) = F1(x+ct)+F2(x−ct)
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Consequences of d’Alembert’s Solution

• The solution consists of one wave traveling right F2(x−ct)
and one wave travelling left F1(x+ct).

• F1 is the general solution of ut −cux = 0, while F2 is the
general solution of ut +cux = 0.

• The wave equation (scalar of second order) has two sets
of characteristics,

dx
dt

= +c and
dx
dt

= −c.
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