
Chapter 8: Discretization of
Time-Dependent problems

Michael Hanke

Mathematical Models, Analysis and Simulation, Part I

Michael Hanke, NADA, November 6, 2008

A Parabolic Problem

Let Ω ⊂ R
2 be a bounded domain with boundary Γ = ∂Ω.

• Differential equation

ut −div(k∇u) = f (x,y), (x,y) ∈ Ω.

• Boundary condition

u|Γ = g(x,y), (x,y) ∈ Γ.

• Initial condition

u(x,y,0) = u0(x,y), (x,y) ∈ Ω.
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Classification of Numerical Methods

When constructing numerical methods, we use the idea of
separation of variables:

u(t,x,y) = T (t)X(x,y)

Semi-discretization in space For X , we got an elliptic
boundary value problem:
=⇒ Use finite difference or finite element methods.
This is the method of lines (MOL).

Semi-discretization in time For T , we got an initial value
problem:
=⇒ Use a finite difference method (e.g., Runge-Kutta or
multistep methods).
This method is often called Rothe’s method.

Complete discretization in space and time Use finite
difference methods simultaneously.
This approach will be considered in subsequent lectures.
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MOL With Finite Elements

• Trial function space: Vg = {v|v ∈ H1(Ω), v|Γ = g}.

• Test function space: V0 = H1
0(Ω).

• Weak formulation: Find u ∈Vg × [0,T ] such that

Z

Ω

utvdΩ+
Z

Ω

k∇u ·∇vdΩ =
Z

Ω

f vdΩ for all v ∈V0.

• Replace Vg by a finite element space Vh (h – discretization
parameter) with

Vh = lin{ φ1, . . . ,φN
︸ ︷︷ ︸

nodes inside Ω

,φN+1, . . . ,φN+M
︸ ︷︷ ︸

nodes on Γ

}.

• uh ∈Vh× [0,T ] means

uh(x,y, t) =
N

∑
i=1

τi(t)φi(x,y)+
N+M

∑
i=N+1

g(xi,yi)φi(x,y)

︸ ︷︷ ︸

Dirichlet bc

.
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MOL: Cont

• Substituting uh for u and φi, i = 1, . . . ,N for v yields

M
d
dt

τ+Aτ = f,

where

ai j =
Z

Ω

k∇φi ·∇φ jdΩ,

fi =
Z

Ω

f φidΩ−
N+M

∑
j=N+1

g(x j,y j)
Z

Ω

φiφ jdΩ,

mi j =

Z

Ω

φiφ jdΩ.

M is called the mass matrix.
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A 1D Example: Discretization by Explicit
Methods

As a typical example, use the explicit Euler method:

M
τn+1− τn

∆t
+Aτn = f

Hence:
Mτn+1 = Mτn +∆t(f−Aτn).

We must solve a linear system in every time step, even if the
method is explicit!

Trick: Modify M such that the modified matrix M̃ is diagonal:

m̃i j =

{

∑N
k=1mik, i = j

0 i 6= j

This is called mass lumping.

Mass lumping cannot be used for highly oscillatory problems.
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A 1D Example: Discretization by Implicit
Methods

Implicit Euler:

M
τn+1− τn

∆t
+Aτn+1 = f

Hence:
(M+∆tA)τn+1 = Mτn +∆tf.

Here, a linear system must be solved in every step, even for
lumped mass matrices.

Note: Au ≈−div(k∇u), Mu ≈ u. Hence,

( 1
∆t

M+A
)

τn+1 ≈
1
∆t

un+1−div(k∇un+1),

such that a steady-state reaction-diffusion problem must be
solved in every step.

Note: Stability considerations will be postponed.
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Example: Pollution Of Water In A River

• The river is stretched along the x-axis with velocity V in
positive direction,

Vux = ε(uxx +uyy),V > 0.

• At time t = 0, a pollutant is released near the left river side,

u(0,y) = H(y) =

{

1, y > 0

0, y < 0
.

H is the Heaviside function.

• At least near x = 0, we can neglect the contribution of uxx

since the spreading is dominated by advection,

ux = (ε/V )uyy

subject to pure intial conditions.

Q: What happens if diffusion is small compared to advection?

Michael Hanke, NADA, November 6, 2008 10

A Case Study

Read: Strang, p 538–542

• Consider

ux = βuyy. 0 < β ≪ 1

• The solution (found by using the Fourier transform) is,

u(x,y) = Φ(y/
√

4βx)

where Φ is the distribution function of the normal
distribution.

−3 −2 −1 0 1 2 3
0

0.5

1

y

u

Graph of the error function
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A Case Study: Cont
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Conclusion: We need elements of size O(
√

4βx) (in
y-direction) in order to resolve the gradients.

This is a stringent requirement in many applications.
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A Case Study: Boundary Layers

• Consider

ux = βuxx, 0 < β ≪ 1.

• Boundary conditions of Dirichlet type:

u(0) = 1, u(1) = 0.

This is a singular perurbation problem (bvp).

Solution

u(x) =
1

1− e−1/β

(

1− e(x−1)/β
)

≈ 1− e(x−1)/β
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Boundary Layer

x

u

β = 1
β = 10−2

The gradient at x = 1 is O(1/β).
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Boundary Layers: Cont

• Q: How small must the elements be to resolve this
boundary layer?

• Use piecewise linear elements. The FEM approximation
reads

ui+1−ui−1

2h
−

β
h2

(ui+1−2ui +ui−1) = 0,

subject to u0 = 1, uN+1 = 0.

• Consider the reduced problem by taking the limit β → 0:
ui+1−ui−1 = 0,

u0 = u2 = u4 = · · · = 1.

– If N is odd: The system contains a contradiction.
– If N is even: u2 j = 1,u2 j+1 = 0.
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Boundary Layer Resolution: Quantitative
estimation

• The difference equation rewritten:

(1−
2β
h

)ui+1+
4β
h

ui +(−1−
2β
h

)ui−1 = 0.

• This difference equation admits solutions of the type
u j = λ j:

(1−
2β
h

)λ2+
4β
h

λ+(−1−
2β
h

) = 0.

Solutions:

λ1 = 1, λ2 =
1+2β/h
2β/h−1

.

• The general solution

u j = c1λ j
1+ c2λ j

2 = c1+ c2λ j
2.

This solution is monotone iff λ2 > 0

• We obtain the requirement

h
2β

< 1

i.e., h = O(β), which is even more stringent than the
requirement before.
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Comments, Artificial Diffusion

• This is not a stability requirement. It is necessary to
reflect a qualitative property of the exact solution, namely,
to avoid unphysical oscillations.

• If the step size restriction is too hard to fulfill, increase β
artificially :

β̂ := max(β,h/2).

Notation: Artificial diffusion
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Artificial Diffusion In Higher Dimensions

• Consider a non-oscillatory advection-dominated transport
problem

V ·∇u− ε∆u = f .

• Discretized by finite elements, enough diffusion is
necessary. For elements of size h,
– choose ε̂ = max(ε, |V|h/2).
– The resulting discretization is first-order accurate.
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Artificial Diffusion: How Does It Look Like In
1D?

Discretization:

f (xi) =
V
2h

(ui+1−ui−1)−
ε̂
h2

(ui+1−2ui +ui−1)

= ui+1

( V
2h

−
|V |

2h

)

+
|V |

h
ui +ui−1

(

−
V
2h

−
|V |

2h

)

=

{
V
h (ui −ui−1), if V > 0,
V
h (ui+1−ui), if V < 0.

These are one-sided differences depending on the sign of V ,
that is on the direction of the stream.

This is an upstream or upwind discretization.
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