Chapter 9: Stability of Difference Schemes

Michael Hanke

Mathematical Models, Analysis and Simulation, Part I

A given problem is well-posed if its solution depends continuously on the data.

- Note: This notion depends essentially on
- the allowed data,
- the type of solutions searched for,
- the measure of continuity ("the norm").
- Consider a linear homogeneous initial value problem,

$$
\frac{d}{d t} u=L u, \quad u(0)=u_{0} .
$$

L may be a matrix, a linear differential operator wrtspace variables etc.

- Consider only initial values as data.

Definition. The IVP is well-posed $w r t$ the initial data, if there exist constants K, C independent of u_{0} such that the IVP is uniquely solvable, and

$$
\|u(t)\| \leq K e^{C t}\left\|u_{0}\right\| .
$$

Example: Advection Equation

- Consider

$$
u_{t}=c u_{x}, \quad x \in \mathbb{R}, \quad t>0 .
$$

- Special case of the transport equation in 1D.
- Did we already meet in connection with d'Alembert's solution of the wave equation.
- It is a hyperbolic equation.
- Multiply by u and integrate:

$$
\begin{aligned}
0 & =\int_{-\infty}^{+\infty}\left(u u_{t}-c u_{x} u\right) d x \\
& =\frac{d}{d t} \int_{-\infty}^{+\infty} \frac{1}{2} u^{2} d x-\underbrace{\left.c \frac{1}{2} u^{2}\right|_{-\infty} ^{+\infty}}_{=0} \\
& =\frac{1}{2} \frac{d}{d t}\|u(\cdot, t)\|^{2}
\end{aligned}
$$

Hence:

$$
\|u(\cdot, t)\|=\left\|u_{0}\right\|
$$

Example (cont.)

- Growth estimate: $\|u(\cdot, t)\| \leq 1 \cdot e^{0 . t}\left\|u_{0}\right\|$
- Well-posedness with
- $K=1$ and $C=0$
- data from $L^{2}(\mathbb{R})$, solutions from $C^{1}\left([0, \infty), L^{2}(\mathbb{R})\right)$.
- Hyperbolic equations are well-posed.

Well-Posedness for Nonlinear Systems of ODEs

- Consider

$$
\mathbf{y}^{\prime}=\mathbf{f}(\mathbf{y}), \quad \mathbf{y}(0)=\mathbf{y}^{0}, \quad 0 \leq t \leq T .
$$

- Lipschitz condition: There exists a L such that

$$
\|\mathbf{f}(\mathbf{y})-\mathbf{f}(\mathbf{x})\| \leq L\|\mathbf{y}-\mathbf{x}\|
$$

for all \mathbf{y}, \mathbf{x} in a neighborhood of \mathbf{y}_{0}.

- Theorem of Picard-Lindelöf: For a sufficiently small T there is a unique solution which depends continuously on the data \mathbf{y}_{0}.
- Limit on the growth rate:

$$
\left\|\mathbf{y}(t)-\mathbf{y}^{0}\right\| \leq t e^{L t}\left\|\mathbf{f}\left(\mathbf{y}^{0}\right)\right\|
$$

- Consider now two solutions \mathbf{y}, \mathbf{x} subject to initial conditions $\mathbf{y}^{0}, \mathbf{x}^{0}$:

$$
\|\mathbf{y}-\mathbf{x}\| \leq e^{L t}\left\|\mathbf{y}^{0}-\mathbf{x}^{0}\right\| .
$$

These inequalities are a consequence of Gronwall's lemma.

- Observe

$$
\left|e^{\Delta t a}\right|<1 \text { iff } a<0
$$

- This shall be modeled by the discrete system:

$$
a<0 \Longrightarrow|1+\Delta t a|<1
$$

This holds true only if

$$
-a \Delta t<2
$$

Notation: asymptotic stability.

- If y^{n} shall non-oscillatory, $1+\Delta t a>0$ must hold such that even

$$
-a \Delta t<1
$$

is required!

Note the difference between: Convergence, asymptotic stability, non-oscillation!

Euler Discretizations

Read: Strang, p 461-466

- Consider

$$
\mathbf{y}^{\prime}=\mathbf{A y}, \quad \mathbf{y}(0)=\mathbf{y}^{0}, \quad t_{n}=n \Delta t .
$$

- Let first $\mathbf{y}=y \in \mathbb{R}^{1}, \mathbf{A}=a$,

$$
y\left(t_{n}\right)=e^{t_{n} a} y^{0} .
$$

- Explicit Euler reads

$$
\frac{y^{n}-y^{n-1}}{\Delta t}=a y^{n-1}, \text { hence } y^{n}=(1+\Delta t a)^{n} y^{0}
$$

- Since

$$
\lim _{n \rightarrow \infty}(1+\Delta t a)^{n}=\lim _{n \rightarrow \infty}\left(1+\frac{t_{n}}{n} a\right)^{n}=e^{a t_{n}}
$$

it holds

$$
e_{n}=y\left(t_{n}\right)-y^{n} \rightarrow 0
$$

that is convergence.

- Define the matrix exponential by

$$
e^{\mathbf{B}}=\sum_{j=0}^{\infty} \frac{\mathbf{B}^{j}}{j!}
$$

- Solutions:

$$
\mathbf{y}\left(t_{n}\right)=e^{t_{n} \mathbf{A}} \mathbf{y}^{0}, \quad \mathbf{y}^{n}=(1+\Delta t \mathbf{A})^{n} \mathbf{y}^{0}
$$

- Convergence can be proved as before!
- "Growth factor":

$$
\mathbf{G}=\mathbf{I}+\Delta t \mathbf{A} .
$$

Explicit Euler for Systems: Cont

Q: Under which conditions holds: $\|\mathbf{G}\|<1$?

- Let \mathbf{A} be symmetric with eigenvalues λ_{i}. Then:
- Eigenvalues of $\mathbf{G}: \mu_{i}=1+\Delta t \lambda_{i}$.
- $\|\mathbf{G}\|=\max _{i}\left|\mu_{i}\right|$.
- $\mathbf{y}(t) \rightarrow 0$ iff $-\mathbf{A}$ is positive definite.
- For spd - $\mathbf{A}:\|\mathbf{G}\|<1$ iff

$$
\Delta t\left|\lambda_{\max }\right|<2
$$

- For general \mathbf{A} :

$$
\begin{gathered}
\mathbf{y}(t) \rightarrow 0 \text { iff } \Re\left(\lambda_{i}\right)<0 \\
\mathbf{y}^{n} \rightarrow 0 \text { iff } \max _{i}\left|1-\Delta t \lambda_{i}\right|<1 .
\end{gathered}
$$

Implicit Euler Discretization

- Discretization

$$
\frac{\mathbf{y}^{n}-\mathbf{y}^{n-1}}{\Delta t}=\mathbf{A} \mathbf{y}^{n}, \text { hence } \mathbf{y}^{n}=(\mathbf{I}-\Delta t \mathbf{A})^{-n} \mathbf{y}^{0}
$$

- Growth factor:

$$
\mathbf{G}=(\mathbf{I}-\Delta t \mathbf{A})^{-1}
$$

- For a symmetric $\mathbf{A}: \mu_{i}=\left(1-\Delta t \lambda_{i}\right)^{-1}$.
- Asymptotic stability iff

$$
\max _{i} \frac{1}{\left|1-\Delta t \lambda_{i}\right|}<1
$$

- If - \mathbf{A} is spd, there are no restrictions on Δt !
- The price to pay: Solve a linear system in each step:

$$
(\mathbf{I}-\Delta t \mathbf{A}) \mathbf{y}^{n}=-\mathbf{y}^{n-1}
$$

Explicit Euler For PDE Discretizations

- Consider a parabolic problem

$$
\begin{gathered}
u_{t}-\operatorname{div}(k \nabla u)=0, \quad k>0 \\
u_{\Gamma}=0, \quad u(\cdot, 0)=u^{0} .
\end{gathered}
$$

- Galerkin approximation:

$$
\mathbf{M} \frac{d}{d t} \tau_{h}+\mathbf{A} \tau_{h}=0, \tau_{h}^{0}=\Pi u^{0}
$$

- Need the eigenvalues of $\mathbf{M}^{-1} \mathbf{A}$. It holds
- This matrix is pd.
- $0<\lambda_{\text {min }}=O(1)$ and $\lambda_{\text {max }}=O\left(h^{-2}\right)$.
- Asymptotic stability requirement $\Delta t \lambda_{\max }<2$ becomes

$$
\Delta t<2 c h^{2}
$$

This requirement makes explicit Euler rather expensive!

Detailed Stability Analysis

Read: Strang, p 481-482
Theorem. [Lax Equivalence Theorem] Consistency and stability are necessary and sufficient for convergence.

	equilibrium problems	evolution problems
continuous	$L u=f$	$u_{t}=L u$
discrete	$L_{h} u_{h}=f_{h}$	$u_{h}^{n}=G_{h} u_{h}^{n-1}$
example	FEM	MOL/Rothe

Convergence Does the discrete solution converge towards the continuous one?
Consistency Does the discrete equation approximate the continuous counterpart? \Rightarrow Easy!
Example:

$$
L_{h} u_{h} \rightarrow L u, \quad f_{h} \rightarrow f ?
$$

Stability Need to distinguish:

- equilibrium: Is L_{h}^{-1} uniformly bounded?
- evolution: Is the discrete evolution uniformly bounded, i.e., $\left|G_{h}^{n}\right| \leq e^{K n \Delta t}$?

This is the hard part!

Detailed Stability Analysis: Cont

For PDEs, this coarse description is not sufficient. We need a more detailed study.

Tool Fourier analysis
Result von Neumann stability analysis

An Example: Cont

- The transformed equation is a set of ode's $\mathrm{wr} t$ parametrized by k :

$$
\hat{u}_{t}=c i k \hat{u} \Longrightarrow \hat{u}(k)=e^{c i k t} \hat{u}^{0}(k) .
$$

- Taking norms:

$$
\|\hat{u}\|^{2}=\int_{-\infty}^{+\infty}\left|e^{c i k t} \hat{u}^{0}(k)\right|^{2} d k=\left\|\hat{u}^{0}\right\|^{2} .
$$

- Using Plancherel's identity, we obtain the stability estimate (slide 3) once again:

$$
\|u(t)\|=\left\|u^{0}\right\| .
$$

Why Does it Work? An Example

Read: Strang, Ch. 6.3

- Consider the hyperbolic Cauchy problem

$$
\begin{gathered}
u_{t}=c u_{x}, \quad x \in \mathbb{R}, \\
u(x, 0)=u^{0}(x), \quad u^{0} \in L^{2}(\mathbb{R}) .
\end{gathered}
$$

- Fourier transform

$$
\hat{f}(k)=\int_{-\infty}^{+\infty} f(x) e^{-i k x} d x, \quad k \in \mathbb{R}
$$

- Plancherel's identity

$$
\|\hat{f}\|^{2}=2 \pi\|f\|^{2} .
$$

- Taking the Fourier transform in x :

$$
\begin{aligned}
\int_{-\infty}^{+\infty} \frac{\partial}{\partial t} u(x, t) e^{-i k x} d x & =c \int_{-\infty}^{+\infty} \frac{\partial}{\partial x} u(x, t) e^{-i k x} d x \\
\frac{\partial}{\partial t} \int_{-\infty}^{+\infty} u(x, t) e^{-i k x} d x & =-c \int_{-\infty}^{+\infty} u(x, t) \frac{\partial}{\partial x} e^{-i k x} d x+\text { b.t. } \\
\hat{u}_{t}(k) & =c i k \hat{u}(k)
\end{aligned}
$$

Michael Hanke, NADA, November 6, 2008

Example: The Discrete Version

- We use the direct complete discretization:

$$
x_{j}=j \cdot \Delta x, t_{n}=n \cdot \Delta t, u_{j}^{n} \approx u\left(x_{j}, t_{n}\right) .
$$

- First-order accurate difference approximations ("explicit Euler"):

$$
\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}=c \frac{u_{j+1}^{n}-u_{j}^{n}}{\Delta x}
$$

More explicit:

$$
u_{j}^{n+1}=u_{j}^{n}+r\left(u_{j+1}^{n}-u_{j}^{n}\right), \quad r=\frac{c \Delta t}{\Delta x} .
$$

r is called the Courant number.

- Interpolate u_{j}^{n} by a smooth function $v(x, t)$. Then

$$
v(x, t+\Delta t)-v(x, t)-r(v(x+\Delta x, t)-v(x, t))=0
$$

The Discrete Version: Cont

- It holds

$$
\widehat{f(\cdot+\Delta x)}=\int_{-\infty}^{+\infty} f(x+\Delta x) e^{-i k x} d x=\int_{-\infty}^{+\infty} f(x+\Delta x) e^{-i k(x+\Delta x)} e^{i k \Delta x} d x=\hat{f} e^{i k \Delta x}
$$

- Applied to our recursion:

$$
\begin{gathered}
\hat{v}(k, t+\Delta t)-\hat{v}(k, t)-r\left(e^{i k \Delta x} \hat{v}(k, t)-\hat{v}(k, t)\right)=0 \\
\hat{v}(k, t+\Delta t)=G(\theta, r) \hat{v}(k, t)
\end{gathered}
$$

with the growth factor

$$
G(\theta, r)=1+r\left(e^{i \theta}-1\right)
$$

depending on

- $\theta=k \Delta x$, the phase shift per cell,
- $r=c \Delta t / \Delta x$, the Courant number.

Conclusions

- The norm estimate becomes

$$
\|\hat{v}(\cdot, t+\Delta t)\| \leq\|G\|_{\infty}\|\hat{v}(\cdot, t)\| .
$$

- Taking into account the stability properties of the continuous problem, we want to model it discretely. This leads to the stability requirement

$$
\|G\|_{\infty} \leq 1
$$

- The actual necessary and sufficient condition is $|G| \leq 1+O(\Delta t)$.
- Fixing $r, G(., r)$ describes a circle with center $1-r$ and radius r.

Conclusions: Cont

- Hence:
- $c>0$ is necessary for stability.
- $r \leq 1$ is necessary, which is equivalent to

$$
\frac{c \Delta t}{\Delta x} \leq 1
$$

- This condition is the celebrated Courant-Friedrichs-Lewy condition (short: CFL condition):
If it is violated, then there cannot be convergence.
- Here, it is a necessary (and sufficient) condition for stability.

A Geometrical Interpretation

Difference stencil:

Waves come from the left but difference scheme uses only data from the right.

Here, the waves come from the right.
Upstream or upwind scheme

Higher Order Schemes

- Try a scheme forward in time, centered in space (FTCS):

$$
u_{j}^{n+1}-u_{j}^{n}-\frac{r}{2}\left(u_{j+1}^{n}-u_{j-1}^{n}\right)=0
$$

It holds $G(\theta, r)=1+i r \sin \theta$ such that the scheme is unstable,

$$
|G| \geq 1
$$

- Lax-Friedrichs scheme (first order)

$$
u_{j}^{n+1}-\frac{1}{2}\left(u_{j+1}^{n}+u_{j-1}^{n}\right)=\frac{r}{2}\left(u_{j+1}^{n}-u_{j-1}^{n}\right)
$$

Amplification factor $G(\theta, r)=\cos \theta+i r \sin \theta$. This is an ellipse with half axes 1 and r. So

$$
|G| \leq 1 \text { iff }|r| \leq 1
$$

This scheme works independent of the sign od c ! Necessary for the wave equation with two characteristics of opposite directions.

Higher Order Schemes: Cont

- Lax-Wendroff scheme (second order) Start by using the Taylor expansion:

$$
u(t+\Delta t)=u(t)+\Delta t u_{t}(t)+\frac{(\Delta t)^{2}}{2} u_{t t}(t)+O\left((\Delta t)^{3}\right) .
$$

u_{t} can be replaced bu $c u_{x}$ using the differential equation. What to do with $u_{t t}$? Use the equation once again:

$$
u_{t x}=c u_{x x} \text { and } u_{t t}=c u_{x t} \Rightarrow u_{t t}=c^{2} u_{x x} .
$$

Hence,

$$
u(t+\Delta t) \approx u(t)+\Delta t c u_{x}+\frac{(\Delta t)^{2}}{2} c^{2} u_{x x} .
$$

The last term is additional diffusion which has a stabilizing effect!
Discretization:

$$
u_{j}^{n+1}-u_{j}^{n}=\frac{r}{2}\left(u_{j+1}^{n}-u_{j-1}^{n}\right)+\frac{r^{2}}{2}\left(u_{j+1}^{n}-2 u_{j}^{n}+u_{j-1}^{n}\right)
$$

Amplification factor $G(\theta, r)=1+i r \sin \theta-2 r^{2} \sin ^{2} \theta$. One can prove that

$$
|G| \leq 1 \text { iff }|r| \leq 1
$$

