
Chapter 9: Stability of Difference
Schemes

Michael Hanke

Mathematical Models, Analysis and Simulation, Part I

Michael Hanke, NADA, November 6, 2008

Hadamard’s Concept of Well-Posedness

A given problem is well-posed if its solution depends
continuously on the data.

• Note: This notion depends essentially on
– the allowed data,
– the type of solutions searched for,
– the measure of continuity (“the norm”).

• Consider a linear homogeneous initial value problem,

d
dt

u = Lu, u(0) = u0.

L may be a matrix, a linear differential operator w r t space
variables etc.

• Consider only initial values as data.

Definition. The IVP is well-posed w r t the initial data, if
there exist constants K,C independent of u0 such that the IVP
is uniquely solvable, and

‖u(t)‖ ≤ KeCt‖u0‖.
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Example: Advection Equation

• Consider
ut = cux, x∈ R, t > 0.

– Special case of the transport equation in 1D.
– Did we already meet in connection with d’Alembert’s

solution of the wave equation.
– It is a hyperbolic equation.

• Multiply by u and integrate:

0 =

+∞
Z

−∞

(uut −cuxu)dx

=
d
dt

+∞
Z

−∞

1
2

u2dx−c
1
2

u2

∣
∣
∣
∣

+∞

−∞
︸ ︷︷ ︸

=0

=
1
2

d
dt
‖u(·, t)‖2

Hence:

‖u(·, t)‖= ‖u0‖
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Example (cont.)

• Growth estimate: ‖u(·, t)‖ ≤ 1 ·e0·t‖u0‖

• Well-posedness with
– K = 1 and C = 0
– data from L2(R), solutions from C1([0,∞),L2(R)).

• Hyperbolic equations are well-posed.
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Well-Posedness for Nonlinear Systems of ODEs

• Consider

y′ = f(y), y(0) = y0, 0≤ t ≤ T.

• Lipschitz condition: There exists a L such that

‖f(y)− f(x)‖ ≤ L‖y−x‖

for all y,x in a neighborhood of y0.

• Theorem of Picard-Lindelöf : For a sufficiently small T
there is a unique solution which depends continuously on
the data y0.

• Limit on the growth rate:

‖y(t)−y0‖ ≤ teLt‖f(y0)‖.

• Consider now two solutions y,x subject to initial conditions
y0,x0:

‖y−x‖ ≤ eLt‖y0−x0‖.

These inequalities are a consequence of Gronwall’s
lemma.
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Euler Discretizations

Read: Strang, p 461–466

• Consider
y′ = Ay, y(0) = y0, tn = n∆t.

• Let first y = y∈ R1, A = a,

y(tn) = etnay0.

• Explicit Euler reads

yn−yn−1

∆t
= ayn−1, hence yn = (1+∆ta)ny0.

• Since
lim
n→∞

(1+∆ta)n = lim
n→∞

(1+
tn
n

a)n = eatn,

it holds
en = y(tn)−yn → 0,

that is convergence.
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Euler Discretizations: Cont

• Observe
|e∆ta| < 1 iff a < 0

• This shall be modeled by the discrete system:

a < 0 =⇒ |1+∆ta| < 1.

This holds true only if

−a∆t < 2

Notation: asymptotic stability.

• If yn shall non-oscillatory, 1+∆ta > 0 must hold such that
even

−a∆t < 1

is required!

Note the difference between: Convergence, asymptotic
stability, non-oscillation!
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Explicit Euler For Systems

• Define the matrix exponential by

eB =
∞

∑
j=0

B j

j !

• Solutions:

y(tn) = etnAy0, yn = (1+∆tA)ny0

• Convergence can be proved as before!

• “Growth factor”:
G = I+∆tA.
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Explicit Euler for Systems: Cont

Q: Under which conditions holds: ‖G‖ < 1?

• Let A be symmetric with eigenvalues λi. Then:
– Eigenvalues of G: µi = 1+∆tλi.
– ‖G‖ = maxi |µi|.
– y(t) → 0 iff −A is positive definite.
– For spd −A: ‖G‖ < 1 iff

∆t|λmax| < 2

• For general A:

y(t) → 0 iff ℜ(λi) < 0

yn → 0 iff max
i

|1−∆tλi| < 1.
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Explicit Euler For PDE Discretizations

• Consider a parabolic problem

ut −div(k∇u) = 0, k > 0

uΓ = 0, u(·,0) = u0.

• Galerkin approximation:

M
d
dt

τh+Aτh = 0,τ0
h = Πu0.

• Need the eigenvalues of M−1A. It holds
– This matrix is pd.
– 0 < λmin = O(1) and λmax= O(h−2).

• Asymptotic stability requirement ∆tλmax < 2 becomes

∆t < 2ch2

This requirement makes explicit Euler rather expensive!
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Implicit Euler Discretization

• Discretization

yn−yn−1

∆t
= Ayn, hence yn = (I−∆tA)−ny0.

• Growth factor:
G = (I−∆tA)−1

– For a symmetric A: µi = (1−∆tλi)
−1.

– Asymptotic stability iff

max
i

1
|1−∆tλi|

< 1

• If −A is spd, there are no restrictions on ∆t!

• The price to pay: Solve a linear system in each step:

(I−∆tA)yn = −yn−1.
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Detailed Stability Analysis

Read: Strang, p 481–482

Theorem. [Lax Equivalence Theorem] Consistency and
stability are necessary and sufficient for convergence.

equilibrium problems evolution problems
continuous Lu = f ut = Lu

discrete Lhuh = fh un
h = Ghu

n−1
h

example FEM MOL/Rothe

Convergence Does the discrete solution converge towards
the continuous one?

Consistency Does the discrete equation approximate the
continuous counterpart? ⇒ Easy!
Example:

Lhuh → Lu, fh → f ?

Stability Need to distinguish:
• equilibrium: Is L−1

h uniformly bounded?
• evolution: Is the discrete evolution uniformly bounded,

i.e., |Gn
h| ≤ eKn∆t?

This is the hard part!
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Detailed Stability Analysis: Cont

For PDEs, this coarse description is not sufficient. We need a
more detailed study.

Tool Fourier analysis

Result von Neumann stability analysis
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Why Does it Work? An Example

Read: Strang, Ch. 6.3

• Consider the hyperbolic Cauchy problem

ut = cux, x∈ R,

u(x,0) = u0(x), u0 ∈ L2(R).

• Fourier transform

f̂ (k) =

+∞
Z

−∞

f (x)e−ikxdx, k∈ R

• Plancherel’s identity

‖ f̂‖2 = 2π‖ f‖2.

• Taking the Fourier transform in x:

+∞
Z

−∞

∂
∂t

u(x, t)e−ikxdx= c

+∞
Z

−∞

∂
∂x

u(x, t)e−ikxdx

∂
∂t

+∞
Z

−∞

u(x, t)e−ikxdx= −c

+∞
Z

−∞

u(x, t)
∂
∂x

e−ikxdx+b.t.

ût(k) = cikû(k)
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An Example: Cont

• The transformed equation is a set of ode’s w r t t
parametrized by k:

ût = cikû =⇒ û(k) = eciktû0(k).

• Taking norms:

‖û‖2 =

+∞
Z

−∞

|eciktû0(k)|2dk= ‖û0‖2.

• Using Plancherel’s identity, we obtain the stability estimate
(slide 3) once again:

‖u(t)‖ = ‖u0‖.
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Example: The Discrete Version

• We use the direct complete discretization:

x j = j ·∆x, tn = n ·∆t,un
j ≈ u(x j, tn).

• First-order accurate difference approximations (“explicit
Euler”):

un+1
j −un

j

∆t
= c

un
j+1−un

j

∆x
More explicit:

un+1
j = un

j + r(un
j+1−un

j), r =
c∆t
∆x

.

r is called the Courant number.

• Interpolate un
j by a smooth function v(x, t). Then

v(x, t +∆t)−v(x, t)− r(v(x+∆x, t)−v(x, t)) = 0
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The Discrete Version: Cont

• It holds

̂f (·+∆x)=

+∞
Z

−∞

f (x+∆x)e−ikxdx=

+∞
Z

−∞

f (x+∆x)e−ik(x+∆x)eik∆xdx= f̂ eik∆x

• Applied to our recursion:

v̂(k, t +∆t)− v̂(k, t)− r(eik∆xv̂(k, t)− v̂(k, t)) = 0

v̂(k, t +∆t) = G(θ, r)v̂(k, t)

with the growth factor

G(θ, r) = 1+ r(eiθ−1)

depending on
– θ = k∆x, the phase shift per cell,
– r = c∆t/∆x, the Courant number.
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Conclusions

• The norm estimate becomes

‖v̂(·, t +∆t)‖ ≤ ‖G‖∞‖v̂(·, t)‖.

• Taking into account the stability properties of the
continuous problem, we want to model it discretely. This
leads to the stability requirement

‖G‖∞ ≤ 1

• The actual necessary and sufficient condition is
|G| ≤ 1+O(∆t).

• Fixing r, G(., r) describes a circle with center 1− r and
radius r.
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Conclusions: Cont
Stability Function

r > 0 r < 0 

• Hence:
– c > 0 is necessary for stability.
– r ≤ 1 is necessary, which is equivalent to

c∆t
∆x

≤ 1

• This condition is the celebrated Courant-Friedrichs-Lewy
condition (short: CFL condition):
If it is violated, then there cannot be convergence.

• Here, it is a necessary (and sufficient) condition for
stability.
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A Geometrical Interpretation

Difference stencil:
tn+1

tn
un un+1

j j

j

c < 0 c > 0
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Waves come from
the left but difference
scheme uses only
data from the right.

Here, the waves
come from the right.
Upstream or
upwind scheme

Michael Hanke, NADA, November 6, 2008 19



Higher Order Schemes

• Try a scheme forward in time, centered in space (FTCS):

un+1
j −un

j −
r
2
(un

j+1−un
j−1) = 0

It holds G(θ, r) = 1+ ir sinθ such that the scheme is
unstable,

|G| ≥ 1

• Lax-Friedrichs scheme (first order)

un+1
j −

1
2
(un

j+1+un
j−1) =

r
2
(un

j+1−un
j−1)

Amplification factor G(θ, r) = cosθ+ ir sinθ. This is an
ellipse with half axes 1 and r. So

|G| ≤ 1 iff |r| ≤ 1

This scheme works independent of the sign od c!
Necessary for the wave equation with two characteristics
of opposite directions.
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Higher Order Schemes: Cont

• Lax-Wendroff scheme (second order)
Start by using the Taylor expansion:

u(t +∆t) = u(t)+∆tut(t)+
(∆t)2

2
utt(t)+O

(
(∆t)3

)
.

ut can be replaced bu cux using the differential equation.
What to do with utt? Use the equation once again:

utx = cuxx and utt = cuxt ⇒ utt = c2uxx.

Hence,

u(t +∆t) ≈ u(t)+∆tcux+
(∆t)2

2
c2uxx.

The last term is additional diffusion which has a stabilizing
effect!
Discretization:

un+1
j −un

j =
r
2
(un

j+1−un
j−1)+

r2

2
(un

j+1−2un
j +un

j−1)

Amplification factor G(θ, r) = 1+ ir sinθ−2r2sin2θ.

One can prove that

|G| ≤ 1 iff |r| ≤ 1
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