The Problem

Chapter 1: Differential-Algebraic
Equations

Consider the differential equation
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ichael Hanke Alt,x)X +g(t,x) =0
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or, more generally, F(t,x,x') = 0. Here, all involved functions
x: | — R" etc are vector-valued functions!

The matrix-valued function A(t,x) is assumed to be singular
for all values of their arguments.

Applications:

Electrical circuits (see Strang, sections 2.4, 2.6,
pp. 179-181, handout for homework)

Constraint mechanical multibody systems
Singular perturbed problems (covered in next lecture)

(Semi-) Discretization of multiphysics systems (covered in
later lectures)
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Constraint Mechanical Multibody Systems

y in Strang):

In case of holonomic constraints, Lagrangian calculus of the
first kind gives:

M(p)p" = f(p, ) —R(p)"A,
0=r(p)
where R(p) = (9/9p)r(p).
p — (generalized) positions
Reformulation as a first order system: x= (p,v,A), v=p/
I 0 0 v

Atx)=[0 M(p) 0].gt.x)=|—f(p,v)+R(p)'A
0 0 0 r(p)

ATx where x denotes the node potentials.

o, v

Transient Analysis of Electrical Networks: MNA

voltage and current sources.
e All elements are characterized by voltage-current characteristics (i

— Capacitor: i = Cdv/dt
— Inductor: v = Ldi/dt

— Voltage source: v=E
— Current source: i =1
e The topology is described using incidence matrices.

e A (linear) network consists of (linear) resistors, capacitors, and inductors, as well as
— Resistor: i =Gv

e Kirchhoff’s laws: Ai
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The Mathematical Pendulum

A pendulum is fixed at origo in the (x,y)-plane. Langrangian
calculus of the first kind provides the mathematical model,

mx’ = —AXx,
rﬂ}/,: _rrg_)\ya
0=x+y2—I2

The first two equations are differential ones while the last is
an algebraic equation.

Note: Often, the algebraic relations are “hidden” in the
system and not that easy to identify.

A more general example of this type is given in Strang, p. 180.
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Singular Perturbed Odes

Consider
y=1(y,2),
€Z=9(y,2)

Assume ¢ to be a small paramter. Often, the solution of the
system obtained by formally setting € =0 is a good
approximation to the original one. See next lecture.
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Partial Differential Equations

e Navier-Stokes equation
— Momentum equation: %u— vAu+u-Ou+0Op=0
— Incompressibility condition: divu=0
e Heat equation (in more detail later)
— Conservation law: 2T +div ® =0
— Material law: ® = —kOT

Multiphysics problems lead to mixed systems, so-called
partial differential-algebraic equation.

This is a subject of active research.
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Semiexplicit Systems

y: f(y,Z),
0=9(v,2)

is a semiexplicit dae with x = (y, z).

e The second equation respresents a constraint on the
solution x = (y, 2).

e |t would be natural to consider the (restricted) dynamics
on the manifold

< ={(v,2l9(y,2) = 0}.

e Hence, differential equations on manifolds are the
“natural” framework.

Here, we make an elementary analysis, only!

Note: Compare the relation between Lagrangian calculus of
first and second kinds!
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Linear Constant Coefficient Daes

AX(t) +Bx(t) = q(t)

with A B being square n x n-matrices. A dae is obtained if Ais
singular.

Definition: (A, B) forms a regular matrix pencil iff there exists
a A € C such that AA+ B is nonsingular. Otherwise, the
matrix pencil is called singular.

Note: If (A,B) is a singular pencil, the homogeneous initial
value problem

AX +Bx=0, x(0)=0
has infinitely many solutions!
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The Index of a Dae

Theorem: For any regular matrix pencil (A,B), there exist
nonsingular matrices E,F such that

() ).

where J is a nilpotent Jordan block matrix,
JH-1-£0,J# = 0for some p € N.

By definition yu = 0 means that the second block row is
missing, i.e., Ais nonsingular.

u is called the index of the matrix pencil (A, B) and of the dae.

(I J> R (W I) is called the Kronecker canonical form of
the pencil (A,B).
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The Index of a Dae (cont)

Use the change of variables

):F’lx

and scale the dae by E:

EAF (F~x)' + EBF (F~1x) = Eq(t)

()G )E)-(0)

or, equivalently:

Y +Wy=p(b),
JZ+z=r(t).

The first equation is a usual (explicit) ode.
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Why Is The Index Important?

U =0 The second row is missing. The dae is in fact an ode.
U =1 Hence, J =0 such that the second row reads

Z=1.

Nothing special.

Note: While y is obtained by integrating, zis determined by
a pure algebraic realtion. Moreover, the initial value for z
cannot be chosen freely, it is fixed by the right hand side r
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Higher Index Problems: u=2

Here, J! # 0 while J? = 0. Multiply the second row by J:

¥Z+dz=dr = (32 = (Ir) =
z=r—-JZ=r—(r)

e Some components of z are given by algebraic relations,

others by differentiated components of the right hand side.

e Our “integration” problem contains a differentiation
problem!

What is bad with differentiation problems?

Consider x(t) = q(t)
Add a small perturbation, x(t) = (q+ £cos(wt))’
It holds ||g— (q+ £cos(w-)|| = |€]

Nevertheless, || X — X|| = |we| may become arbiritrarily
large!

Differentiating is an ill-posed problem.
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e For u >3, it holds

u-1

= —1)i3in
z J;( )'(3'T)

e Relations of the type (Jz) = (Jr)’ are called hidden
constraints.

e Initial value problems become solvable for consistent
initial values, only,

w0-r(38)-(3)

This includes the hidden constraints!
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Index Reductions

Start with a semiexplicit index-1 system,

Y = —Buy—Bpz+p,
0= —Bo1y — Byoz+r.
This dae has index 1 if and only if By, is nonsingular.
Then:
zZ= 32721(7821)/4* I')7
Y = (—Bu1 + B12B53Ba1 )y + p— BB .

e This system is an index-1 system as before.

e The differential equation is completely decoupled such
that the ode theory applies.

e Can one even avoid the assignment for z?
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Index Redutions (cont)

Differentiate the constraint in the original dae:
0= —Bay —BnZ +1'

Then, the system reads:

I 0 /Yy n Biu Bw) (Y\_ (P
B,y Bo z 0 0 z) \r' )’
This is an index-0 dae (an ode)

Conclusion: By differentiation of the algebraic constraint, the
index can be reduced by one.

The index-reduced system is not equivalent to the original
onel!

The new system has more degrees of freedom (initial
values for 2).

How to do that in more implicitely given systems?

Do there exist better index reduction methods? Yes and
No!

Michael Hanke, NADA, November 6, 2008




The Differentiation Index

Definition: For a general dae F(X,x,t) = 0, the index along a
solution trajectory X(t) is the minimum number of
differentiations of the system which would be required to
solve for X' uniquely in terms of x and t.

If there does not exist such a value, the index is undefined.

For many applications, the index is known or can easily be
checked. (Introductory examples!)

Often, structural considerations help, but this may be
misleading.

The differentiation index may underestimate the sensitivity
with respect to perturbations.
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Examples

. Consider

X’l = X3,

0= Xz(l — Xz)7

0=xX+ X3(1—x%2) — t.
The system has two (continuous) solutions, one with
Xo = 0 and one with x, = 1.

e If X, =0, the system has differentiation index 1.
e If xo, = 1, the system has differentiation index 2.

. Consider the system

)(1 = X3,
X,2 = 07
0= X1X2+X3(1—X2) —t.
Now, the index depends on the initial conditions. If

%2(0) =0, the index is 1, and if x2(0) = 1, the index equals
2.
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