Mathematical Models, Analysis and Simulation Part I, Fall 2009

August 21, 2009

Homework 2, Strang Ch. 1. Max. score 3.0, Deadline Sun Sep. 13

1. (2.3)
1.6:15,19(p75ff);1.7:2,10,11,12(p88);
from G.Strang, Intro. to Applied Mathematics: 1.6:2,20,29 (pages copied and handed out)
2. (0.5)

This is a modified version of P6.3.4 in Charles van Loan: Introduction to Scientific Computing. $\quad A$ and C are given n-by- n matrices, A is nonsingular. g and h are given n-vectors. Develop different algorithms (at least three) for computing n-vectors y and z so that

$$
A^{T} y+C z=g, A z=h
$$

Implement them in Matlab and measure their run-times. Explain your observations. Choose test matrices of different sizes (say, $n=500,1000,1500,2000$) and measure the execution time. The following code snippet gives a hint:

```
tstart = cputime;
% insert your code to be timed
tend = cputime;
duration = tend-tstart;
```

A random square matrix can be generated by rand which gives (pseudo-) random numbers uniformly distributed in [0,1]:
$\mathrm{n}=100$;
A $=2 * \operatorname{eye}(\mathrm{n})+\mathrm{rand}(\mathrm{n})$;
$C=\operatorname{rand}(n)$;
Note
Is A sure to be non-singular? No, but the probability of finding a singular one is zero. You may find it amusing to plot the spectrum of a large number of A 's - use lam $=$ eig(A); plot(lam,'.'); hold on;.

3. (0.2)

The game changes when C is non-singular, $n \times n$, but A is $m \times n, m<n$. Then h is an m-vector as is y. Why not $m>n$? Eliminate y and show that the resulting system for z has coefficient matrix $A C^{-1} A^{T}$ - called the Schur complement.

