
Mathematical Models, Analysis and Simulation

Part I, Fall 2009

November 15, 2009

Homework 7: DFT and spectral methods, Max. Score 7.0,

Deadline Sun, Dec. 6

1 Spectral interpolation and differentiation

Consider L−periodic functions f and the grid xk = kL/N , k = 0, 1, 2, . . . , N − 1, N = 2m,
m = 1, 2, . . . The discrete Fourier transform (Strang Ch 4.3) establishes the correspondence
between function values f(xj) = fj, DFT coefficients ck, and the spectral interpolant Πf ,

Πf(x) =

N−1
∑

j=0

cje
2πijx/L, Πf(xj) = fj, ck =

1

N

N−1
∑

j=0

fje
−2πikxj/L (*)

1. (1.0) Take

f(x) = e−M(x/L−0.3)2

on [0, L] with periodic extension f(x) = f(x + L) for all x. Its Fourier coefficients ak

decay,

ak =
1

L

∫ L

0
f(x)e−2πikx/Ldx, f(x) =

∞
∑

j=−∞

aje
2πijx/L, aj = O(j−p).

f ’s "almost continuity" depends on M . What p do you expect for i) M = 1 and a
substantially larger M , say, ii) M = 100? Why is this relevant for spectral computation
of derivatives?

For M = 60, compute the DFT coefficients ck for N = 24. Then evaluate Πf on a much
denser grid, say xpl = linspace(0,L,400), and plot the data and the interpolant vs.
x. Note: Complex numbers!

The grid can easily be generated using the command sequence
x1 = linspace(0,L,N+1);

x = x1(1:N);

The plot can be generated conveniently using
plot3(x,real(f),imag(f),’o’); hold on

plot3(xpl,real(fpl),imag(fpl)); hold off

Comment on the suitability of Πf for differentiation.
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2. (0.5) A better, much less wiggly interpolant can be constructed by using the interval
−N/2, . . . , N/2 − 1 instead of 0, . . . , N − 1 of the DFT coefficients and basis function
wave numbers. Look up what fftshift does, plot, and explain the formulas
fhat = fft(f);

dfhat = 2*i*pi/L*[-N/2:(N/2-1)]’.*fftshift(fhat);

df = ifft(fftshift(dfhat));

for computing dfk as approximations to f ′(xk)!

3. (1.0) (Hard!) Show that for real f , the formula (*) is equivalent to the DP matrix in
Strang Ch 5.4 p449, and the formula on top of p 450.
Hints: i) the DFT coefficients are N -periodic, and so are the basis function values at
gridpoints. Show!
ii)

K
∑

k=M

qk =
qM − qK+1

1 − q
,

N/2−1
∑

k=−N/2

eiyk = e−iy/2 sin(Ny/2)

sin(y/2)

Πf(x) =

N−1
∑

k=0

1

N





N−1
∑

j=0

fje
−2πijxk/L



 e2πikx/L =

N−1
∑

j=0

fj

(

1

N

N−1
∑

k=0

e2πik(x−xj)/L

)

The real part of the above development produces Shannon’s psinc. The imaginary part
vanishes on all gridpoints, but not in between.

Let ′′ on the sum mean taking half the first and last terms. Show that symmetrizing the
sum to

Pf(x) =

N/2
∑′′

k=−N/2

cke
2πikx/L

makes the imaginary part vanish, and that

Pf(x) = Πf(x) + icn/2 sin(πnx/L)

This shows how to evaluate Pf , and its derivatives at gridpoints, by FFT.

4. (0.5) Compute the RMS norm, ||f ||RMS =
√

1
N

∑N−1
k=0 |fk|2, of the errors of derivatives

at grid points with m = 3,4,5,6,7; plot in a suitable lin-log diagram and discuss the
alleged exponential convergence.

2 Spectral method for First-order-in-time Named Equations

Consider the model equation

qt + A(q2)x + Bqx = ǫ2qxx + ǫ3qxxx, 0 ≤ x < L, t ≥ 0, q(x, 0) = f(x) (**)

with ǫ2 ≥ 0, f, q L-periodic, and A,B, ǫk constant.
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2.1 Implementation (1.0)

See Strang Ch 6 p 456 and p522, and give the values of A,B, ǫ2, ǫ3 which give the heat,
convection-diffusion, Schrödinger, Airy, Burger’s, and Korteweg-deVries equations. Your task
is to write a high-order method (fourth order in time, exponential order in space) for numerical
solution of the initial-boundary value problem for this family of models.

Let the spectral differentiation matrix be DP . Borrowing notation from MATLAB, the
semi-discretized PDE (**) becomes the system of ODEs

Qt = DP × (−BQ− AQ. ∗Q + DP × (ǫ2Q + ǫ3DP × Q)) ,

where
Q = (q0, q1, . . . , qj , . . . , qN−1)

T

The differentiations should NOT be implemented by matrix multiplication (Why?), but by
fft, fftshift, and ifft, like above. Use the classical Runge-Kutta-4 scheme for the time-
stepping.

2.2 The heat equation (1.5)

For f(x) = sin(2πx/L) the exact solution is known. Take L = 1, ǫ2 = 1,m = 3, 4, 5, 6, 7 and
solve until time T = 0.1 and 1.

1. What is the time-step limit ∆tmax for stability? This question may be answered either
theoretically or experimentally. The RK4 stability region on the real line is approx.
[−2.8, 0].

2. For each m, choose a sufficiently small ∆t that the error is dominated by the spatial
error, and record the RMS norms of differences with the exact solution. Plot in a lin-log
diagram and conclude exponential convergence (or not?)

3. For parabolic initial value problems one usually chooses implicit schemes. Explain (don’t
code) how to use the implicit Euler scheme. Hint: Solve the ODEs for the DFT coef-
ficients! Transform to physical space only at the output times desired. Indeed, it is
easy to compute the exact solution to this system of ODE since the matrix is diagonal.
Explain!

2.3 Burgers’ equation (1.5)

Take f(x) = sin(πx/L), L = 1,m = 4, 5, 6, 7. For ǫ2 > 0 the solution is smooth for all times,
but for ǫ2 = 0 it develops discontinuities after finite time, even if f is smooth.

• Determine at what time the wave breaks and the solution becomes discontinuous. You
observe "wiggles" around a front when it becomes steep enough. Look up the Gibb’s
phenomenon and comment. Use a small ǫ2 > 0 to smooth the wiggles.

• Verify by computation the analysis for f(x) = δ(x − L/2) on Strang pp. 522-523. You
may need to choose a non-zero ǫ2 and a smooth approximation to the delta-function,
like f(x) = αe−M(x/L−0.5)2 for some suitably large M . Choose α so the approximate
delta-function has mass 1,

∫ +∞

−∞
f(x)dx = 1.
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2.4 An equation of your choice (optional, 1.0)

Choose another equation for which you find something interesting in Strang, or on the web.
Solve it accurately and verify the properties.
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