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Spectral Interpolation
Define the DFT coefficients (on [0, 2π])

ck =
1

N

N−1�

j=0

fje
−ikxj , k = −N/2, . . . ,N/2− 1,

Then we have

f (xj) =
N/2−1�

k=−N/2

cke
ikxj , j = 0, . . . ,N − 1.

Consider the function ΠN f ,

ΠN f (x) =
N/2−1�

k=−N/2

cke
ikx , x ∈ R.

This is an interpolating trigonometric polynomial, the so-called spectral
interpolant.
Note: Instead using the coefficients ck , k = 0, . . . ,N − 1 and an
interpolant based on this yields a BAD interpolant, see HW5.
Even for real f , this interpolant is in general complex (with the exception
of the grid points xj , of course).



Spectral Interpolation (cont.)
- If c−N/2 has a non-zero imaginary part, then Πf (x) is not a
real-valued function, even if f (x) is real valued.

- Set c−N/2 = 0 s.t.

ΠN f (x) =
N/2−1�

k=−N/2

cke
ikx =

N/2−1�

k=−N/2+1

cke
ikx .

With this definition, Πf (x) is a real valued function!
( if f (x) is real valued)

- Show it!

- This is a global procedure. All grid values fj will contribute to each
interpolated value.

Fourier coefficients and DFT coefficients
Now, let us distinguish between the Fourier coefficients for f (x) on
[0, 2π] as defined by

f̂k =
1

2π

� 2π

0
f (x)e−ikxdx ,

and the DFT coefficients as defined by
(with fj = f (xj), xj = jh, h = 2π/N),

f̃k =
1

N

N−1�

j=0

fje
−ikxj , k = −N/2, . . . ,N/2− 1.

Define the truncated Fourier series and the interpolant based on the DFT
coefficients:

PN f (x) =
N/2−1�

k=−N/2

f̂ke
ikx , ΠN f (x) =

N/2−1�

k=−N/2

f̃ke
ikx .

Define the full Fourier series by

Sf (x) =
∞�

k=−∞
f̂ke

ikx .



Fourier coefficients and DFT coefficients, contd
- Assuming that Sf converges to f , we get [NOTES]

f̃k = f̂k +
∞�

m = −∞
m �= 0

f̂k+mN , k = −N/2, . . . ,N/2− 1

- The (k + Nm)th frequency aliases the kth frequency on the grid.

- They are indistinguishable at the nodes since e ikxj = e i(k+mN)xj .

Example: Plotting sin(−2x), sin(6x) and sin(−10x).
For N = 8, they all coincide at grid points.
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Aliasing errors
- We can now write

ΠN f (x) = PN f (x) + RN f (x),

where the error RN f between the interpolating polynomial and the
trunctated Fourier series is called ”aliasing error”, and is given by

RN f =
N/2−1�

k=−N/2




∞�

m = −∞
m �= 0

f̂k+mN



 e ikx .

- The aliasing error RN f is orthogonal to the truncation error
f − PN f , and so

�f − ΠN f �2 = �f − PN f �2 + �RN f �2

- However, the sequence of interpolating polynomials exhibits
convergence properties similar to those of the sequence of truncated
Fourier series.

- Furthermore, the continuous and discrete Fourier coefficients share
the same asymptotic behavior (decay of coefficients).



Differentiation
Idea: Given a function u at discrete points, interpolate by a suitable
smooth function p(x) and set u�(xj) ≈ p�(x).
Examples:

- Piecewise linear interpolation: u�(xj) ≈
uj+1 − uj

h

- Piecewise quadratic interpolation: u�(xj) ≈
uj+1 − uj−1

2h
Let’s now use spectral interpolation:

f (p)(xj) ≈
dp

dxp
ΠN f (x)|x=xj =

N/2−1�

k=−N/2

f̃k

�
dp

dxp
e ikx

�

x=xj

=
N/2−1�

k=−N/2

f̃k ·(ik)pe ikxj ,

where f̃k are the DFT coefficients for f (x).
Remarks:

- Piecewise polynomial interpolation uses only local informations.

- Spectral differentiation uses all gridpoints for evaluating one
derivative.

- Computational complexity:
Polynomial: O(N), Spectral via FFT: O(N logN).

Accuracy of differentiation
- For piecewise polynomial approximation, the accuracy depends on
the order and the grid size. I.e. with h = 2π/N, errors proportional
to h1 or h2, etc. (Assuming the function is smooth enough, not
much regularity required).

- For spectral differentiation, the convergence depends on N and on
the smoothness of the function.

- As discussed before, the smoother f is, the faster does it’s Fourier
coefficients decay. Also true for the discrete Fourier coefficients.

- If f is infinitely smooth and periodic with all its derivatives, f̃k
decays faster than algebraically in k−1.

- Slower decay for each additional derivative, since Fourier coefficient
is (ik)p f̃k for f (p)(x).



Spectral methods for differential equations
An example:
Find the 2π-periodic solutions of

−u�� + ru = f (x), x ∈ (0, 2π)

with a constant r > 0.
Weak formulation, with V = H1

per(0, 2π):
Find u ∈ V such that

a(u, v) = L(v), ∀v ∈ V ,

where

a(u, v) =

� 2π

0
(u�v̄ � + ruv̄)dx , L(v) =

� 2π

0
f v̄dx .

Introduce the Fourier expansion of u,

u(x) =
∞�

k=−∞
ûke

ikx =
∞�

k=−∞
ûkφk(x), with φk(x) = e ikx .

Analytic solution
Remember the orthogonality condition:

� 2π

0
φk(x)φ̄�(x)dx =

� 2π

0
e ikxe−i�xdx = 2πδk�,

where δk� is the Kronecker delta.
Insert the Fourier expansion and test against all basis functions φ� = e i�x :

a(u,φ�) =

� 2π

0
(

+∞�

k=−∞
ikûke

ikx i�e i�x + r
+∞�

k=−∞
ûke

ikxe i�x)dx

=
+∞�

k=−∞
ûk

� 2π

0
(ik · (−i�) + r)e i(k−�)xdx = 2πû�(�

2 + r).

Similarly,

L(v) =

� 2π

0
f (x)e−i�xdx = 2πf̂�.

Hence,

ûk =
1

j2 + r
f̂k , k = 0,±1,±2, . . .



About the analytic solution
The example was: find the 2π-periodic solutions of

−u�� + ru = f (x), x ∈ (0, 2π), with a constant r > 0,

and the Fourier coefficients for u can be determined in terms of the
Fourier coefficients for f ,

ûk =
1

j2 + r
f̂k , k = 0,±1,±2, . . . .

- If r = 0, would divide by 0 for k = 0. In this case, Eq. and BC only
determines u up to a constant: If u is a solution, so is u + C .
Natural to require, f̂0 = 0 (i.e.

� 2π
0 f (x)dx = 0).

- If f ∈ Hp
per(0, 2π), then u ∈ Hp+2

per (0, 2π):

+∞�

k=−∞
k2p+4|ûk |2 =

+∞�

k=−∞
k2p+4 |f̂k |2

(k2 + r)2
<

+∞�

k=−∞
k2p|f̂k |2 < ∞

Galerkin’s method

Apply now Galerkin’s method with VN = {v |v =
N/2�

k=−N/2

v̂ke
ikx}:

Introduce an expansion of u ∈ VN ,

u(x) =
N/2�

k=−N/2

ûNk e
ikx .

If we assume an truncated Fourier expansion of f (coeffs still the
continuous Fourier coefficients),

f (x) =
N/2�

k=−N/2

f̂ke
ikx ,

then, similarly to the infinite expansion, we get:

ûNk =
1

j2 + r
f̂k , k = 0,±1,±2, . . . , i.e. ûNk = ûk



Error analysis: Galerkin’s method
Error estimation:

eN(x) = u(x)− uN(x) =
�

|k|>N/2

ûke
ikx

Theorem

- For all square integrable functions f ,

�eN� ≤ 4

N2
�f �

(quadratic convergence).

- If f ∈ Hp
per(0, 2π):

O
�
N−(p+1)

�
.

- If f ∈ C∞ , we have exponential convergence.

Error analysis: Proofs
- For f ∈ L2(0, 2π),

�eN�2 = 2π
�

|k|>N/2

|ûk |2 = 2π
�

|k|>N/2

|f̂k |2

(k2 + r)2

≤ 1

(N2/4 + r)2
�f �2 ≤ 16

N4
�f �2

- If f ∈ Hp
per(0, 2π):

�eN�2 = 2π
�

|k|>N/2

|f̂k |2

(k2 + r)2
= 2π

�

|k|>N/2

k2p

k2p

|f̂k |2

(k2 + r)2

≤ 2π

(N/2)2p(N2/4 + r)2

�

|k|>N/2

k2p|f̂k |2 ≤
C (p)2

N2p+2



Galerkin’s method in practice
- Due to the structure of the FFT method, most efficient when N
even, and preferably even N = 2m.

- Therefore, one normally uses expansions.

u(x) =
N/2−1�

k=−N/2

ûke
ikx .

- To make sure that the function stays real valued if all coefficients
and initial conditions are real valued, one would set û−N/2 = 0.
Compare to interpolation.

- Error results on last few slides based on continuous Fourier coeffs.
But in practice, will have DFT coeffs. Similar results.

Collocation method
- Consider again the equation −u�� + ru = f .

- Ansatz as before uN =
�N/2−1

k=−N/2 cke
ikx .

- Collocation: Use test functions vj(x) = δ(x − xj) for xj = jh − π,
h = 2π/N. Equivalently,

−u��N(xj) + ruN(xj) = f (xj), j = −N/2, . . . ,N/2− 1.

- Insert expansion and enforce this pointwise equality:

N/2−1�

k=−N/2

[ck(k
2 + r)− f̂k ]e

ikxj = 0, all j

=⇒ ck(k
2 + r)− f̂k = 0, all k

- The solution becomes

ck =
f̂k

k2 + r
.

This is the same solution as obtained by the Galerkin method.



Spectral methods for PDEs
- The Galerkin/Collocation approach can also be used for
time-dependent problems.

- Expand

uN(x) =
N/2−1�

k=−N/2

ûk(t)e
ikx .

where the Fourier coefficients now depend on time.
Similarly, expand any given function in the right hand side and the
given initial conditions.

- Example: The heat equation with periodic boundary conditions,

ut + cuxx = 0, u(0, t) = u(2π, t), u(x , 0) = f (x)

yields

d

dt
ûk + ck2û2k = 0, ûk(0) = f̂k − N/2 ≤ k < N/2

That is, we get an ODE for each Fourier coefficient.

- Time step in Fourier space, transform back to real space when
solution is needed.

Non-linear PDEs - Galerkin’s method
Consider Burger’s equation

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= 0

Expanding u as uN , multiply by a test function and integrate, and using
orthogonality of the complex exponentials, we get

d

dt
ûk +

��
uN

∂uN

∂x

�

k

+ νk2ûk = 0, k = −N/2, . . . ,N/2− 1

where
��

uN
∂uN

∂x

�

k

=
1

2π

� 2π

0
uN

∂uN

∂x
e−ikxdx

is the kth Fourier coefficient for the nonlinear term.
For non-linear PDEs, the collocation approach and Galerkin approach
might not coincide.



Non-linear term
- Consider a term w(x) = u(x)v(x).

- We have that

ŵk = �(uv)k =
1

2π

� 2π

0
uve−ikxdx

which yields

�(uv)k =
�

m+n=k

ûmv̂n, −N/2 ≤ k ,m, n < N/2

- Convolution sum. Straightforward evaluation requires O(N2)
operations.

- Idea of pseudospectral treatment:
- Transform ûm and v̂n to physical (real) space by IFFT.
- Perform a multiplication in real space.
- Transform to Fourier space by FFT to obtain ŵk .

Aliasing errors for pseudospectral treatment
Introduce the discrete transforms

Uj =
N/2−1�

k=−N/2

ûk(t)e
ikxj , Vj =

N/2−1�

k=−N/2

v̂k(t)e
ikxj , j = 0, 1, . . . ,N − 1,

and define
Wj = UjVj , j = 0, 1, . . . ,N − 1,

and

Ŵk =
1

N

N−1�

j=0

Wje
−ikxj , k = −N/2, . . . ,N/2− 1

where xj = 2πj/N.
Use of the discrete orthogonality condition leads to

Ŵk =
�

m+n=k

ûmv̂n +
�

m+n=k±N

ûmv̂n = ŵk +
�

m+n=k±N

ûmv̂n

� �� �
Aliasing error



Removal of aliasing errors by padding
Introduce M where M > N. Introduce the discrete transforms

Uj =
M/2−1�

k=−M/2

ũk(t)e
ikxj , Vj =

M/2−1�

k=−M/2

ṽk(t)e
ikxj , j = 0, 1, . . . ,M − 1,

and define
Wj = Ujvj , j = 0, 1, . . . ,M − 1,

where yj = 2πj/M, and

ũk =

�
ûk if −N/2 ≤ k < N/2,

0, otherwise.
ṽk =

�
v̂k if −N/2 ≤ k < N/2,

0, otherwise.

Let

W̃k =
1

M

M−1�

j=0

Wje
−ikyj , k = −M/2, . . . ,M/2− 1.

If we define:
Ŵk = W̃k , k = −N/2, . . . ,N/2− 1,

and M ≥ 3N/2, then the aliasing errors are removed.

Integrating factor technique
Consider the ODE

d

dt
ûk + νk2ûk = F̂k

This yields
d

dt

�
eνk

2t ûk
�
= eνk

2t F̂k

Discretize
eνk

2(tn+∆t)ûn+1
k − eνk

2tn ûnk
∆t

= eνk
2tn Ĝ n

k

or, dividing through by eνk
2(tn+∆t),

ûn+1
k = e−νk2∆t

�
ûnk +∆tĜ n

k

�

where Ĝ n
k is a combination of different F̂k :s depending on the

time-stepping method.
Example: For Forward Euler, Ĝ n

k = F̂ n
k ,

for the third order Adams Bashforth method (AB3),

Ĝ n
k = 1

12

�
23F̂ n

k − 16F̂ n−1
k + 5F̂ n−2

k

�
.



Non-linear PDEs - Collocation method
Again, consider Burger’s equation

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= 0,

and expand u as uN .
For the collocation method, we require that uN staisfies the equation at
xj = 2πj/N, j = 0, . . . ,N − 1, i.e. that

∂uN

∂t
+ uN

∂uN

∂x
− ν

∂2uN

∂x2

����
x=xj

= 0.

This is discretized by

∂uN

∂t
+ uNDNu

N − νD2
Nu

N

����
x=xj

= 0,

where DN is the Fourier collocation differentiation operator.

(DNu)� =
N/2−1�

k=−N/2

ake
2πik�/N , ak =

ik

N

N−1�

j=0

uje
−2πikj/N .

Collocation method for Burger’s equation
Introducing vector notation,
U(t) = (uN(x0, t), uN(x1, t), . . . , uN(xN−1, t)),
the discretized equation reads:

∂U

∂t
+ U · DNU − νD2

NU = 0,

where the · means pointwise multiplication and DN is the matrix that
represents the differentiation.
Starting from a different but equivalent form of Burger’s equation:

∂u

∂t
+

1

2

∂

∂x
(u2)− ν

∂2u

∂x2
= 0,

the collocation discretization becomes,

∂U

∂t
+

1

2
DN(U · U)− νD2

NU = 0.

These two discretizations are not equivalent, even if the two forms of the
PDE are.



Comments on time-stepping
- For linear PDEs, taking the Galerkin view point, and solving ODEs
for the Fourier coefficients, one needs to transform back to physical
space only when the solution is needed, and not in each time step.
Very cheap!

- For non-linear PDEs, both with a pseudo-spectral treatment in the
Galerkin approach, or using the collocation formulation, FFTs will be
needed in each time step to go in between physical space and real
space.

(Pseudo) spectral methods - Summary
- Exponential convergence for smooth data. Very few degrees of
freedom needed for high accuracy.

- Global basis functions. Cf FEM with local basis functions. Stiffness
matrix full compared to sparse.

- FFTs used to accelerate computations.

- Computational cost O(N logN) per time step, where N is number of
Fourier modes.

- Use of integrating factor to remove stiffness from ODEs in Fourier
space, i.e. to relax CFL condition on explicit schemes.

- Aliasing errors arise from pseudo-spectral treatment of nonlinear
terms. Can be removed by e.g. padding to the cost of a factor of
3/2 larger FFTs.

- Inflexible in terms of geometry. BCs see next slide.



(Pseudo) spectral methods -
Non-periodic boundary conditions

- Fourier series are only well-suited for periodic boundary conditions.

- In case of Dirichlet boundary conditions, Chebyshev polynomials can
be used (Strang, p. 465),

Tk(x) = cos kθ, with θ = arccos x

- The Chebyshev polynomials are orthogonal over −1 ≤ x ≤ 1, if the
inner product is defined using a weight function w(x) = 1/

√
1− x2.

- The Chebyshev expansion of a function u ∈ L2w (−1, 1) is

u(x) =
∞�

k=0

ûkTk(x), ûk =
2

πck

� 1

−1
u(x)Tk(x)w(x)dx ,

where c0 = 2 and ck = 1, k ≥ 1.

- The quadrature points are taken e.g. as the Gauss-Lobatto points,
xj = cos πj

N , j = 0, . . . ,N.
Then the Fast Fourier Transform can be applied in the computations.


