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Lecture 1: Linear Algebra, S. Ch 1 
 
n-vector x column vector (x1,x2,…,xn)T in Rn (or Cn);  
m x n matrix A = (aij), i row index, j column index 
 
A as linear operator: Rn -> Rm 

( )
nnn

xxx aaaAxaaaA +++== ...,...
221121

 
linear combination is in the column space V= R(A), spanned by the columns of A. 
 
rank(A) = dim(V) = max. number of linearly independent columns 
 
Matrix multiplication: Rn -> Rm -> Rk          Rn -> Rk 
                                         A       B                     C 
                                        mxn   kxm                 kxn 
 
Cx = B(Ax) = (BA) x          Matrix multiplication is associative 
 
Different views: 

1. )(:,*:),(

1

jAiBabc
m

s

sjisij == !
=

, scalar product of row i of B with column j of A 

 
2. C(:,j) = B(:,1) a1,j + B(:,2) a2,j +…+ B(:,m) am,j, lin.comb of columns of B 
Column space of C no larger than column space of B 
 
3. C = B(:,1)*A(1,:) + B(:,2)*A(2,:) +…+ B(:,m)*A(m,:) 
“Outer product”, C as sum of rank-one matrices 
 
Ex.  

A = I + uvT.  
Solve Ax = b. How many solutions? Formula for A-1 ? 
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Main problems of Numerical Linear Algebra 
I. Solve linear system  

Ax = b, A mxn, often m = n 
 
II. Eigenvalue problem: Find eigenvector(s) x and complex eigenvalue(s) λ   
  Ax = λx 
 
III. Optimization 
1.  “Linear programming” 
 0,  subject to min !! xbAxxc

x

T  

2. Least squares approximation 
bAxr

x
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3. Energy minimization - equilibrium 
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Properties of A: 

• Symmetry 
• Sparsity 
• Condition / singularity 

 
Sources of linear systems 

• Discretization of differential equations 
o Finite differences & - volumes 
o Finite Elements 
o Spectral / Pseudo-spectral 

• Network models & graphs 
o Electric circuits, mechanical trusses, hydraulic systems 
o Markov chains 
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Ex. The K, B, T, C –matrices of S. Ch 1 
 
Transversally loaded string, small displacements 
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Difference approximations 
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The string: 

! 

"#x
2
$ % % u (x j ) = "u j"1 + 2u j " u j+1 + O(#x

4
) :

"u j"1 + 2u j " u j+1 = #x
2

f (x j ) /S, j =1,2,...,n, u0 = un+1 = 0

Knu = f

 

(Matlab): u = K\f; 
Solution by Gaussian elimination  
Step k subtracts a multiple of row k (also in RHS) from rows k+1,k+2,…,n, 
“elementary row operation” 
Leaves first k rows unchanged. 
Preserves solution set. 
 
Ex. K3 
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Ex. Find L = (L-1)-1 by GE: 
 

• Inverse of triangular matrix is triangular 
• pivots 2, 3/2, 4/3 all positive 
• multipliers: -1/2, (0), -2/3 are subdiagonal elements in L. 

 

u f(x) 
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There follows 
• If there are  n non-zero pivots, unique solution for any RHS ;  
• GE produces factorization A = LU, 

o  lii = 1, lij, i > j, are the multipliers,  
o  uii = pivots 

 
GE with row interchanges:  
If zero pivot in step k: exchange rows k and s where the element is non-zero. If no 
non-zero element in pivot column, matrix is singular. 
“Partial pivoting”: Take s for absolutely largest element in pivot column. Then  

jilij >! ,1  

There follows: 
A matrix A is non-singular if and only if admits a factorization 
 PA = LU 
with P a row reordering matrix, and jilij >! ,1 .  

 
Ex. Computation of determinants 

! 

detA = SdetU = S " product of all pivots,S = detP = ±1 
Theorem 
A is non-singular if and only if detA is non-zero. 
 
Symmetric matrices 
Observation:  
A step of GE without row interchanges preserves symmetry: 

11/):2,1(*)1,:2():2,:2(:):2,:2( annnnnn AAAA !=  
and the two vectors are equal because of the symmetry of A. It follows that column k 
of  L equals row k of U, divided by the kth pivot ukk.: 
 
Theorem 
1. If GE can be carried out without row interchanges on the symmetric matrix A, 
 A = LU = LDLT, D = diag(U). 
2. If additionally the pivots are positive, we may write 
 A = L1L1

T, LL != )(1 iiudiag  
the Cholesky-factorization. 
 
In many important cases it is known that A is “SPD” = symmetric and positive 
definite, i.e. 
 xTAx > 0 for all non-zero x 
Ex. 
The normal equations  

ATAx = ATb  
of a least squares problem are SPD if the columns of A are linearly independent. 
The symmetry is obvious, as the semidefinitiveness: 
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But for y to be the zero-vector, so must x be all zeros, since the only linear 
combination of the columns of A has vanishing coefficients. Thus, the quadratic form 
vanishes only when x is 0. 
 
Theorem:  
A SPD matrix has all eigenvalues real and positive. 
The first step is to establish reality of eigenvalues and eigenvectors of a real 
symmetric matrix. Define the Hermitian transpose AH of a matrix as the complex 
conjugate of the transpose, )),((),( ijconjji

H
AA = . Note that 

 0)(
2
!== "" i

i

ii
H

xxconjxxx  

for a vector with real or complex elements. 
Proof: 1. real …  2. positive… 
 
Ex: Show that a symmetric matrix with positive pivots is positive definite. 
Hint: Use A = LLT.  
The converse is also true, but slightly harder to show, so  
 
Theorem 
A SPD matrix A can be factored A = LDLT without row exchanges and the pivots dii 
are positive. 
 
Proof 
Look at one step. The complete proof follows by induction. 
1)  The a11 element must be positive, because a11 = e1

TAe1 > 0. We call it c. 
2) 
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The matrix in the next step becomes 
ccc

TTTTTTT /)(/;/ 2
yaByyyaayByyCyyaaBC !=!=!=  

so C is also SPD. 
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Example: Eigenvalue problem or solution of linear system? 
Google’s page rank algorithm, see e.g. article by C.Moler at Mathworks home page. 
 
Graphs 
Set of vertices (nodes, ...) V and (directed) edges E.  
Nodes are numbered 1:n, edges 1:m.  
Node = web page, edge = hyperlink 
 
Representation: 
1. Edgelist: L(k,1) = i, L(k,2) = j - an edge from node i to node j. 
2. The edge-node incidence matrix A (S p143): 
Edge k, from i to j: A(k,i) = -1, A(k,j) = +1, the rest zero. How represent edges from i 
to i? Store as sparse matrix. 
3. The node-node adjacency matrix W (S p 142): W(i,j) = 1 if edge from i to j, the 
rest zeros. 
(Out/In)degree of node i: number of out/in going edges  
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           1 = ones(n,1) 

 
Ex. Four nodes, five (six) edges  
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Markov chains 
“Random walker” Xn a stochastic variable which takes on values 1, 2, ..., n (the 
nodes). Each timestep X “jumps” along the edges at random, with given frequencies / 
probabilities : 
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Notes:  
• 0 ≤ wki ≤ 1 
• W1 = 1 (the process goes to one of the nodes with probability 1) 

 
It follows that the p-vector tends to a limit p∞ as n increases.  
p∞ is  

• the set of expected number of visitors to a node, or  
• the average fraction of time spent at that node by a single process.  

 
We must have  
 p∞ = WTp∞,  
so p∞ is the (right) eigenvector of the eigenvalue 1 of WT. (?) 
We know that 

• W has an eigenvalue 1 with eigenvector 1. 
• ... so WT also has an eigenvalue 1, but what is its eigenvector? 

 
The Web model: A random surfer  

• chooses a random page with small probability q/n,  
• follows a link on the current page k with equal probability,  p = (1-q)/Odk  

 
This defines the very big (n = 3G in 2003) full Markov matrix W. Check that it is a 
Markov matrix - that rows sum to 1. 
The matrix of existing links is very sparse, so one might represent W as the sum of 
this sparse matrix and a rank-one correction q/n 1 1T = q/n*ones(n)which is not 
stored. 
Task: Compute p∞ and rank the pages according to decreasing component in p∞! 
 
How? 
0) Standard eigensolution by diagonalization 
1) Power method for eigenvalue problem, or time-stepping pn = WT pn–1 
2) Solve x = WTx by faster iteration. ... singularity? can use 1Tx = 1 as “extra 
equation” 
Diagonal elements are guaranteed to be ≥ q, so no divide by zero problem. Gauss-
Seidel faster than Jacobi ( = 1). Even faster ? 
 
How compute WTx ??? Google secret? 


