Lecture 2: Linear Algebra: Eigenvalues, systems of differential equations, etc., S. Ch 1

Main problems of Numerical Linear Algebra

Find eigenvector(s) \mathbf{x} and complex eigenvalue(s) λ
"Standard" eigenvalue problem:

$$
\mathbf{A x}=\lambda \mathbf{x}
$$

Generalized eigenvalue problem:

$$
\mathbf{A x}=\lambda \mathbf{M x}
$$

Matlab: lam = eig(A);

Examples

1. The Markov chain equilibrium distribution - Lect 1 .

Uncommon that

- the eigenvalue is known
- the eigenvalue with largest absolute value is wanted

Here is a plot of a computational experiment on the distribution of complex eigenvalues to $60040 x 40$ Markov random matrices, i.e., a 2D histogram of $600 \times 40=2400$ points.

1. the 600 peak at the extreme right (not at the right spot ...)
2. flat distribution around 0 with a radius of ≈ 0.1
3. a ridge of real eigenvalues

I think 1. is easy and can think of a reason for 3., but 2. ?? One would think that since A has only positive entries the eigenvalues would flock to the right hand plane. Not so. You may want to check on Alan Edelman's lectures on random matrices.
While on the subject of guessing eigenvalues, look at the Gershgorin circle theorem (p. 570):

Every eigenvalue is in the union of circles $C_{i}, i=1,2, \ldots, n$

$$
C_{i}:\left|\lambda-a_{i i}\right| \leq \sum_{j \neq i}\left|a_{i j}\right|
$$

The G.-circles for a Markov matrix are all centered on the interval [0,1] and pass through 1 , so all contained in the unit circle. But the probable eigenvalues occupy but a minuscule portion of it.

CSC Hanke, JO 080903

2. Quadratic forms $q(\mathbf{x})=\mathbf{x}^{\mathrm{T}} \mathbf{K x}$

Note: Uses only the symmetric part $1 / 2\left(\mathbf{K}+\mathbf{K}^{\mathrm{T}}\right)$ so consider \mathbf{K} symmetric.
We will measure the size of \mathbf{x} by its Euclidean norm,

$$
\|\mathbf{x}\|_{2}=\left(\sum\left|x_{k}\right|^{2}\right)^{1 / 2}=\sqrt{\mathbf{x}^{T} \mathbf{x}}
$$

and remind you of the triangle inequality, the multiplication by scalar, the CauchySchwarz inequality

$$
\mathbf{x}^{T} \mathbf{y} \leq\|\mathbf{x}\|_{2} \cdot\|\mathbf{y}\|_{2}
$$

and the definition of the operator norm of a linear operator (matrix!) $\|\mathbf{A}\|_{2}$, induced by the vector norm

$$
\|\mathbf{A}\|_{2}=\max \frac{\|\mathbf{A} \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}=\max \sqrt{\frac{\mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}},
$$

and the Rayleigh quotient (p 219)

$$
\mathrm{R}_{\mathbf{K}}(\mathrm{x})=\mathbf{x}^{T} \mathbf{K} \mathbf{x} / \mathbf{x}^{T} \mathbf{x}
$$

The norm shows the maximal magnification possible in the mapping. Let us compute it by finding the max. of the Rayleigh quotient by differentiation:

$$
\begin{aligned}
& \frac{\partial}{\partial x_{k}}\left(\mathbf{x}^{T} \mathbf{K x}\right)=\frac{\partial}{\partial x_{k}}\left(\sum_{i, j} k_{i j} x_{i} x_{j}\right)=\sum_{i, j} k_{i j}(\underbrace{\frac{\partial x_{i}}{\partial x_{k}}}_{=\delta_{i k}} x_{j}+x_{i} \underbrace{\frac{\partial x_{j}}{\partial x_{k}}}_{=\delta_{j k}})= \\
& =\sum_{j} k_{k j} x_{j}+\sum_{i} k_{i k} x_{i}=2 \sum_{j} k_{k j} x_{j}=2(\mathbf{K} \mathbf{x})_{k}
\end{aligned}
$$

so $\partial R / \partial x_{k}=0, k=1, \ldots, n$, if (and only if)
$2 \mathbf{K x} \cdot\left(\mathbf{x}^{T} \mathbf{x}\right)-\left(\mathbf{x}^{T} \mathbf{A x}\right) \cdot 2 \mathbf{x}=0$
or
$\mathbf{K} \mathbf{x}=\underbrace{R_{\mathbf{K}}(\mathbf{x})}_{\lambda} \mathbf{x}$
Theorem:
If $\mathbf{K} \mathbf{x}^{*}=\lambda \mathbf{x}^{*}$, then \mathbf{x}^{*} is a stationary point of $\mathrm{R}_{\mathbf{K}}(\mathbf{x})$ and $\lambda=\mathrm{R}_{\mathbf{K}}\left(\mathbf{x}^{*}\right)$, and conversely.

It follows that

$$
\|\mathbf{A}\|_{2}=\sqrt{\text { largest eigenvalue of } \mathbf{A}^{T} \mathbf{A}}
$$

Note: minimization of quadratic forms with a single quadratic constraint also leads to eigenvalue problems.

CSC Hanke, JO 080903

3: Linear differential equations with constant coefficients

(S p 53, Ch 2.1, 2.2)
Basics:
Exponentials are eigenfunctions of differential and difference operators with constant coefficients. Usually the independent variable is now time t.
Let $D=d / d t$. Then $D \exp (\lambda t)=\lambda \exp (\lambda t)$, and

$$
p(D) e^{\lambda t}=\sum_{k=1}^{n} a_{k} D^{k}\left(e^{\lambda t}\right)=\sum_{k=1}^{n} a_{k} \lambda^{k}\left(e^{\lambda t}\right)=p(\lambda) e^{\lambda t}
$$

The analogue holds for difference operators (p 54 ff), e.g.

$$
\Delta \mathrm{u}\left(t_{\mathrm{k}}\right)=\mathrm{u}\left(t_{k+1}\right)-\mathrm{u}\left(t_{k}\right), \mathrm{t}_{k+1}-\mathrm{t}_{k}=h, k=\ldots,-1,0,1, \ldots
$$

Then

$$
\Delta e^{\lambda t}=e^{\lambda(t+h)}-e^{\lambda t}=\mu e^{\lambda t}, \mu=e^{\lambda h}-1
$$

Note that $\lim _{\mathrm{h} \rightarrow 0} \mu / h=\lambda$

$$
p(\Delta) e^{\lambda t}=\sum_{k=1}^{n} a_{k} \Delta^{k}\left(e^{\lambda t}\right)=\sum_{k=1}^{n} a_{k} \mu^{k}\left(e^{\lambda t}\right)=p(\mu) e^{\lambda t}
$$

An example with complex eigenvalues, rigid body rotation in a plane:
The velocity at (x, y) of rotation with angular velocity ω around the origin is

$$
(d x / d t, d y / d t)=\omega(-y, x)
$$

or

$$
\frac{d}{d t} \mathbf{u}=\underbrace{\omega\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)}_{\mathbf{A}} \mathbf{u}, \mathbf{u}(t)=\binom{x(t)}{y(t)}
$$

Look for special solution vectors $\mathbf{u}=\operatorname{vexp}(\lambda t), \mathbf{v}$ some constant vector:

$$
\frac{d}{d t} \mathbf{u}(t)=\lambda e^{\lambda t} \mathbf{v}=\mathbf{A} \mathbf{u}=e^{\lambda t} \mathbf{v} \Leftrightarrow \lambda \mathbf{v}=\mathbf{A} \mathbf{v}
$$

The eigenvalues of A are imaginary, $+/-\omega i$ and the eigenvetors are $(-1, \mathbf{i})^{T}$ and $(1, \mathrm{i})^{T}$ so any linear combination

$$
\mathbf{u}(t)=a\binom{-1}{i} e^{+i \omega t}+b\binom{1}{i} e^{-i \omega t}
$$

satisfies the equation. There are enough (2) integration constants to satisfy initial conditions like $\mathbf{u}(0)=(x 0, y 0)$, so this is the general solution. It looks complex, but real initial conditions fix that:

$$
\begin{aligned}
& \mathbf{u}(t)=\frac{-x 0-i y 0}{2}\binom{-1}{i} e^{+i \omega t}+\frac{x 0-i y 0}{2}\binom{1}{i} e^{-i \omega t}=\binom{x 0 \cdot \cos \omega t-y 0 \cdot \sin \omega t}{x 0 \cdot \sin \omega t+y 0 \cdot \cos \omega t} \\
& =\underbrace{\left(\begin{array}{cc}
\cos \omega t & -\sin \omega t \\
\sin \omega t & \cos \omega t
\end{array}\right)}_{\text {Rotates angle } \omega t}\binom{x 0}{y 0}
\end{aligned}
$$

CSC Hanke, JO 080903
The manipulations become trivial if we use complex variables: $z(t)=x(t)+\mathrm{i} y(t)$.
Then

$$
d z / d t=\mathrm{i} \omega z \text { and } z(t)=\exp (\mathrm{i} \omega t) z(0)
$$

so

$$
\operatorname{angle}(z(t))=\operatorname{angle}(z(0))+\omega t,|z(\mathrm{t})|=|z(0)|
$$

You may want to think about the 3D counterpart, rotation with angular velocity ω around a unit length vector (w1,w2,w3)

$$
\frac{d}{d t} \mathbf{u}(t)=\omega \mathbf{w} \times \mathbf{u}=\mathbf{A} \mathbf{u}, \mathbf{A}=\omega\left(\begin{array}{ccc}
0 & -w 3 & w 2 \\
w 3 & 0 & -w 1 \\
-w 2 & w 1 & 0
\end{array}\right)
$$

Compute the eigenvalues of \mathbf{A} ! Hint: One is zero \ldots compute $\operatorname{det} \mathbf{A}$ to see this.

4: Bifurcation ... linearized

(see also S. p 108-109)
Consider a double pendulum. Its motion is constrained by the joints to a plane, rotating around a vertical axis with angular velocity ω. Compute its equilibrium position, assuming it has small angles ϕ_{1}, ϕ_{2} !
The equilibrium equations for the mass points 1 and 2 are

$$
\begin{aligned}
& m l \omega^{2} \sin \phi_{1}+S_{2} \sin \phi_{2}=S_{1} \sin \phi_{1} \\
& S_{1} \cos \phi_{1}=S_{2} \cos \phi_{2}+m g \\
& m l \omega^{2}\left(\sin \phi_{1}+\sin \phi_{2}\right)=S_{2} \sin \phi_{2} \\
& S_{2} \cos \phi_{2}=m g
\end{aligned}
$$

Eliminate the forces Si :

$$
\begin{aligned}
& S_{1}=2 m g / \cos \phi_{1} \\
& S_{2}=m g / \cos \phi_{2}: \Rightarrow \\
& \left\{\begin{array}{l}
\left(\sin \phi_{1}+\sin \phi_{2}\right) \lambda=\tan \phi_{2} \\
\lambda \sin \phi_{1}=2 \tan \phi_{1}-\tan \phi_{2}
\end{array}\right. \\
& \lambda=\frac{\omega^{2} l}{g}
\end{aligned}
$$

Approximate the trig-functions to produce the final linear system:

$$
\left\{\begin{array}{l}
\left(\phi_{1}+\phi_{2}\right) \lambda=\phi_{2} \\
\lambda \phi_{1}=2 \phi_{1}-\phi_{2}
\end{array} \Rightarrow\left(\begin{array}{cc}
2 & -1 \\
-2 & 2
\end{array}\right)\binom{\phi_{1}}{\phi_{2}}=\lambda\binom{\phi_{1}}{\phi_{2}}\right.
$$

which shows that: unless λ is an eigenvalue, there is only the trivial solution: the pendulum hangs straight down. For sufficiently small $\omega, \lambda<2-\mathrm{sqrt}(2)$, this is the case. The two eigenvectors are ($1, \mathrm{sqrt}(2)$) and ($1,-\mathrm{sqrt}(2)$). Both shapes can be provoked when you twirl a hanging rope. But only the non-linear model tells what happens after the first bifurcation when ω is increased. The story requires that we consider the timedependent problem, later.

