
DN2266 Fall 08                            L4 p 1 (10) 
CSC Hanke, JO 080906 

Lecture 4: Dynamical systems, differential equations 
Strang: Ch. 1.5, Oscillations, Ch 2.2; 
The name of the game is to derive properties of sets of solutions to a differential (or 
difference) equation. Often the set is generated by an initial value problem with 
different initial conditions and/or different “parameter” values. The standard form is a 
system of s first order equations, 
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u is the state-vector. Higher order equations are easily rewritten as systems by 
introducing new variables for the derivatives. The solution is visualized either in  
Rs x [0,T] or as a parametrized curve in Rs: the phase space (Strang: “Shows where 
but not when”). Often we write the system in autonomous form (no explicit 
dependence on t), no restriction, we can always add the equation dus+1/dt = 1 and use 
us+1 for t. 
 
Existence and uniqueness 
Def. f is Lipschitz continuous in D if, for x and y in D, there is an L such that 
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Thm. Let f be Lipschitz continuous in an open domain D containing u0. Then, the 
initial value problem has a unique, continuously differentiable solution on [0,T) for 
some T > 0. 
 
Qualitative theory 
“where but not when …” 
Growth, decay and oscillations; periodic solutions, critical points, phase portraits for 
2D linear systems, Lyapunov stability 
Non-linear 
 Limit cycles 
 Poincare-Bendixson 
 Center Manifold theorem 
 
Critical points 
If f(u*) = 0 we call u* a critical point. Any critical point is a constant solution to the 
differential equation. One studies the behavior of solutions which make small 
excursions in the neighborhood of u* by linearization:  
Say u* + v(t) is a solution, then 
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and unless A vanishes (too much …) the dynamics is determined by A. It is possible 
to make a precise description of the different types of phase portraits possible for a  
2 x 2 system. The key is the ability to write the analytical solution in terms of the 
eigen values and vectors (and a little more in the non-diagonalizable case). 
For example,  
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Definition: Lyapunov stability: A solution u is L.-stable for t > 0 if, whenever another 
solution v has ||u(0)-v(0)|| < ε, then v eventually never strays more than E(ε) from u 
where E(ε) is continuous at 0. 
Asymptotic stability means that 0)()(lim =!
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vu whenever ε is small enough. 
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Example: The mass-spring-damper model 
The spring is Hookean with spring constant K, the dashpot gives force proportional to 
velocity, damping coefficient D, and the device is acted upon by a time-harmonic 
force Fcosωt 
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This model has five parameters (m,K,D,F,ω), but by choosing suitable scaling factors 
(equivalent to using different units) we can bring the number of parameters down to 
two: 
Set x = Lx’ and t = T t’ with x’ and t’ non-dimensional length and time 

 ;'cos
'

'
'

'

'

 ;'cos
'

'
'

'

'

22

2

2

2

2

2

Tt
mL

FT

dt

dx

m

DT
x

m

KT

dt

xd

TtF
dt

dx

T

L
DKLx

dt

xd

T

mL

!

!

=++

=++

 

Several choices: We take the time-scale from the harmonic forcing, T = 1/ω 
and the length scale, too, L = FT2/m = F/(ω2m), and skip the primes on variables: 

!! m

D
b

m

K
at

dt

dx
bax

dt

xd
===++ , ;cos

22

2

 

where now the spring constant a and the damping coefficient b are non-dimensional 
and properly scaled. 
The state vector is u = (x,v)T, the first order system is 

!!
"

#
$$
%

&
=!!

"

#
$$
%

&
==+

0

cos
,

10
,

t

badt

d
fAfAu

u  

See Strang pp xx for the discussion on the solutions and the different phase portraits 
for 2D linear systems. 
Note: The matrix exponential is easily computed when A is diagonalizable, but the 
critically damped A has only one eigenvector. 
 
On energy conservation 
The work done against the spring force is stored as elastic energy in the spring and 
can be converted into other forms subsequently. The work done against the damping 
force is another kind: it is a dissipative process which converts mechanical energy 
into heat. The system above must be augmented by a container for the thermal energy 
to be closed in the thermodynamical sense. Assume that the heat produced in the 
damper heats a mass with thermal capacity C (J/K), and temperature T, then, in the 
absence of driving force, 
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The augmented system admits an integral: 
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because dE/dt = 0 (multiply the force equation by 
dx/dt, add to the T-equation, and check that this  = 
dE/dt). Note that it does not depend explicitly on b, 
but the trajectories do, of course. The trajectories in 
this 3D phase space are on paraboloids (different for 
different initial data) with the T-axis as axis, and 
elliptical cross section. If b > 0 a trajectory moves 
towards its apex, where T is largest: all kinetic 
energy converts to heat, eventually. For the 
underdamped case, the motion is a spiral; the over- 
and critically damped cases gives more monotonic 
curves. If b = 0 the motion stays on a plane  
T = T(0) and is periodic. 
 
Ellipses and hyperbolas 
Consider a quadratic form without cross terms, Ax2 + By2 = C where A is positive. 
Divide by |C| to produce 
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Four cases:   
               sgn(B) |     +        |    -         | 
  sgn(C) ---+--------------+--------------+ 
                   +  | Ellipse      | Hyperbola(x) | 
                   ---+--------------+--------------+ 
                   -  | Empty        | Hyperbola(y) | 
                   ---+--------------+--------------+ 
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Lanchester’s law of squares 
As a simple, deterministic model of a battle, suppose that R(t) red and G(t) green units 
begin fighting at t=0, and that each unit destroys r or g (the fighting effectiveness)  
enemy units in one unit of time, so that  
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The fight stops when one army has been obliterated. We leave aside any discussion of 
the realism of the model. 
Which side wins? – has an easy answer 
How long does it take? – hard work 
We first note that both R and G decrease monotonically until the end.  
Solution  
1) the hard way: 
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G wins if R becomes zero. That happens, if ever, when
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which is Lanchester’s law of squares:  
Numbers count as much as fighting effectiveness squared. 
 
2) the easy way: Multiply the R equation by rR and the G equation by gG and 
subtract: 
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Since both R and G decrease, it follows that if the const. > 0, R must prevail, since  
R = 0 would render the expression negative. Another way of arriving at the result is to 
disregard time t and consider the (R,G)-plane. From the R and G equations 
immediately follows that 
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The traces of the time histories R(t) and G(t) on the 
(R,G)-plane are hyperbolas with asymptotes forming 

angle 

! 

" = arctan
r

g
 with the axes. 

 
 
 
 
 
Balls on springs: the Lagrange way 
The equations of motion can be easily derived from the Lagrange function – the 
difference between the kinetic energy T and the potential energy W, when such exists 
for the acting external forces. This immediately implies that the sum of the kinetic and 
potential energies is a constant of motion. 
Lagranges’ equations of motion for a system described by s degrees of freedom xi 
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The balls & springs example: 
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The Lagrange formalism avoids the introduction of internal forces which have  
subsequently to be eliminated, and deals elegantly with systems described by any 
coordinates (angles and distances and …). It needs extension to handle dissipative 
elements, like joints with friction. The equations of motion for the double pendulum 
come out easily, anyway. 
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Simplification & scaling 
The projectile problem (Lin & Segel): 
A projectile fired vertically from surface of planet, under gravity 
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Three parameters: R (earth radius), g (gravitational acceleration on surface), and V, 
initial velocity, and two scales: length and time, to choose.  
Look for a non-dimensional combination 

π = gxRyVz 
and the conditions are 
length units: x + y + z = 0 
time units:  2x       + z = 0, so z = -2x, y = -(x+z) = x 
and 

π = (gR/V2)x 
 
This is the single parameter we expect to wind up with in our non-dimensional 
formulation of the model. 
Choose length scale L, r = Lr’ and time scale T, t = T t’, and then skip the primes: 
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First attempt: Unsuccessful 
An obvious choice is  
L = R – compare projectile altitude with earth radius, and  
T = R/V - time to travel R 
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Consequences: 
Small V gives α large, and no interesting limit of the dynamics.  
With α small (0), the dynamics reduces to dr/dt = V – a particle not influenced by 
gravity.  
We conclude that this scaling is uninformative and does not help in simplifying the 
model. 
 
Next attempt: Successful:  
Choose L and T to make gT2/L = 1, and VT/L = 1:  

T = V/g, L = V2/g   
This makes L/2 the distance traveled by a particle accelerating at g from rest, and T is 
the time for retardation by g from V to 0.  

R 

r 
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Consequences: 
β = 0 gives d2r/dt2 = -1, r(t) = t-t2/2, and the max. height reached is 1/2. 
large β i.e. large V means gravity doesn’t much retard the movement: r(t) = t. 
We may try to find an approximation for small but non-zero β. Assuming that r is a 

regular function of β, we make the power series ansatz != )(trr j
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A population model 
It is reported in DN Sep. 13 that the Russian nativity is 1.4 children per woman. 
Unless the boy/girl distribution is very skewed, in the absence of immigration, the 
Russians face severe population decline. How severe? 
We assume that as many boys as girls are born, then it is enough to count the women. 
Let X be the number of infant women, and Y be the number of fertile women, and Z 
the number of babushkas.  
Consider the population at time tn, where a timestep tn+1 - tn is chosen to be a sizable 
fraction of the age-spans of the three groups.  
In a timestep,  

• A net fraction a of the infants mature. Mortality is neglected. 
• The fertiles give birth to bY female infants, and a fraction c becomes old (or 

die);  
• A fraction d of the old die. 

Thus, 
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The qualitative question is: How large must the parameter b be for the population to 
be stable, and what is the equilibrium age-distribution? Note: b > 1 is OK 
Remembering the Stochastic matrix discussion, or rather the Perron-Frobenius 
theorem, we see that:  
The eigenvalue of A with largest real part is positive and has a positive eigenvector 
which is a stable equilibrium. A has one eigenvalue 1–d, eigenvector (0,0,1)T which 
cannot dominate. The product of the eigenvalues of the upper left 2x2 part is  
(1-a)(1-c) > 0 so all eigenvalues are positive, and also the eigenvectors. 
 
There remains only to find the critical b-value for which there is an eigenvalue 1: 
 
 cbabca ==!!!!! Q,0)11)(11(  
 

• the a-coefficient is determined only by the timestep chosen and the length of 
infancy and as such does not influence the population dynamics.  

• The c-coefficient can include untimely death, hence can be controlled by 
health measures, but only to a certain degree. There remains to control b! 

• … Nativity must exactly match the loss of fertile individuals to age and 
untimely death. 

 
How do the numbers come out? Assume that fertility is F yrs. With a time step of k 
yrs we get c = k/F. So the equilibrium b is k/F; over the whole fertility period  
F/k b = 1, and including boys a nativity of 2 would be required, which we knew, of 
course, without doing the eigenvalues … 
How quickly does the population decay with nativity 1.4? Assuming infancy is 20 yrs, 
and fertility 30, and a timestep of 10,  
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a loss of 7% in 10 yrs, or 18.3% in 30 yrs. 
 
Note: With the equilibrium b, the age profile predicted by the model is completely 
flat: (X,Y) is proportional to (2,3) – matching the assumed timespans of infancy and 
fertility. This is another result of our neglect of untimely mortality. 


