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Lecture 4: Dynamical systems, differential equations 
(as the lecture was given, not as it was planned :-) ) 

Phase Space analysis 
The differential initial value problem is du/dt = f(u), u(0) = u0, with u(t) a real s-
vector. 
We “plot” the solution in Rs x [0,T) and look at the projection on Rs. As time runs, the 
point traces out a curve, the trajectory. Different initial values give a family of curves, 
which portrays the properties of the solution set, hence called the phase portrait. 
We think of the differential equation as giving, for each point, the tangent of the 
trajectory; plotting many such arrows (Matlab: quiver) also produces a phase 
portrait. The length of the arrow is the “velocity”, ||du/dt||2 . Going back to lect 1 and 
the rigid rotation, 
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x = linspace(-1,1,10); 
[xx,yy]=meshgrid(x,x); 
dxdt = -yy; 
dydt =  xx; 
quiver(xx,yy,dxdt,dydt,'k'); 
axis ([-1 1 -1 1]) 
axis equal 
 
The idea of “flow” immediately makes one think of where the flow can go, i.e., which 
part of the phase space is accessible for initial values in some domain, say D. 
Folklore theorem: Let D be nice enough to have a boundary Γ which possesses an 
outward normal n everywhere (except at isolated points). Then, if f(u).n ≤ 0 on Γ, a 
solution starting in D can never leave.  
Folklore proof: The conclusion is obvious for strict inequality f(u).n < 0. It is possible 
to show that it holds also for ≤ , but one has to restrict Γ not to have cusps (corners 
with 0 interior angle). 
 
Example –  
The “Logistic” growth equation )/1(,)( Uukauuau !==& models growth, impeded by 
”crowding”. If u grows to U, the growth 
stops. k is the net growth rate for small 
population. One can write an analytical 
solution, but an inspection of the phase 
space – the real line–  reveals its main 
features. The dotted parabola is du/dt vs. u, 
as read off from the differential equation. 
For negative u, du/dt < 0, and u(t) decreases 
monotonically and ever faster; 
In 0 < u < U, u grows, fastest for u = U/2, 
slows down close to U. For u > U, u decreases towards U. The Folklore theorem 
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guarantees that u stays in D = [0,U] forever if started there. The points 0 and U are 
critical points u* (see Lect. 4). 0 is unstable: u(0)>0 makes u tend to U, and u(0)<0 
makes u decrease forever. U is asymptotically stable, indeed, any positive u(0) gives 
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Linearization gives J(u) = k(1-2u/U), for the perturbation w(t) from u* linear, constant 
coefficient equations: 
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which confirms and details our conclusions from study of the phase line. 
 
The second example is the classical predator-prey model named for Vito Volterra and 
James Lotka, developed in WW1. Consider a population of u1 foxes (predators) and 
u2 rabbits (prey). The number of encounters per unit time will be proportional to the 
product u1u2, by reasoning similar to the mass action law of chemical kinetics. In the 
absence of prey, the fox population declines, and in the absence of foxes, the rabbit 
population grows rapidly. So, with the ai and bi positive, 
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First we note that the solution stays positive: Let D be the positive quadrant, then on 
its boundary u1 = 0 n = (-1,0) and n.du/dt = 0; on u2 = 0, n = (0,-1) and n.du/dt 
vanishes there, too.  
Critical points: 
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so 1) u* = (0,0) and 2) u* = (a2/b2,a1/b1). The Jacobian is 
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For perturbations w from u*, 
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is unstable, a saddle point: u1 (the foxes) disappear and u2 grows. The positive point  

21
*
2  are *)( of seigenvalue  the: aai±uJu , and the perturbation make harmonic 

oscillations around the critical point. The local phase portrait is a set of ellipses, 
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neutrally stable. This does not prove that the positive point is stable for the full 
system, but at least that the phase portrait is close to the elliptic.  
But the neutral stability is true; It happens that all solutions are periodic; the system 
admits an integration: 
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The LHS and RHS are both convex functions (f’’ < 0 
for u > 0) of u1 and u2, viz. Thus, for a given value of 
u1 (and C) the equation to solve for u2 has zero, one 
(tangency) or two solutions.  
That is exactly a recipe for drawing a convex closed 
curve.  
And here is the result, a1 = 1.3, the others all 1. In 
particular, the linearization showed the period of 

small oscillations to be 
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How to compute the period of a large oscillation, now 
we know the solution is periodic? 
The formula is simple, for instance, 
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but the problem is to distinguish when a whole revolution has been traversed. Note 
that the discrete values produced by the numerical scheme will not be exactly 
periodic.  
Let us instead record the angle φ(t) swept by the radius vector from u* 
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so, bounded above and below. Adjoin the φ-differential equations to the model and 
change to φ as independent variable: 
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(du1/dt etc. from eqn. 1) and run from 0 to 2π. 
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