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The Problem

Consider the differential equation

A(t,x)x′+g(t,x) = 0

or, more generally, F(t,x,x′) = 0. Here, all involved functions
x : I → R

n etc are vector-valued functions!

Applications:

• Electrical circuits

• Constraint mechanical multibody systems

• Discretization of multiphysics systems

• Singular perturbed problems

How can daes reliably be solved?

Are there any differences to explicit odes?
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Numerical Approximation

• Consider the dae F(t,x,x′) = 0.

• Use the θ -method (0≤ θ ≤ 1,h = tn − tn−1):

x′(tn−1+θh) ≈
x(tn)− x(tn−1)

h
,

x(tn−1+θh) ≈ (1−θ)x(tn−1)+θx(tn)

such that

F

(

tn−1 +θh,(1−θ)xn−1+θxn,
xn − xn−1

h

)

= 0

• Some special cases:
θ = 0 Explicit Euler method.
θ = 1/2 Midpoint rule.
θ = 1 Implicit Euler method.
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The θ -Method For Linear Daes

Let

EAF =

(

I 0
0 J

)

, EBF =

(

W 0
0 I

)

be the Kronecker canonical form of (A,B)

Make the transformation
(

yn

zn

)

= F−1xn

as before and scale by E:

yn− yn−1

h
+(1−θ)Wyn−1+θWyn = p(tn−1+θh),

J
zn − zn−1

h
+(1−θ)zn−1+θzn = r(tn−1+θh).

Compare to the continuous problem:

y′ +Wy = p(t)

Jz′+ z = r(t)

• The discretization of the ode (first row) works as expected.

• For µ = 0, the second row is missing.
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The Index 1 Case

(1−θ)zn−1+θzn = r(tn−1+θh) =: rn

• If θ = 0, zn cannot be computed. Hence, the method must
be implicit!

• If θ 6= 0, the recursion becomes

zn = −
1−θ

θ
zn−1+

1
θ

rn

• This recursion is stable if and only if |1−θ/(θ)| < 1, i.e.

1/2 < θ ≤ 1.

• For θ = 1/2, the recursion is weakly unstable.

• For 0 < θ < 1/2, this recursion is (exponentially) unstable!

Conclusion: The explict Euler is not feasible, the trapezoidal
rule becomes unstable. It is the implicit Euler method which
can be used!
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The Index 2 Case

• Consider the implicit Euler method, only. Computation as
above provides

zn = rn −
1
h

J(rn − rn−1).

• If there are no errors in the computation of
(1/h)J(rn− rn−1), zn remains bounded.

• Inexact starting values as well as round-off give rise to a
weak instability, i.e., the errors are amplified by h−1.

Note: For µ ≥ 3, the amplification factor becomes h1−µ .
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Conclusions

1. Singular systems of index µ are mixed regular differential
equations and equations including µ −1 differentiations.

2. Consistent initial values are not easy to compute in
practice.

3. Integration methods handle the inherent regular ode as
expected.

4. Numerical integration methods must be implicit. Moreover,
additional conditions must be fulfilled to ensure stability in
the algebraic variables (or their equivalent).

5. Errors in the starting values are amplified by h1−µ in the
best case, but only the components zn are effected.

6. Index 0,1,2 daes can be solved numerically. Not those
with µ ≥ 3.

For general nonlinear equations, (3), (5) are no longer true.
But often, numerial methods work as expected.
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Finite Difference Methods for DAEs

• For general DAEs, most often BDF based codes are used.
(ex. DASSL)

• Radau-IIA methods have the same stability problems.
However, the implementation is tricky. (ex. RADAU5)

• If the system has special structure, use it as much as you
can! (ex. Projected RK methods)

• Many implicit methods can be adapted to be used with
DAEs. However, their applicability (read: efficiency) is
usually restricted to special areas of applications.
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The Gear/Hsu/Petzold Example

A(t)x′(t)+B(t)x(t) = q(t),

A =

(

0 0
1 ηt

)

,B =

(

1 ηt
0 1+ηt

)

.

This is an index-2 system. Apply the implicit Euler method:

x2,n =
η

1+η
x2,n−1+

1
1+η

q2,n−
1

1+η
q1,n−q1,n−1

h

if and only if 1+η 6= 0.

This recursion is

• weakly unstable like h−1 if η > −1/2

• weakly unstable like h−2 if η = −1/2

• unstable like exp(1/h) if η < −1/2, η 6= −1

Strange things happen if the nullspace kerA(x, t) of A(x, t)
varies!

Fortunately, very often, this nullspace is constant.

Note: The implicit Euler method is both the simplest BDF
method and the simplest Radau IIA method.
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Index Reductions

Start with a semiexplicit index-1 system,

y′ = −B11y−B12z+ p,

0 = −B21y−B22z+ r.

This dae has index 1 if and only if B22 is nonsingular.

Differentiate the constraint in the original dae:

0 = −B21y
′−B22z

′ + r′

Then, the system reads:

(

I 0
B21 B22

)(

y′

z′

)

+

(

B11 B12

0 0

)(

y
z

)

=

(

p
r′

)

.

This is an index-0 dae (an ode)
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Index Reductions (cont.)

Conclusion: By differentiation of the algebraic constraint, the
index can be reduced by one.

• The index-reduced system is not equivalent to the original
one!

• The new system has more degrees of freedom (initial
values for z).

• How to do that in more implicitely given systems?

• Do there exist better index reduction methods?
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Hessenberg Index-2 systems (cont.)

Hence,
z′ = (hy fz)

−1G(y,z).

The original system has (differentiation) index 2.

The system

y′ = f (y,z),

0 = hy(y) f (y,z)

is a semiexplicit system with index 1. This can be further
reduced to become an index-0 system (I.e., an explicit ode).
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Hessenberg Systems (cont)

• The index-0 system can be approximated by any
numerical method.

• For the index-1 system, an implicit method must be used.
It can be much simplified by collocation, 0 = hy(yn) f (yn,zn).

Are the systems equivalent? No

Let the initial value (y(0),z(0)) for the index-1 system such
that h(y(0)) = 0.

0 =

t
∫

0

hy(y(s)) f (y(s),z(s))ds = h(y(t))−h(y(0)) = h(y(t))

Equivalence, if and only if the initial values are consistent.

This property gets lost during integration. Drift-off
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Stabilization of Constraints

The system

y′ = f (y,z),

0 = h(y),

0 = hy(y) f (y,z)

is equivalent to the original one, but overdetermined.

Baumgarte’s idea: Choose a parameter α > 0 and replace
the algebraic constraint by

0 = (d/dt)h+αh.

The solution becomes h(y(t)) = h(y(0))exp(−αt).

Pro: Any drift-off is suppressed.

Contra: The system becomes stiff. How to choose α?

Note: Baumgarte proposed this idea for index-3 CMBS.
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Stabilization of Invariants

Assume that we have an ode

y′ = f̂ (y),y(0) = y0

such that the solution fulfills

h(y(t)) ≡ 0.

Examples:

• Charges in an electrical circuit.

• Mass under chemical reactions.

A common integrator will not preserve the invariant

Gear/Gupta/Leimkuhler: Consider the dae

y′ = f̂ (y)−HT(y)z,

0 = h(y).

Both systems have the same solution y while z ≡ 0.

This system has index 2!
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A Stiff Pendulum

• Consider a planar spring of length l and mass m with
spring constant ε−1 (0 < ε ≪ 1) with one end attached to
the origin.

• Let r =
√

p2
1+ p2

2. Then

mp′′ = −ε−1r−1
r

p−

(

0
g

)

.

• Introduce λ = ε−1(r−1). Then,

mp′′ = −
λ
r

p−

(

0
g

)

,

ελ = r−1.

• For small ε , this system is very hard to solve numerically
(extremely stiff).

• For ε → 0 we obtained the reduced system,

mp′′ = −
λ
r

p−

(

0
g

)

,

0 = r−1.

This system is no longer stiff! In fact, it is easier to solve
than the original one, even if it has index 3!
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The Pendulum: Conclusion

• A higher-index dae can often be simpler that, or result as
a simplification of, an ode or a lower index dae.

• A dae can in a sense be very close to another dae with a
different index.

It is wrong in general to consider a dae as an infinitely stiff
ode!!!

Note: The important property of BDF and Radau IIA methods
applied to DAEs is stability in the recursions for the algebraic
components, not their stiff stability.

Michael Hanke, NADA, November 6, 2008 17


