## Chapter 4: The Finite Element Method

Michael Hanke
Mathematical Models, Analysis and Simulation, Part I

## A Model Problem

Read: Strang, p 229-244

$$
\begin{gather*}
-u^{\prime \prime}=f(x), \quad 0<x<1  \tag{D}\\
u(0)=u(1)=0
\end{gather*}
$$

Applications:

- axial deformation of an elastic bar
- conduction of heat in a bar
- many others

This formulation is the starting point for finite difference methods

Q: Are there alternatives?

## Principle of Virtual Work

In equilibrium, the virtual work vanishes for all possible virtual displacements.

Multiply by a test function $v$ (virtual displacement) and integrate:

$$
\int_{0}^{1}-u^{\prime \prime} v d x=\int_{0}^{1} f v d x
$$

Since $v(0)=v(1)=0$, integration by parts yields:

$$
\begin{aligned}
\int_{0}^{1} f v d x & =\int_{0}^{1} u^{\prime} v^{\prime} d x-\left[u^{\prime} v\right]_{0}^{1} \\
& =\int_{0}^{1} u^{\prime} v^{\prime} d x
\end{aligned}
$$

We obtain the weak or variational formulation:
Find $u$ with $u(0)=u(1)=0$ such that

$$
\int_{0}^{1} u^{\prime} v^{\prime} d x=\int_{0}^{1} f v d x \text { for all admissible } v
$$

Principle of Minimum Energy

In equilibrium, the energy of a system attains a minimum.

Energy:

$$
P(u)=\int_{0}^{1}\left[\frac{1}{2} u^{2}-f u\right] d x
$$

The minimization formulation:

Find $u$ with $u(0)=u(1)=0$ such that

$$
P(u) \leq P(v) \text { for all admissible } v
$$

Note: $\mathbf{D}$ is the Euler-Lagrange equation for $\mathbf{M}$.

## Notes on These Formulations

- $\mathbf{M} \Rightarrow \mathbf{V}$
- Solutions of $\mathbf{V}$ and $\mathbf{M}$ need only be once differentiable.
- If $u$ is twice differentiable, $\mathbf{D}$ and $\mathbf{V}$ are equivalent.

$$
\mathbf{M} \Longrightarrow \mathbf{V} \Longleftarrow \mathbf{D}
$$

Hence, the variational formulation is the most general one.

## Ritz and Galerkin Methods

- Choose a (convenient) finite dimensional subspace $V_{h} \subset V$.
- Choose a basis of $V_{h}$.
- Ritz method: Start from M. Determine $u_{h} \in V_{h}$ as the minimizer of $P\left(v_{h}\right)$ where $v_{h}$ is taken from $V_{h}$.
- Galerkin method: Start from V. Determine $u_{h} \in V_{h}$ such that $\mathbf{V}$ is fulfilled for all $v_{h} \in V_{h}$.

Theorem. The Ritz and Galerkin procedures are equivalent.

Q: How to choose $V_{h}$ ?
Criteria include:

- good approximation quality,
- efficient numerical algorithms,
- stable computations.


## Sobolev Spaces

## Q: What are admissible functions?

They must be once differentiable (in a generalized sense) and fulfill the (essential) boundary conditions.

$$
V:=H_{0}^{1}(0,1):=\left\{v \mid v(0)=v(1)=0, \int_{0}^{1}\left(v^{\prime 2}+v^{2}\right) d x<\infty\right\}
$$

This is a special case of Sobolev spaces $H^{p}(\Omega)$ : Let $\Omega$ be a domain in $\mathbb{R}^{n}$,

$$
H^{p}(\Omega):=\left\{v \mid \int_{\Omega}\left(\left(v^{(p)}\right)^{2}+\cdots+v^{\prime 2}+v^{2}\right) d x<\infty\right\}
$$

These spaces are examples of a complete inner product space.

Notation:

$$
\|v\|_{p}=\left(\int_{\Omega}\left(\left(v^{(p)}\right)^{2}+\cdots+v^{\prime 2}+v^{2}\right) d x\right)^{1 / 2}
$$

## Finite Element Method: Example

Consider the introductory example. Subdivide $[0,1]$ into $N+1$ subintervals (not necessarily equidistant):

$$
0=x_{0}<x_{1}<\cdots<x_{N}<x_{N+1}=1 .
$$

- $V_{h}$ : set of all piecewise linear functions with corners at the grid points $x_{i}$.

- Basis functions: Hat functions

$$
\phi_{i}(x)= \begin{cases}\frac{x-x_{i-1}}{x_{i}-x_{i-1}}, & x_{i-1} \leq x \leq x_{i} \\ \frac{x_{i}-x}{x_{i+1}-x_{i}}, & x_{i} \leq x \leq x_{i+1} \\ 0, & \text { elsewhere }\end{cases}
$$

- Ansatz

$$
u_{h}(x)=\sum_{j=1}^{N} u_{j} \phi_{j}(x)
$$

## Example (cont.)

- Ritz: Insert

$$
u_{h}(x)=\sum_{j=1}^{N} u_{j} \phi_{j}(x), \quad u_{h}^{\prime}(x)=\sum_{j=1}^{N} u_{j} \phi_{j}^{\prime}(x)
$$

into $P(v)$ :

$$
\begin{aligned}
P\left(u_{h}\right) & =\sum_{j, k=1}^{N} \frac{1}{2} u_{j} u_{k} \underbrace{\int_{0}^{1} \phi_{j}^{\prime} \phi_{k}^{\prime} d x}_{a_{j k}}-\sum_{j=1}^{N} u_{j} \underbrace{\int_{0}^{1} \phi_{j} f d x}_{f_{j}} \\
& =\frac{1}{2} \mathbf{u}^{T} \mathbf{A} \mathbf{u}-\mathbf{u}^{T} \mathbf{f}
\end{aligned}
$$

-     - vector of unknowns: $\mathbf{u}=\left(u_{1}, \ldots, u_{N}\right)^{T}$, where $u_{i}=u_{h}\left(x_{i}\right)$
- stiffness matrix A
- load vector $\mathbf{f}$


## Error Estimation

A reliable and efficient method requires an error estimate and a method to adapt the discretization to the problem at hand to produce a prescribed error with minimal resources.

Some notation:

- Left-hand side of $\mathbf{V}: a(u, v):=\int_{0}^{1} u^{\prime} v^{\prime} d x$.

Exercise: Show that $a(u, v)$ is a scalar product on $V$ !

- Right-hand side of $\mathbf{V}: L(v)=\int_{0}^{1} f v d x$
- M: $P(v)=\frac{1}{2} a(v, v)-L(v)$
- Exact solution: $a(u, v)=L(v)$ for all $v \in V$
- Galerkin: $a\left(u_{h}, v_{h}\right)=L\left(v_{h}\right)$ for all $v_{h} \in V_{h}$
- The error: $e_{h}=u-u_{h}$.


## Since $V_{h} \subset V$ :

$$
\begin{array}{cc}
a\left(u, v_{h}\right)=L\left(v_{h}\right) & \text { for all } v_{h} \in V_{h} \\
-a\left(u_{h}, v_{h}\right)=-L\left(v_{h}\right) & \text { for all } v_{h} \in V_{h} \\
\hline a\left(e_{h}, v_{h}\right)=0 & \text { for all } v_{h} \in V_{h}
\end{array}
$$

This is called Galerkin orthogonality.

## Example (cont.)

- properties of the stiffness matrix
- It is symmetric: $a_{j k}=a_{k j}$.
- It is positive semi-definite:

$$
\mathbf{u}^{T} \mathbf{A} \mathbf{u}=\int_{0}^{1} u_{h}^{\prime 2} d x \geq 0
$$

- It is positive definite:

$$
\mathbf{u}^{T} \mathbf{A} \mathbf{u}=0 \Leftrightarrow u_{h}^{\prime}(x) \equiv 0 \quad \Leftrightarrow u_{j}=0 \text { for all } j
$$

- Definiteness depends on the boundary conditions!
- $P\left(u_{h}\right)$ reduces to a quadratic functional. Derivation with respect to the unknowns yields

$$
\mathbf{A u}=\mathbf{f}
$$

- How to integrate: numerical quadrature
- Exercise: Do the same analysis for the Galerkin method!


## Error Estimation (cont.)

With any interpolant $\Pi_{h} u$ of $u$ in $V_{h}$ :
$a\left(e_{h}, e_{h}\right)=a\left(e_{h}, u-u_{h}\right)=a\left(e_{h}, u-\Pi_{h} u+\Pi_{h} u-u_{h}\right)=a\left(e_{h}, u-\Pi_{h} u\right)$
since $a\left(e_{h}, \Pi_{h} u-u_{h}\right)=0$.
Cauchy-Schwarz inequality:

$$
a\left(e_{h}, u-\Pi_{h} u\right)^{2} \leq a\left(e_{h}, e_{h}\right) a\left(u-\Pi_{h} u, u-\Pi_{h} u\right) .
$$

Finally

$$
a\left(e_{h}, e_{h}\right) \leq a\left(u-\Pi_{h} u, u-\Pi_{h} u\right)
$$

The right-hand term is computable if $u$ is two times continuously differentiable.

## Error Estimation (cont.)

Linear interpolation on $I=\left[x_{i}, x_{i+1}\right]$ gives:

$$
u^{\prime}(x)-\left(\Pi_{h} u\right)^{\prime}(x)=u^{\prime}(x)-\frac{u\left(x_{i+1}\right)-u\left(x_{i}\right)}{x_{i+1}-x_{i}}=u^{\prime}(x)-u^{\prime}(\xi)
$$

where $\xi \in\left(x_{i}, x_{i+1}\right)$.

$$
\begin{aligned}
\int_{I}\left(u^{\prime}-\left(\Pi_{h} u\right)^{\prime}\right)^{2} d x & =\int_{I}\left(u^{\prime}(x)-u^{\prime}(\xi)\right)^{2} d x \\
& =\int_{I}\left(\int_{\xi}^{x} u^{\prime \prime}(s) d s\right)^{2} d x \\
& \leq \int_{I}\left(\int_{\xi}^{x} u^{\prime \prime 2}(s) d s \cdot \int_{\xi}^{x} 1^{2} d s\right) d x \\
& \leq\left(x_{i+1}-x_{i}\right)^{2} \int_{I} u^{\prime \prime 2}(s) d s .
\end{aligned}
$$

## Adaptive Algorithms

The error estimate above is an a-priori one: It uses only qualitative assumption on the given data.

An a-posteriori error estimate uses the actual discrete solution $u_{h}$ to approximate $u^{\prime \prime}$. There are different ways available of doing this. Note that the error is localized.

Adaptive algorithm:

1. Construct an initial grid
2. Discretize by FEM
3. Compute the approximation $u_{h}$
4. Compute an a-posteriori error estimate
5. User selected error criterion met?

- Yes: We are done.
- No: Select subintervals with large error and subdivide them.


## Error Estimation (cont.)

## Theorem.

$$
\left\|u^{\prime}-u_{h}^{\prime}\right\|^{2} \leq \sum_{i=0}^{N}\left(x_{i+1}-x_{i}\right)^{2} \int_{x_{i}}^{x_{i+1}} u^{\prime \prime 2}(s) d s
$$

A standard theorem says (Friedrich's inequality): There is a constant $C$ such that

$$
\|v\| \leq C\|\nabla v\|
$$

for all $v \in H_{0}^{1}(\Omega)$. Hence,

$$
\left\|e_{h}\right\| \leq C\left\|e_{h}^{\prime}\right\| \leq C h\left\|u^{\prime \prime}\right\| .
$$

Note: In the present case, one can even show:

- Second order convergence: $\left\|e_{h}\right\|=O\left(h^{2}\right)$.
- Pointwise convergence: $\max _{x \in[0,1]}\left|e_{h}(x)\right| \leq C_{1} h^{2}$.


## Adptive Algorithms (cont.)

For the last step, a number of different strategies are available:

- Refine the worst elements.
- Equidistribution of the error.

Note The success of the algorithm depends on the regularity of the solution. For problems with singularities, the refinement process may never terminate.

## The Program ADFEM

This program implements an adaptive algorithm for the problem

$$
\begin{gathered}
-\frac{d}{d x}\left(d(x) \frac{d u}{d x}\right)+c(x) \frac{d u}{d x}+a(x) u=f(x) \\
x=x_{\min }: u=g_{0} \text { or } d(0) \frac{d u}{d x}+k_{0} u=g_{0} \\
x=x_{\max }: u=g_{1} \text { or } d(1) \frac{d u}{d x}+k_{1} u=g_{1}
\end{gathered}
$$

Assumptions: $d(x) \geq d_{0}>0$
Error control:

- in $L^{2}$ norm
- in energy norm $\left\|e_{h}\right\|_{E}:=\sqrt{a\left(e_{h}, e_{h}\right)}$ (if $c=0, a \geq 0$ )
- pointwise error

More explicit:

$$
\|v\|_{E}^{2}=\int_{x_{\min }}^{x_{\max }}\left(d v^{\prime 2}+a v^{2}\right) d x
$$

## A 2D Problem (cont.)

Remember:

$$
H^{1}(\Omega)=\left\{v \mid \int_{\Omega}\left(|\nabla v|^{2}+v^{2}\right) d x<\infty\right\}
$$

Define

$$
\begin{aligned}
a(u, v) & =\int_{\Omega}(c(x) \nabla u \cdot \nabla v+r(x) u v) d x, \quad u, v \in H^{1}(\Omega) \\
L(v) & =\int_{\Omega} f v d x+\int_{\Gamma_{N}} c(x) g_{2}(x) v d \Gamma, v \in H^{1}(\Omega)
\end{aligned}
$$

Let now $V_{g}:=\left\{v \in H^{1}(\Omega) \mid v=g\right.$ on $\left.\Gamma_{D}\right\}$.
Variational formulation: Find $u \in V_{g_{1}}$ such that

$$
\begin{equation*}
a(u, v)=L(v) \text { for all } v \in V_{0} . \tag{V}
\end{equation*}
$$

Minimization formulation: Find $u \in V_{g_{1}}$ such that

$$
\begin{equation*}
P(u)=\min _{v \in V_{g_{1}}} P(v) \text { with } P(v)=\frac{1}{2} a(v, v)-L(v) \tag{M}
\end{equation*}
$$

Theorem. $\boldsymbol{M}$ and $\boldsymbol{V}$ are equivalent.
Exercise: Prove this!

## A 2D Model Problem

Read: Strang, p 293-309

$$
\begin{gather*}
-\nabla \cdot(c(x) \nabla u)+r(x) u=f(x), x \in \Omega \subset \mathbb{R}^{2} \\
\partial \Omega=\Gamma_{D} \cup \Gamma_{N}  \tag{D}\\
\text { on } \Gamma_{D}: u=g_{1}, \text { on } \Gamma_{N}: \frac{\partial u}{\partial n}=g_{2}
\end{gather*}
$$

with $c(x) \geq c_{0}>0, r \geq 0$ and $\Gamma_{D} \neq \emptyset$.
The variational formulation and the minimization formulation will be constructed by the principle of virtual work and the principle of minimum energy, respectively: Let $v$ be a test function with $v(x)=0$ on $\Gamma_{D}$.

$$
\begin{aligned}
\int_{\Omega} f v d x & =\int_{\Omega}(-\nabla(c(x) \nabla u)+r(x) u) v d x \\
& =\int_{\Omega} c(x) \nabla u \cdot \nabla v-\int_{\partial \Omega} n \cdot(c(x) \nabla u) v d \Gamma+\int_{\Omega} r(x) u v d x \\
& =\underbrace{\int_{\Omega}(c(x) \nabla u \cdot \nabla v+r(x) u v) d x-\int_{\Gamma_{N}} c(x) g_{2}(x) v d \Gamma .}_{a(u, v)}
\end{aligned}
$$

Michael Hanke, NADA, November 6, 2008

## The Galerkin Method

We are following the lines of the one-dimensional example:

1. Choose a finite set of trial functions or, basis functions $\phi_{1}(x), \ldots, \phi_{N}(x)$.
2. Admit approximations to $u$ of the form
$u_{h}(x)=u_{1} \phi_{1}(x)+\cdots+u_{N} \phi_{N}(x)$.
3. determine the $N$ unknown numbers $\mathbf{u}=\left(u_{1}, \ldots, u_{N}\right)^{T}$ from $\mathbf{V}$, using $N$ different test functions $\phi_{k}(x)$.

$$
\begin{aligned}
& L\left(\phi_{j}\right)=a\left(u_{h}, \phi_{j}\right)=a\left(\sum_{k=1}^{N} u_{k} \phi_{k}, \phi_{j}\right) \\
& \underbrace{L\left(\phi_{j}\right)}_{f_{j}}=\sum_{k=1}^{N} \underbrace{a\left(\phi_{k}, \phi_{j}\right)}_{a_{j k}} u_{k}
\end{aligned}
$$

The coefficients can be determined from

$$
\mathbf{A u}=\mathbf{f}
$$

with the stiffness matrix $\mathbf{A}=\left(a_{j k}\right)$ and the load vector $\mathbf{f}=\left(f_{1}, \ldots, f_{N}\right)^{T}$.

Exercise: Show that the Ritz approach leads to the same system.

## A Finite Element Example: P1 Triangles

Bottlenecks of the Galerkin method:

- The computation of $\mathbf{A}$ is expensive. Every element is a 2 D integral.
- Since the number of degrees of freedom $N$ is large, a high-dimensional linear system must be solved.

Wishes:

- Choose basis functions which are flexible enough to approximate the solution accurately with a small number $N$ of trial functions.
- Try to make A sparse. That means, use an "almost" orthogonal basis.
- The condition number should not be too large.

Idea borrowed from 1D: Choose piecewise polynomial trial functions which vanish "almost" everywhere on $\Omega$.

Note: Later we will use other choices, too. (Pseudo spectral method)

## Properties

## Consequences:

- The stiffness matrix is sparse.
- There is a very efficient algorithm for computing $\mathbf{A}$ and $\mathbf{f}$ (assembly).
- The condition number is $\operatorname{cond}(\mathbf{A})=O\left(h^{2}\right)$.

Theorem. Under the given assumption on the coefficients (and some regularity assumptions on $\Omega$ and the triangulation), the solution to the Galerkin equation exists and is unique. If $u$ is sufficiently smooth,

$$
\|e\|_{1} \leq C h
$$

Under additional assumptions on the data,

$$
\|e\| \leq C h^{2}
$$

## $P 1$ Triangles (cont.)

- Approximate $\Omega$ as the union of non-overlapping triangles $T_{k}$ whose corners form the set of nodes $x_{i}$.
- $V_{h}$ is defined as the set of continuous functions whose restriction to one triangle is a first degree polynomial.
- Choose basis functions (cf the 1D case!)

$$
\phi_{i}\left(x_{j}\right)=\delta_{i j}
$$



Michael Hanke, NADA, November 6, 2008

## Stability Estimate

The key properties of $a$ and $L$ for the theorem to hold are

1. $a(v, v) \geq \alpha\|v\|_{1}^{2} \forall v \in V_{0}$
2. $|a(u, v)| \leq C\|u\|_{1}\|v\|_{1} \forall u, v \in V_{0}$
3. $|L(v)| \leq M\|v\|_{1} \forall v \in V_{0}$

As a consequence of (1), we obtain a stability estimate:


Consequently,

$$
\|u\| \leq \frac{1}{\alpha}\|f\| .
$$

