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Model Problems

Read: Strang, p. 283–285

Use the Poisson equation with homogeneous boundary
conditions:

−∆u = f , x ∈ Ω, subject to u = 0 on Γ = ∂Ω.

1D: Ω = [0,1]. Use linear finite elements on equidistant
subintervals with step size h = 1/(N +1). A becomes a
tridiagonal N ×N-matrix,

A =
1
h
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2D: Ω = [0,1]2. Use linear finite elements on the following
triangulation:
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Optimal Computational Complexity

Assume that our solution is an n-dimensional vextor x.

An algorithm has optimal computational complexity if

#flops ∼ n.
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Direct Methods: Cholesky Factorization

• In both cases, A is symmetric and positive definite
(spd).

• No pivotization necessary!

• Computational complexity for an n×n-matrix with (half)
band width w:

O(w2n)

• 1D: w = 1,n = N: Complexity O(n)

2D: w = N,n = N2: Complexity O(N4) = O(n2)

• Cholesky factorization is optimal in 1D, but too
expensive for large 2D problems. It becomes even
worse in 3D.

Exercise: Assume that the number of grid points in x- and
y-direction is N and M, respectively, with N 6= M. What is
the computational complexity? Does it depend on the
ordering?
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Iterative Methods

Read: Strang, p 563–570, 592–594, (586–591)

• Consider the system Ax = b with the exact solution
x∗ = A−1b.

• Idea: Try to construct a sequence xk such that

lim
k→∞

xk = x∗

as fast as possible.

• Justification: x∗ is only a discrete approximation to a
continuous function u.

• Construction principles:
– The classical way: Matrix splitting
– The dynamic interpretation: Relaxation methods
– The modern way: Minimization methods
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Relaxation

• Observation: For any spd (e.g., mass) matrix M and any
x0 ∈ R

n,

x∗ = lim
t→∞

x(t) where M
dx
dt

= b−Ax, x(0) = x0

• Damped Richardson iteration: Let M = I, use forward
Euler with time step ∆t = ω:

xk+1 = xk +ω(b−Axk),k = 0,1, . . .

• Error estimation:
– Error: ek := xk −x∗

– How many iterations K must be taken such that
‖eK‖ ≤ tol?

– What is the optimal ω?

Michael Hanke, NADA, November 6, 2008 6

Convergence Analysis

• Let 0 < λ1 ≤ λ2 ≤ ·· · ≤ λn be the eigenvalues of A and
v1, . . . ,vn the eigenvectors.

• Define

ek =
n

∑
j=1

ck jv j.

Consequently, (Prove!)

ck+1, j = (1−ωλ j)
︸ ︷︷ ︸

g j

ck j.

• Convergence:

lim
k→∞

xk = x∗ iff max
j=1,...,n

|g j| < 1

iff ω <
2
λn

• gmax = max j=1,...,n |g j| measures the speed of
convergence: The smaller gmax, the faster the
convergence.
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Convergence Analysis (cont.)

• Fastest convergence:

ω =
2

λ1 +λn
,gmax =

κ2(A)−1
κ2(A)+1

where κ2(A) = λn
λ1

is the Euclidean condition number of
A.

• For our model example, the eigenvalues are known. In
1D:

λ j =
1
h
(2−2cos jπh)

such that

λn ≈
4
h
,λ1 ≈ hπ2

⇒ κ2(A) = O(h−2)

• A similar estimate holds true in 2D and 3D.
• Conclusion: Number of iterations is

K = O(κ2(A) logtol) = O(h−2 logtol).

• This is much too slow!!
• Note: For special choices of ω, we obtain the Jacobi

iteration.
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Minimization: Steepest Descent

• Property:

x∗ minimizes P(x) =
1
2

xT Ax−xT b

• Minimization scheme:

xk+1 = xk +αkdk

with dk (search direction) and αk > 0 (step size)
constructed appropriately.

• Direction of steepest descent dk:
P(xk +αdk) should be decrease as fast as possible in
direction dk:

1
‖dk‖

dP(xk +αdk)

dα

∣
∣
∣
∣
α=0

→ min! wrt dk.

Solution: dk = −(∇P(xk))T . In our case:

dk = b−Axk = rk (residual)

• Exercise: Prove these results!
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Steepest Decent (cont.)

• Optimal step size

αk = arg minP(xk +αdk)

Solution:

αk =
rkT dk

dkT Akdk

• Exercise: Prove this!

• Speed of convergence: (Proof: Luenberger, p 152)

‖ek+1‖E ≤
κ2(A)−1
κ2(A)+1

‖ek‖E

This is as slow as Richardson iteration!

• Note: The SOR method can be obtained with
appropriately chosen search directions.

Michael Hanke, NADA, November 6, 2008 10

Speeding Up Steepest Descent: Conjugate
Gradients

• Idea: Try to find a new search direction which uses also
previous informations,

dk+1 = −rk+1 +βkdk

for a well-chosen βk.

• Note: βk = 0 is the steepest descent direction.

• The optimal choice is determined by

diT Ad j = 0 for i 6= j (A-conjugacy)

• The resulting algorithm can be implemented very
efficiently.
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Speed of Convergence

• Speed of convergence:

‖ek+1‖E ≤

√

κ2(A)−1
√

κ2(A)+1
‖ek‖E

• In our model example:

K = O(
√

κ2(A) logtol) = O(h−1 logtol).

This is faster, but slow.

• The real way out is preconditioning: Reformulate the
problem such that the spectral radius is reduced.

• The method of conjugate gradients is one of the most
successful iterative methods for discretized partial
differential equations.
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Comparison of Some Iterative Methods

For our model example in 2D, the computational complexity
can be characterized as follows:

method complexity
Cholesky factorization O(n2)

Jacobi O(n2 logn)

Gauss-Seidel O(n2 logn)

SOR (with ωopt) O(n3/2 logn)

Conjugate Gradients O(n3/2 logn)

Preconditioned CG O(n5/4 logn)

WISH O(n)

Here, n = N2 ≈ h−2.

Note: For our model example there exist especially
adapted methods which obtain (nearly) optimal
computational complexity, so-called fast Poisson solvers.

Q: Can one do better?

A: Yes. An example is Multigrid Methods. Will be
considered in other courses.
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