
Chapter 5: Iterative Methods For
Large Linear Systems

Michael Hanke

Mathematical Models, Analysis and Simulation, Part I

Michael Hanke, NADA, November 6, 2008

Model Problems

Read: Strang, p. 283–285

Use the Poisson equation with homogeneous boundary
conditions:

−∆u = f , x ∈ Ω, subject to u = 0 on Γ = ∂Ω.

1D: Ω = [0,1]. Use linear finite elements on equidistant
subintervals with step size h = 1/(N +1). A becomes a
tridiagonal N ×N-matrix,

A =
1
h












2 −1 0 0
−1 2 −1 0 . . . 0
0 −1 2 −1 ...
... 0
0 −1 2 −1
0 0 −1 2












.

2D: Ω = [0,1]2. Use linear finite elements on the following
triangulation:

@
@

@

@
@

@

@
@

@

@
@

@

@
@

@

@
@

@

@
@

@

@
@

@

@
@

@

@
@

@

@
@

@

@
@

@

@
@

@

@
@

@

@
@

@

@
@

@

Michael Hanke, NADA, November 6, 2008 1

M
od

el
P

ro
bl

em
s

(c
on

t.)

U
si

ng
an

eq
ui

di
st

an
ts

ub
di

vi
si

on
w

ith
h

=
1/

(N
+

1)
in

bo
th

x-
an

d
y-

di
re

ct
io

n,
th

en
A

be
co

m
es

a
bl

oc
k

tr
id

ia
go

na
ln

×
n-

m
at

rix
w

ith
n

=
N

2 :

A
=

        

B
−

I
0

..
.

..
.

0
−

I
B

−
I

0
..

.
0

0
−

I
B

−
I

. . .
. . .

. .
.

. .
.

. .
.

0
0

..
.

..
.

−
I

B
−

I
0

..
.

..
.

0
−

I
B

        

,B
=

        

4
−

1
0

..
.

..
.

0
−

1
4

−
1

0
..

.
0

0
−

1
4

−
1

. . .
. . .

. .
.

. .
.

. .
.

0
0

..
.

..
.

−
1

4
−

1
0

..
.

..
.

0
−

1
4

        

.

M
ic

ha
el

H
an

ke
,N

A
D

A
,N

ov
em

be
r

6,
20

08
2

Optimal Computational Complexity

Assume that our solution is an n-dimensional vextor x.

An algorithm has optimal computational complexity if

#flops ∼ n.

Michael Hanke, NADA, November 6, 2008 3

Direct Methods: Cholesky Factorization

• In both cases, A is symmetric and positive definite
(spd).

• No pivotization necessary!

• Computational complexity for an n×n-matrix with (half)
band width w:

O(w2n)

• 1D: w = 1,n = N: Complexity O(n)

2D: w = N,n = N2: Complexity O(N4) = O(n2)

• Cholesky factorization is optimal in 1D, but too
expensive for large 2D problems. It becomes even
worse in 3D.

Exercise: Assume that the number of grid points in x- and
y-direction is N and M, respectively, with N 6= M. What is
the computational complexity? Does it depend on the
ordering?

Michael Hanke, NADA, November 6, 2008 4

Iterative Methods

Read: Strang, p 563–570, 592–594, (586–591)

• Consider the system Ax = b with the exact solution
x∗ = A−1b.

• Idea: Try to construct a sequence xk such that

lim
k→∞

xk = x∗

as fast as possible.

• Justification: x∗ is only a discrete approximation to a
continuous function u.

• Construction principles:
– The classical way: Matrix splitting
– The dynamic interpretation: Relaxation methods
– The modern way: Minimization methods

Michael Hanke, NADA, November 6, 2008 5

Relaxation

• Observation: For any spd (e.g., mass) matrix M and any
x0 ∈ R

n,

x∗ = lim
t→∞

x(t) where M
dx
dt

= b−Ax, x(0) = x0

• Damped Richardson iteration: Let M = I, use forward
Euler with time step ∆t = ω:

xk+1 = xk +ω(b−Axk),k = 0,1, . . .

• Error estimation:
– Error: ek := xk −x∗

– How many iterations K must be taken such that
‖eK‖ ≤ tol?

– What is the optimal ω?

Michael Hanke, NADA, November 6, 2008 6

Convergence Analysis

• Let 0 < λ1 ≤ λ2 ≤ ·· · ≤ λn be the eigenvalues of A and
v1, . . . ,vn the eigenvectors.

• Define

ek =
n

∑
j=1

ck jv j.

Consequently, (Prove!)

ck+1, j = (1−ωλ j)
︸ ︷︷ ︸

g j

ck j.

• Convergence:

lim
k→∞

xk = x∗ iff max
j=1,...,n

|g j| < 1

iff ω <
2
λn

• gmax = max j=1,...,n |g j| measures the speed of
convergence: The smaller gmax, the faster the
convergence.

Michael Hanke, NADA, November 6, 2008 7

Convergence Analysis (cont.)

• Fastest convergence:

ω =
2

λ1 +λn
,gmax =

κ2(A)−1
κ2(A)+1

where κ2(A) = λn
λ1

is the Euclidean condition number of
A.

• For our model example, the eigenvalues are known. In
1D:

λ j =
1
h
(2−2cos jπh)

such that

λn ≈
4
h
,λ1 ≈ hπ2

⇒ κ2(A) = O(h−2)

• A similar estimate holds true in 2D and 3D.
• Conclusion: Number of iterations is

K = O(κ2(A) logtol) = O(h−2 logtol).

• This is much too slow!!
• Note: For special choices of ω, we obtain the Jacobi

iteration.

Michael Hanke, NADA, November 6, 2008 8

Minimization: Steepest Descent

• Property:

x∗ minimizes P(x) =
1
2

xT Ax−xT b

• Minimization scheme:

xk+1 = xk +αkdk

with dk (search direction) and αk > 0 (step size)
constructed appropriately.

• Direction of steepest descent dk:
P(xk +αdk) should be decrease as fast as possible in
direction dk:

1
‖dk‖

dP(xk +αdk)

dα

∣
∣
∣
∣
α=0

→ min! wrt dk.

Solution: dk = −(∇P(xk))T . In our case:

dk = b−Axk = rk (residual)

• Exercise: Prove these results!

Michael Hanke, NADA, November 6, 2008 9

Steepest Decent (cont.)

• Optimal step size

αk = arg minP(xk +αdk)

Solution:

αk =
rkT dk

dkT Akdk

• Exercise: Prove this!

• Speed of convergence: (Proof: Luenberger, p 152)

‖ek+1‖E ≤
κ2(A)−1
κ2(A)+1

‖ek‖E

This is as slow as Richardson iteration!

• Note: The SOR method can be obtained with
appropriately chosen search directions.

Michael Hanke, NADA, November 6, 2008 10

Speeding Up Steepest Descent: Conjugate
Gradients

• Idea: Try to find a new search direction which uses also
previous informations,

dk+1 = −rk+1 +βkdk

for a well-chosen βk.

• Note: βk = 0 is the steepest descent direction.

• The optimal choice is determined by

diT Ad j = 0 for i 6= j (A-conjugacy)

• The resulting algorithm can be implemented very
efficiently.

Michael Hanke, NADA, November 6, 2008 11

Speed of Convergence

• Speed of convergence:

‖ek+1‖E ≤

√

κ2(A)−1
√

κ2(A)+1
‖ek‖E

• In our model example:

K = O(
√

κ2(A) logtol) = O(h−1 logtol).

This is faster, but slow.

• The real way out is preconditioning: Reformulate the
problem such that the spectral radius is reduced.

• The method of conjugate gradients is one of the most
successful iterative methods for discretized partial
differential equations.

Michael Hanke, NADA, November 6, 2008 12

Comparison of Some Iterative Methods

For our model example in 2D, the computational complexity
can be characterized as follows:

method complexity
Cholesky factorization O(n2)

Jacobi O(n2 logn)

Gauss-Seidel O(n2 logn)

SOR (with ωopt) O(n3/2 logn)

Conjugate Gradients O(n3/2 logn)

Preconditioned CG O(n5/4 logn)

WISH O(n)

Here, n = N2 ≈ h−2.

Note: For our model example there exist especially
adapted methods which obtain (nearly) optimal
computational complexity, so-called fast Poisson solvers.

Q: Can one do better?

A: Yes. An example is Multigrid Methods. Will be
considered in other courses.

Michael Hanke, NADA, November 6, 2008 13

