Chapter 5: Iterative Methods For Large Linear Systems

Michael Hanke
Mathematical Models, Analysis and Simulation, Part I

Model Problems

Read: Strang, p. 283-285
Use the Poisson equation with homogeneous boundary conditions:

$$
-\Delta u=f, \quad x \in \Omega, \text { subject to } u=0 \text { on } \Gamma=\partial \Omega
$$

1D: $\Omega=[0,1]$. Use linear finite elements on equidistant subintervals with step size $h=1 /(N+1)$. A becomes a tridiagonal $N \times N$-matrix,

$$
\mathbf{A}=\frac{1}{h}\left(\begin{array}{cccccc}
2 & -1 & 0 & \ldots & \ldots & 0 \\
-1 & 2 & -1 & 0 & \ldots & 0 \\
0 & -1 & 2 & -1 & & \vdots \\
\vdots & & \ddots & \ddots & \ddots & 0 \\
0 & \ldots & \ldots & -1 & 2 & -1 \\
0 & \cdots & \ldots & 0 & -1 & 2
\end{array}\right)
$$

2D: $\Omega=[0,1]^{2}$. Use linear finite elements on the following triangulation:

Model Problems (cont.)
Using an equidistant subdivision with $h=1 /(N+1)$ in both x - and y-direction, then \mathbf{A}
Using an equidistant subdivision with $h=1 /(N+1)$ in both x - and y-direction, then A
becomes a block tridiagonal $n \times n$-matrix with $n=N^{2}$:

\square

Optimal Computational Complexity

Direct Methods: Cholesky Factorization

- In both cases, \mathbf{A} is symmetric and positive definite (spd).
- No pivotization necessary!
- Computational complexity for an $n \times n$-matrix with (half) band width w :

$$
O\left(w^{2} n\right)
$$

- 1D: $w=1, n=N$: Complexity $O(n)$

2D: $w=N, n=N^{2}$: Complexity $O\left(N^{4}\right)=O\left(n^{2}\right)$

- Cholesky factorization is optimal in 1 D , but too expensive for large 2D problems. It becomes even worse in 3D.

Exercise: Assume that the number of grid points in x - and y-direction is N and M, respectively, with $N \neq M$. What is the computational complexity? Does it depend on the ordering?

Iterative Methods

Read: Strang, p 563-570, 592-594, (586-591)

- Consider the system $\mathbf{A x}=\mathbf{b}$ with the exact solution $\mathbf{x}^{*}=\mathbf{A}^{-1} \mathbf{b}$.
- Idea: Try to construct a sequence $\mathbf{x}^{\mathbf{k}}$ such that

$$
\lim _{k \rightarrow \infty} \mathbf{x}^{\mathbf{k}}=\mathbf{x}^{*}
$$

as fast as possible.

- Justification: \mathbf{x}^{*} is only a discrete approximation to a continuous function u.
- Construction principles:
- The classical way: Matrix splitting
- The dynamic interpretation: Relaxation methods
- The modern way: Minimization methods

Relaxation

- Observation: For any spd (e.g., mass) matrix \mathbf{M} and any $\mathbf{x}^{0} \in \mathbb{R}^{n}$,

$$
\mathbf{x}^{*}=\lim _{t \rightarrow \infty} \mathbf{x}(t) \text { where } \mathbf{M} \frac{d \mathbf{x}}{d t}=\mathbf{b}-\mathbf{A} \mathbf{x}, \quad \mathbf{x}(0)=\mathbf{x}^{0}
$$

- Damped Richardson iteration: Let $\mathbf{M}=\mathbf{I}$, use forward Euler with time step $\Delta t=\omega$:

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}+\omega\left(\mathbf{b}-\mathbf{A} \mathbf{x}^{k}\right), k=0,1, \ldots
$$

- Error estimation:
- Error: $\mathbf{e}^{k}:=\mathbf{x}^{k}-\mathbf{x}^{*}$
- How many iterations K must be taken such that $\left\|\mathbf{e}^{K}\right\| \leq$ tol?
- What is the optimal ω ?

Convergence Analysis

- Let $0<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ be the eigenvalues of \mathbf{A} and $\mathbf{v}^{1}, \ldots, \mathbf{v}^{n}$ the eigenvectors.
- Define

$$
\mathbf{e}^{k}=\sum_{j=1}^{n} c_{k j} \mathbf{v}^{j}
$$

Consequently, (Prove!)

$$
c_{k+1, j}=\underbrace{\left(1-\omega \lambda_{j}\right)}_{g_{j}} c_{k j} .
$$

- Convergence:

$$
\begin{gathered}
\lim _{k \rightarrow \infty} \mathbf{x}^{\mathbf{k}}=\mathbf{x}^{*} \text { iff } \max _{j=1, \ldots, n}\left|g_{j}\right|<1 \\
\text { iff } \omega<\frac{2}{\lambda_{n}}
\end{gathered}
$$

- $g_{\text {max }}=\max _{j=1, \ldots, n}\left|g_{j}\right|$ measures the speed of convergence: The smaller $g_{\text {max }}$, the faster the convergence.

Convergence Analysis (cont.)

- Fastest convergence:

$$
\omega=\frac{2}{\lambda_{1}+\lambda_{n}}, g_{\max }=\frac{\kappa_{2}(\mathbf{A})-1}{\kappa_{2}(\mathbf{A})+1}
$$

where $\kappa_{2}(\mathbf{A})=\frac{\lambda_{n}}{\lambda_{1}}$ is the Euclidean condition number of A.

- For our model example, the eigenvalues are known. In 1D:

$$
\lambda_{j}=\frac{1}{h}(2-2 \cos j \pi h)
$$

such that

$$
\begin{aligned}
& \lambda_{n} \approx \frac{4}{h}, \lambda_{1} \approx h \pi^{2} \\
\Rightarrow & \kappa_{2}(\mathbf{A})=O\left(h^{-2}\right)
\end{aligned}
$$

- A similar estimate holds true in 2D and 3D.
- Conclusion: Number of iterations is

$$
K=O\left(\kappa_{2}(\mathbf{A}) \log \mathrm{tol}\right)=O\left(h^{-2} \log \mathrm{tol}\right)
$$

- This is much too slow!!
- Note: For special choices of ω, we obtain the Jacobi iteration.

Steepest Decent (cont.)

- Optimal step size

$$
\alpha_{k}=\arg \min P\left(\mathbf{x}^{k}+\alpha \mathbf{d}^{k}\right)
$$

Solution:

$$
\alpha_{k}=\frac{\mathbf{r}^{T} \mathbf{d}^{k}}{\mathbf{d}^{k} \mathbf{A}^{k} \mathbf{d}^{k}}
$$

- Exercise: Prove this!
- Speed of convergence: (Proof: Luenberger, p 152)

$$
\left\|\mathbf{e}^{k+1}\right\|_{E} \leq \frac{\kappa_{2}(\mathbf{A})-1}{\kappa_{2}(\mathbf{A})+1}\left\|\mathbf{e}^{k}\right\|_{E}
$$

This is as slow as Richardson iteration!

- Note: The SOR method can be obtained with appropriately chosen search directions.

Minimization: Steepest Descent

- Property:

$$
\mathbf{x}^{*} \text { minimizes } P(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{A x}-\mathbf{x}^{T} \mathbf{b}
$$

- Minimization scheme:

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}+\alpha_{k} \mathbf{d}^{k}
$$

with \mathbf{d}^{k} (search direction) and $\alpha_{k}>0$ (step size) constructed appropriately.

- Direction of steepest descent \mathbf{d}^{k} : $P\left(\mathbf{x}^{k}+\alpha \mathbf{d}^{k}\right)$ should be decrease as fast as possible in direction \mathbf{d}^{k} :

$$
\left.\frac{1}{\left\|\mathbf{d}^{k}\right\|} \frac{d P\left(\mathbf{x}^{k}+\alpha \mathbf{d}^{k}\right)}{d \alpha}\right|_{\alpha=0} \rightarrow \min !\operatorname{wrt} \mathbf{d}^{k} .
$$

Solution: $\mathbf{d}^{k}=-\left(\nabla P\left(\mathbf{x}^{k}\right)\right)^{T}$. In our case:

$$
\mathbf{d}^{k}=\mathbf{b}-\mathbf{A x}^{k}=\mathbf{r}^{k} \quad \text { (residual) }
$$

- Exercise: Prove these results!

Speeding Up Steepest Descent: Conjugate Gradients

- Idea: Try to find a new search direction which uses also previous informations,

$$
\mathbf{d}^{k+1}=-\mathbf{r}^{k+1}+\beta_{k} \mathbf{d}^{k}
$$

for a well-chosen β_{k}.

- Note: $\beta_{k}=0$ is the steepest descent direction.
- The optimal choice is determined by
- The resulting algorithm can be implemented very efficiently.

Speed of Convergence

- Speed of convergence:

$$
\left\|\mathbf{e}^{k+1}\right\|_{E} \leq \frac{\sqrt{\kappa_{2}(\mathbf{A})}-1}{\sqrt{\kappa_{2}(\mathbf{A})}+1}\left\|\mathbf{e}^{k}\right\|_{E}
$$

- In our model example:

$$
K=O\left(\sqrt{\kappa_{2}(\mathbf{A})} \log \mathrm{tol}\right)=O\left(h^{-1} \log \mathrm{tol}\right)
$$

This is faster, but slow.

- The real way out is preconditioning: Reformulate the problem such that the spectral radius is reduced.
- The method of conjugate gradients is one of the most successful iterative methods for discretized partial differential equations.

Comparison of Some Iterative Methods

For our model example in 2D, the computational complexity can be characterized as follows:

method	complexity
Cholesky factorization	$O\left(n^{2}\right)$
Jacobi	$O\left(n^{2} \log n\right)$
Gauss-Seidel	$O\left(n^{2} \log n\right)$
SOR (with $\omega_{\text {opt }}$)	$O\left(n^{3 / 2} \log n\right)$
Conjugate Gradients	$O\left(n^{3 / 2} \log n\right)$
Preconditioned CG	$O\left(n^{5 / 4} \log n\right)$
WISH	$O(n)$

Here, $n=N^{2} \approx h^{-2}$.
Note: For our model example there exist especially adapted methods which obtain (nearly) optimal computational complexity, so-called fast Poisson solvers.

Q: Can one do better?
A: Yes. An example is Multigrid Methods. Will be considered in other courses.

