Chapter 6: Fast Fourier Transform and Applications

Michael Hanke
Mathematical Models, Analysis and Simulation, Part I

Computation of the Coefficients

- From $\sin n x \sin k x=1 / 2 \cos (n-k) x-1 / 2 \cos (n+k) x$ it follows

$$
\int_{-\pi}^{\pi} \sin n x \sin k x d x= \begin{cases}0, & \text { if } n \neq k \\ \pi, & \text { if } n=k\end{cases}
$$

The functions $\sin n x$ are orthogonal to each other in $L^{2}(-\pi, \pi)$.

- Assume that

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin n x .
$$

Multiply through by $\sin k x$ and integrate:
$\int_{-\pi}^{\pi} f(x) \sin k x d x=\sum_{n=1}^{\infty} b_{n} \int_{-\pi}^{\pi} \sin n x \sin k x d x=b_{k} \int_{-\pi}^{\pi} \sin ^{2} k x d x=\pi b_{k}$.
So

$$
b_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin k x d x
$$

Assumptions:

- The series must converge in such a sense that "integration" is possible after multiplication by $\sin k x$.
- Summation and integration must be exchangable.

Read: Strang, Ch. 4.1

- In the following, every function $f:[-\pi, \pi] \rightarrow \mathbb{C}$ will be identified with the periodic continuation onto \mathbb{R}.
- A function $f:[-\pi, \pi] \rightarrow \mathbb{C}$ is called odd if $f(x)=-f(-x)$ for all $x \in[\pi, \pi]$.
- A function f is called even if $f(x)=f(-x)$ for all $x \in[\pi, \pi]$.
- If f is even, f^{\prime} is odd. Similarly, if f is odd, f^{\prime} is even.
- Most important odd functions: $\sin (n x)$.
- Fourier sine series:

$$
S(x)=\sum_{n=1}^{\infty} b_{n} \sin n x
$$

Q: Which functions f can be represented by a sine series?
A: Very many (if "representation" is understood in the correct way).

A First Example: Square Wave

$$
S W(x)= \begin{cases}-1, & \text { if } x \in(-\pi, 0) \\ 1, & \text { if } x \in(0, \pi) \\ 0, & \text { if } x=-\pi, 0, \pi\end{cases}
$$

Fourier sine series:

$$
S W(x)=\frac{4}{\pi}\left[\frac{\sin x}{\mathbf{1}}+\frac{\sin 3 x}{\mathbf{3}}+\frac{\sin 5 x}{\mathbf{5}}+\frac{\sin 7 x}{\mathbf{7}}+\cdots\right]
$$

Gibbs Phenomenon

Gibbs phenomenon: Partial sums overshoot near jumps.

Examples

Repeating Ramp $R R$ is obtained by integrating $S W$:

$$
R R(x)=|x| .
$$

Fourier cosine series:

$$
R R(x)=\frac{\pi}{2}-\frac{\pi}{4}\left[\frac{\cos x}{\mathbf{1}^{2}}+\frac{\cos 3 x}{\mathbf{3}^{2}}+\frac{\cos 5 x}{\mathbf{5}^{2}}+\frac{\cos 7 x}{\mathbf{7}^{2}}+\cdots\right]
$$

Note: The coefficients are equal to those obtained by termwise intergration of the sine series for $S W$.
Up-Down $U D$ is obtained as the derivative of $S W$:

$$
U D(x)=2 \delta(x)-2 \delta(x-\pi)
$$

Fourier cosine series:

$$
U D(x)=\frac{4}{\pi}[\cos x+\cos 3 x+\cos 5 x+\cos 7 x+\cdots] .
$$

Q: What about convergence? The terms are not a zero sequence!

Fourier Cosine Series

- In the case of even functions, the prototypes are cosines, $\cos n x$.
- Fourier cosine series:

$$
C(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x
$$

- Again, we have orthogonality:

$$
\int_{-\pi}^{\pi} \cos n x \cos k x d x= \begin{cases}0, & \text { if } n \neq k \\ 2 \pi, & \text { if } n=k=0 \\ \pi, & \text { if } n=k>0\end{cases}
$$

- Let $f:[-\pi, \pi] \rightarrow \mathbb{C}$ be an even function. Assume

$$
f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x
$$

Then:

$$
a_{k}= \begin{cases}\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x, & \text { if } k=0 \\ \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos k x d x, & \text { if } k>0\end{cases}
$$

An Observation: Decay of Coefficients

coefficients	functions
no decay	Delta functions
$1 / k$ decay	Step functions (with jumps)
$1 / k^{2}$ decay	Ramp functions (with corners)
$1 / k^{4}$ decay	Spline functions (jumps in $f^{\prime \prime \prime}$)
r^{k} decay $(r<1)$	Analytic functions

The partial sums for analytical functions converge exponentially fast! This is the basis for fast solution methods for certain partial differential equations.

Details will follow later.

Fourier Series For Dirac's Delta Functional

Definition: For every continuous function f on $[-\pi, \pi]$,

$$
\int_{-\pi}^{\pi} \delta(x) f(x) d x=f(0)
$$

δ is not a usual function. It is a functional: $\delta: C[-\pi, \pi] \rightarrow \mathbb{C}$.
A simple calculation gives:

$$
\delta(x)=\frac{1}{2 \pi}+\frac{1}{\pi}[\cos x+\cos 2 x+\cos 3 x+\cdots] .
$$

Partial sums:

$$
\delta_{N}=\frac{1}{2 \pi}[1+2 \cos x+\cdots+2 \cos N x]
$$

Fourier Series: General Periodic Functions

Let $f:[-\pi, \pi] \rightarrow \mathbb{C}$ be any (nice) function. Then

- $f=f_{\text {even }}+f_{\text {odd }}$
- $f_{\text {even }}=1 / 2(f(x)+f(-x))$
- $f_{\text {odd }}=1 / 2(f(x)-f(-x))$

Hence, f can be written as a sum of sine and cosine series:

$$
\begin{aligned}
f & =f_{\text {even }}+f_{\text {odd }} \\
& =a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x
\end{aligned}
$$

Q: In which sense converges δ_{N} against δ ?
A: For every continuous function $f \in C[-\pi, \pi]$, it holds

$$
\int_{-\pi}^{\pi} \delta_{N}(x) f(x) d x \longrightarrow \int_{-\pi}^{\pi} \delta(x) f(x) d x=f(0)
$$

Notation: Weak convergence.

Fouries Series: The Complex Version

- Moivre's theorem: $e^{i \alpha}=\cos \alpha+i \sin \alpha$.
- Define $c_{k}=\left(a_{k}-i b_{k}\right) / 2, c_{-k}=\left(a_{k}+i b_{k}\right) / 2$.
- Then:

$$
\begin{aligned}
c_{k} e^{i k x}+c_{-k} e^{-i k x} & =c_{k}(\cos k x+i \sin k x)+c_{-k}(\cos k x-i \sin k x) \\
& =\left(c_{k}+c_{-k}\right) \cos k x+i\left(c_{k}-c_{-k}\right) \sin k x \\
& =a_{k} \cos k x+b_{k} \sin k x .
\end{aligned}
$$

- The Fourier series can be equivalently written as

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}
$$

In what follows we will always use the complex notation!

Properties

- Let $\phi_{k}(x)=\exp (i k x)$ for $k=\ldots,-2,-1,0,1,2, \ldots$.
- Every $f \in L^{2}(-\pi, \pi)$ (complex!) has a representation

$$
\begin{aligned}
& f(x)=\sum_{k=-\infty}^{+\infty} \hat{f}_{k} e^{i k x}, \\
& \quad \text { with } \hat{f}_{k}=\frac{1}{\|f\|^{2}}\left(f, \phi_{k}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i k x} d x
\end{aligned}
$$

in the sense of $L^{2}(-\pi, \pi)$. (The partial sums converge towards f in the means square norm.)

- Since $S W \in L^{2}(-\pi, \pi)$, we conclude that pointwise convergence cannot always be expected.
- Since $e^{i k x}=\cos k x+i \sin k x$, the convergence will be the better the "more periodic" u is.

The Discrete Fourier Transform (DFT)

Read: Strang, Ch. 4.3
Without loss of generality assume the basic interval to be $[0,2 \pi]$.

Let $[0,2 \pi]$ be subdivided into N equidistant intervals,

$$
h=\frac{2 \pi}{N}, \quad x_{j}=j h .
$$

For a periodic function, $f(0)=f(2 \pi)=f\left(x_{N}\right)$ such that the trapezoidal rule reads

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i k x} d x \approx \frac{h}{2 \pi} \sum_{j=0}^{N-1} f_{j} e^{-i k x_{j}} & =\frac{1}{N} \sum_{j=0}^{N-1} f_{j}\left(e^{-i h}\right)^{j k} \\
& =\frac{1}{N} \sum_{j=0}^{N-1} f_{j} \bar{w}^{j k}:=c_{k}
\end{aligned}
$$

Here, we used

$$
w=e^{i h}
$$

The discrete version of the inverse transformation is,

$$
\tilde{f}_{j}=\sum_{k=0}^{N-1} c_{k} e^{i k x_{j}}=\sum_{k=0}^{N-1} c_{k} w^{k j}
$$

Theorem. One transformation is the inverse of the other,

$$
f_{j} \equiv \tilde{f}_{j}
$$

- Orthogonality in $L^{2}(-\pi, \pi)$:
$\left(\phi_{k}, \phi_{j}\right)=\int_{-\pi}^{\pi} e^{i k x} e^{-i j x} d x=\int_{-\pi}^{\pi} e^{i(k-j) x} d x=2 \pi \delta_{k j}$
- Parseval's identity:

Consequently,

$$
f \in L^{2}(-\pi, \pi) \Leftrightarrow \sum_{k=-\infty}^{+\infty}\left|\hat{f}_{k}\right|^{2}<\infty .
$$

- For the derivatives, we have

$$
f^{(p)}(x)=\sum_{k=-\infty}^{+\infty}(i k)^{p} \hat{f}_{k} e^{i k x}
$$

- Let $H_{\text {per }}^{p}=\left\{v \in H^{p}(-\pi, \pi) \mid v\right.$ is 2π-periodic $\}$.

$$
f \in H_{\mathrm{per}}^{p} \Leftrightarrow \sum_{k=-\infty}^{+\infty} k^{2 p}\left|\hat{\hat{f}}_{k}\right|^{2}<\infty
$$

This is the generalization of the decay property for Fourier coefficients. (Strang, p. 321, 327)

The Proof

Proof. Compute:

$$
\begin{aligned}
\tilde{f}_{j} & =\sum_{k=0}^{N-1} c_{k} w^{k j} \\
& =\sum_{k=0}^{N-1} \frac{1}{N} \sum_{l=0}^{N-1} f_{l} \bar{w}^{l k} w^{k j} \\
& =\frac{1}{N} \sum_{l=0}^{N-1} f_{l} \sum_{k=0}^{N-1} w^{(j-l) k}
\end{aligned}
$$

Since

$$
\sum_{k=0}^{N-1} w^{(j-l) k}= \begin{cases}\frac{1-w^{(j-l) N}}{1-w}=0, & \text { if } j \neq l \\ N, & \text { if } j=l\end{cases}
$$

the result follows.
Some common notation:

$$
\mathbf{F}=\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdot & 1 \\
1 & w & w^{2} & \cdot & w^{N-1} \\
1 & w^{2} & w^{4} & \cdot & w^{2(N-1)} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
1 & w^{N-1} & w^{2(N-1)} & \cdot & w^{(N-1)^{2}}
\end{array}\right)
$$

Then it holds:

$$
\mathbf{f}=\mathbf{F} \mathbf{c}, \quad \mathbf{c}=\frac{1}{N} \overline{\mathbf{F}} \mathbf{f}, \quad \mathbf{F}^{-1}=\frac{1}{N} \overline{\mathbf{F}}
$$

Note: F is symmetric, but not Hermitian.

The Fast Discrete Fourier Transform (FFT)

- The naive application of the discrete Fourier transform has complexity $O\left(N^{2}\right)$. (matrix-vector multiplication)
- Example: $N=2^{12}$.
- The naive approach requires $2^{24} \approx 1.7 \cdot 10^{7}$ complex multiplications.
- The FFT requires only $6 \times 2^{12} \approx 2.4 \cdot 10^{4}$ multiplications.
- The basic idea: Let N be a power of 2 and $M=N / 2$.

$$
\begin{aligned}
f_{j} & =\sum_{k=0}^{N-1} c_{k} w^{k j}=\sum_{k \text { even }} c_{k} w^{k j}+\sum_{k o d i} c_{k} w^{k j} \\
& =\underbrace{\sum_{k=0}^{M-1} c_{2 k}\left(w^{2}\right)^{k_{j}^{\prime}}}_{=: f_{j}^{\prime j}}+w_{==f_{j}^{j}}^{\sum_{k=0}^{M-1} c_{2 k^{\prime \prime}+1}\left(w^{2}\right)^{k^{\prime \prime} j}}
\end{aligned}
$$

- f_{j}^{\prime} and $f_{j}^{\prime \prime}$ are discrete Fourier transform of half the original size M!
- This formula can be simplified:
- For $j=0, \ldots, M-1$: Take it as it stands.
- For $j=M, \ldots, N-1$: Let $j^{\prime}=j-M$. It holds $w^{M}=-1$ and $w^{N}=1$:

$$
w^{M+j^{\prime}}=w^{M} w^{j^{\prime}}, \quad\left(w^{2}\right)^{k j}=\left(w^{2}\right)^{k j^{\prime}} .
$$

- This gives the identities

$$
\left.\begin{array}{rl}
f_{j} & =f_{j}^{\prime}+w^{j} f_{j}^{\prime \prime} \\
f_{j+M} & =f_{j}^{\prime}-w^{j} f_{j}^{\prime \prime}
\end{array}\right\} j=0, \ldots, M-1
$$

This recursion gives rise to a divide-and-conquer strategy.
Computational complexity: $O(N \log N)$

FFT: Computational Complexity

Assumptions:

- The exponentials w^{j} are precomputed.
- Let $W(N)$ be the number of complex operations for a FFT of length N.

$$
W(2 M)=2 W(M)+4 M, W(1)=0
$$

Denote $w_{j}=W\left(2^{j}\right)$ and $N=2^{n}$:

$$
w_{0}=0, w_{j}=2 w_{j-1}+2 \cdot 2^{j} .
$$

Multiply the equation by 2^{N-j} and sum up:

$$
\begin{aligned}
\sum_{j=1}^{n} 2^{n-j} w_{j} & =2 \sum_{j=1}^{n} 2^{n-j}\left(w_{j-1}+2^{j}\right) \\
& =2 n 2^{n}+\sum_{j=0}^{n-1} 2^{n-j} w_{j-1}
\end{aligned}
$$

Consequently,

$$
W(N)=w_{n}=2 n 2^{n}=2 N \operatorname{ld} N
$$

Shifted DFT

Using the base interval $[0,2 \pi]$ leads to the standard DFT. What happens if we use $[-\pi, \pi]$ instead? (Let N be even.)

$$
\begin{aligned}
c_{k} & =\frac{1}{N} \sum_{j=0}^{N-1} f_{j} e^{-i k j h} \\
& =\frac{1}{N} \sum_{j=0}^{N / 2-1} f_{j} e^{-i k j h}+e^{i 2 \pi} \frac{1}{N} \sum_{j=N / 2}^{N-1} f_{j} e^{-i k j h} \\
& =\frac{1}{N} \sum_{j=0}^{N / 2-1} f_{j} e^{-i k j h}+\frac{1}{N} \sum_{j=N / 2}^{N-1} f_{j} e^{-i k(j-N) h} \\
& =\frac{1}{N} \sum_{j=0}^{N / 2-1} f_{j} e^{-i k j h}+\frac{1}{N} \sum_{l=-N / 2}^{-1} f_{l} e^{-i k l h} \\
& =\frac{1}{N} \sum_{l=-N / 2}^{N / 2-1} f_{l} e^{-i k l h}
\end{aligned}
$$

Similarly, for the inverse DFT it holds,

$$
f_{l}=\sum_{k=-N / 2}^{N / 2-1} c_{k} e^{i k l h}, \quad l=-N / 2, \ldots, N / 2-1 .
$$

Order of coefficients:

$$
\begin{aligned}
\text { DFT: } & \left(c_{0}, c_{1}, \ldots, c_{N-1}\right) \\
\text { shifted DFT: } & \left(c_{N / 2}, c_{N / 2+1}, \ldots, c_{N-1}, c_{0}, \ldots, c_{N / 2-1}\right)
\end{aligned}
$$

This is what matlab's fftshift does.

Fourier Integrals

Read: Strang, p. 367-371
Fourier series are convenient to describe periodic functions. Equivalently, f must be defined on a finite interval.

Q: What happens if the function is not periodic?

- Consider $f: \mathbb{R} \rightarrow \mathbb{C}$. The Fourier transform $\hat{f}=\mathcal{F}(f)$ is given by

$$
\hat{f}(k)=\int_{-\infty}^{\infty} f(x) e^{-i k x} d x, \quad k \in \mathbb{R} .
$$

Here, f should be in $L^{1}(\mathbb{R})$.

- Inverse transformation:

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{f}(k) e^{i k x} d k
$$

Note: Often, you will se a more symmetric version by using a different scaling.

- Theorem of Plancherel: $f \in L^{2}(\mathbb{R}) \Leftrightarrow \hat{f} \in L^{2}(\mathbb{R})$ and

$$
\int_{-\infty}^{\infty}|f(x)|^{2} d x=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|\hat{f}(k)|^{2} d k .
$$

Sampling

Read: Strang, p. 691-693
By using the Fourier transform \mathcal{F} and its inverse, any function can be reconstructed.

Q: Can a function be reconstructed by using only discrete samples?

Obviously, no. The questions becomes the general interpolation problem which does not have a unique solution.

Often, an interpolation problem gets a unique solution if the class of possible interpolants is restricted.

Q: What is the correct class if we stick to Fourier transforms?

Consider one period of a simple harmonic $f(t)=a e^{i(\omega t+\phi)}$. Obviously, one needs (at least) two samples in $[0, \omega /(2 \pi))$ for determining the two parameters.

Use now equidistant sampling with step size T.
Definition: Nyquist sampling rate: $T=\pi / \omega$.
For a given sampling rate T, frequencies higher than the Nyquist frequency $\omega_{N}=\pi / T$ cannot be detected. A higher frequency harmonic is mapped to a lower frequency one. This effect is called aliasing.

Fourier Integrals: The Key Rules

$$
\begin{aligned}
\widehat{d f / d x} & =i k \hat{f}(k) \\
\widehat{\int_{-\infty}} \overrightarrow{f(x) d x} & =\hat{f}(k) /(i k) \\
\widehat{f(\cdot-d)} & =e^{-i k d} \hat{f}(k) \\
\widehat{e^{i \cdot \cdot} \cdot f} & =\hat{f}(k-c)
\end{aligned}
$$

Examples:

Delta functional

$$
\hat{\delta}(k)=1 \text { for all } k \in \mathbb{R} .
$$

Centred square pulse Let

$$
f(x)= \begin{cases}1, & \text { if }-L \leq x \leq L, \\ 0, & \text { if }|x|>L\end{cases}
$$

Then

$$
\hat{f}(k)=2 \frac{\sin k L}{k}=2 L \operatorname{sinc} k L,
$$

where $\operatorname{sinc} t=\sin t / t$ is the Sinus cardinalis function.

The Sampling Theorem

Using an a-priori bound on the Fourier transform \hat{f} of a function f, this function can be reconstructed by discrete sampling.

Theorem: (Shannon-Nyquist) Assume that f is band-limited by W, i.e., $\hat{f}(k)=0$ for all $|k| \geq W$. Let $T=\pi / W$ be the Nyquist rate. Then it holds

$$
f(x)=\sum_{-\infty}^{\infty} f(n T) \operatorname{sinc} \pi(x / T-n)
$$

where $\sin t=\sin t / t$ is the Sinus cardinalis function.
Note: The sinc function is band-limited:

$$
\widehat{\operatorname{sinc}}(k)= \begin{cases}1, & \text { if }-\pi \leq k \leq \pi, \\ 0, & \text { elsewhere. }\end{cases}
$$

Sampling Theorem: Proof

Assume for simplicity $W=\pi$.
By the inverse Fourier transform,

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{f}(k) e^{i k x} d k=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \hat{f}(k) e^{i k x} d k .
$$

Define

$$
\tilde{f}(k)= \begin{cases}\hat{f}(k), & \text { if }-\pi<x<\pi, \\ \text { periodic continuation, } & \text { if }|k| \geq \pi .\end{cases}
$$

\tilde{f} can be represented as a Fourier series:

$$
\tilde{f}(k)=\sum_{n=-\infty}^{\infty} \hat{\hat{f}}_{n} e^{i n k}
$$

where

$$
\hat{\tilde{f}}_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \tilde{f}(k) e^{-i n k} d k=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \hat{f}(k) e^{-i n k} d k=f(-n) .
$$

Hence, for $-\pi<x<\pi$,

$$
\hat{f}(k)=\tilde{f}(k)=\sum_{n=-\infty}^{\infty} f(-n) e^{i n k}
$$

Spectral Interpolation

Read: Strang, p. 448-450
For the DFT (on $[0,2 \pi]$) we know

$$
f\left(x_{j}\right)=\sum_{k=0}^{N-1} c_{k} e^{i k x_{j}}, \quad j=0, \ldots, N-1 .
$$

Consider the function Πf,

$$
\Pi f(x)=\sum_{k=0}^{N-1} c_{k} e^{i k x}, \quad x \in \mathbb{R} .
$$

This is an interpolating trigonometric polynomial, the so-called spectral interpolant.

Note: Even for real $f, \Pi f$ is in general complex (with the exception of the grid points x_{j}, of course).

Q: How can one obtain a real interpolant for a real-valued function?

Therefore,

$$
\begin{aligned}
f(x) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \hat{f}(k) e^{i k x} d k \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\sum_{n=-\infty}^{\infty} f(-n) e^{i n k}\right) e^{i k x} d k \\
& =\sum_{n=-\infty}^{\infty} f(-n) \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i k(x+n)} d k \\
& =\sum_{n=-\infty}^{\infty} f(-n) \frac{\sin \pi(x+n)}{\pi(x+n)} \\
& =\sum_{n=-\infty}^{\infty} f(n) \frac{\sin \pi(x-n)}{\pi(x-n)}
\end{aligned}
$$

Spectral Interpolation (cont.)

1. Replace Πf by the shifted interpolant,

$$
\Pi_{c} f(x)=\sum_{k=-N / 2}^{N / 2-1} c_{k} e^{i k x}, \quad x \in \mathbb{R}
$$

Note: $\Pi f \neq \Pi_{c} f$ with the exception of the grid points.
2. Replace $\Pi_{c} f$ by its symmetrized variant,

$$
P f(x)=\sum_{k=-N / 2}^{N / 2} c_{k} e^{i k x}, \quad x \in \mathbb{R} .
$$

Here, $\sum_{k=M}^{\prime \prime N}=\frac{1}{2} c_{M}+c_{M+1}+\cdots+c_{N-1}+\frac{1}{2} c_{N}$.
This interpolation can be explicitely written down,

$$
P f(x)=p(x)=\sum_{j=0}^{N-1} f_{j} \operatorname{psinc}(x-j h)
$$

psinc is the periodic sinc function,

$$
\operatorname{psinc}(x)=\frac{1}{N_{k=-N / 2}} \sum^{N / 2} e^{i k x}=\frac{\sin (\pi x / h)}{(2 \pi / h) \tan (x / 2)}
$$

Spectral Methods: Differentiation

Idea: Given a function u at discrete points, interpolate by a suitable smooth function $p(x)$ and set $u^{\prime}\left(x_{j}\right) \approx p^{\prime}(x)$.

Examples:

1. Piecewise linear interpolation: $u^{\prime}\left(x_{j}\right) \approx \frac{u_{j+1}-u_{j}}{h}$
2. Piecewise quadratic interpolation: $u^{\prime}\left(x_{j}\right) \approx \frac{u_{j+1}-u_{j-1}}{2 h}$

Let's now use spectral interpolation:

$$
\begin{aligned}
p(x) & =\sum_{j=0}^{N-1} u_{j} \operatorname{sinc}(x-j h) \\
u^{\prime}\left(x_{j}\right) & \approx p^{\prime}\left(x_{j}\right)=\sum_{j=0}^{N-1} u_{j} \frac{d}{d x} \mathrm{p} \operatorname{sinc}\left(x_{j}-j h\right)
\end{aligned}
$$

Remarks:

- Piecewise polynomial interpolation uses only local informations.
- Spectral differentiation uses all gridpoints for evaluating one derivative.
- Spectral differentiation leads to full matrices $D P$ while standard differences give rise to sparse matrices.
- Computational complexity:
- Polynomial: $O(N)$
- Spectral via FFT: $O(N \log N)$

FEM: Pros and Cons

- Advantages with finite elements:
- Very flexible, easy to adapt to complex domains and/or solutions;
- Fast algorithms for its implementation, fast solvable by, e.g., multigrid methods;
- In principle, good convergence: With $P p$ elements,

$$
\left\|e_{h}\right\|=O\left(h^{p+1}\right) .
$$

- Drawbacks with finite elements:
- Many degrees of freedom necessary for obtaining a good approximation (especially in 3D);
- Very hard to construct $P p$ elements in higher dimensions.

Q: Are there alternatives?

Repeat: The Finite Element Method

- Start with a differential equation.
- Derive the weak formulation

$$
\begin{equation*}
a(u, v)=L(v) \text { for all } v \in V \tag{V}
\end{equation*}
$$

and, if possible, the minimization formulation

$$
\begin{equation*}
P(u)=\frac{1}{2} a(u, u)-L(u) \rightarrow \min ! \tag{M}
\end{equation*}
$$

- Find an approximating (finite dimensional) space $V_{h} \subset V$ and solve \mathbf{V} and \mathbf{M}, respectively: Galerkin and Ritz methods.
- The method yields - up to a constant - the best approximation of u in V_{h}.

Possible Alternatives

Q: Are there alternatives?
A: Use basis functions which are closely adapted to the problem at hand.

Advantages:

- We will obtain exponential convergence, that is, faster than any power of h.
- Only very few degrees of freedom needed for high accuracy.

Drawbacks:

- The stiffness matrix will be full.
- Every problem needs its own set of ansatz functions.

Q: May it be efficient in practice?
A: Fast transformation algorithms.

An Example

Example: The Analytical Solution

$$
a\left(u, \phi_{j}\right)=2 \pi \hat{u}_{j}\left(j^{2}+r\right)
$$

Analogously,

$$
L(v)=\int_{0}^{2 \pi} f e^{-i j x} d x=2 \pi \hat{f}_{j}
$$

Hence,

$$
\hat{u}_{j}=\frac{1}{j^{2}+r} \hat{f}_{j}, \quad j=0, \pm 1, \pm 2, \ldots
$$

- The solution seems even ok if r is not a negative square of an integer.
- If even $f \in H_{\text {per }}^{p}(0,2 \pi)$, then $u \in H_{\text {per }}^{p+2}(0,2 \pi)$:

$$
\sum_{k=-\infty}^{+\infty} k^{2 p+4}\left|\hat{u}_{k}\right|^{2}=\sum_{k=-\infty}^{+\infty} k^{2 p+4} \frac{\left|\hat{f}_{k}\right|^{2}}{\left(k^{2}+r\right)^{2}}<\sum_{k=-\infty}^{+\infty} k^{2 p}\left|\hat{f}_{k}\right|^{2}<\infty
$$

Example: Galerkin's Method Applied

Apply now Galerkin's method with $V_{N}=\left\{v \mid v=\sum_{k=-N / 2}^{+N / 2} \hat{v}_{k} e^{i k x}\right\}$:
Since $\int_{0}^{2 \pi} e^{i k x} e^{i j x} d x=0$ for $i \neq j$, the solution is easily seen to be:

$$
u_{N}=\sum_{k=-N / 2}^{N / 2} \hat{u}_{h k} e^{i k x} \text { with } \hat{u}_{h k}=\hat{u}_{k}
$$

Error estimation:

$$
e_{N}(x)=u(x)-u_{N}(x)=\sum_{|k|>N / 2} \hat{u}_{k} e^{i k x}
$$

Theorem

- For all square integrable functions f,

$$
\left\|e_{N}\right\| \leq \frac{16}{N^{2}}\|f\|
$$

(quadratic convergence).

- If even $f \in H_{\text {per }}^{p}(0,2 \pi)$:

$$
O\left(N^{-(p+1)}\right)
$$

- If f is infinitely often differentiable, we have exponential convergence.

Galerkin's Method: Proofs

- For $f \in L^{2}(0,2 \pi)$,

$$
\begin{aligned}
\left\|e_{N}\right\|^{2} & =2 \pi \sum_{|k|>N / 2}\left|\hat{u}_{k}\right|^{2}=2 \pi \sum_{|k|>N / 2} \frac{\left|\hat{f}_{k}\right|^{2}}{\left(k^{2}+r\right)^{2}} \\
& \leq \frac{1}{\left(N^{2} / 4+r\right)^{2}}\|f\|^{2} \leq \frac{16}{N^{4}}\|f\|^{2}
\end{aligned}
$$

- If even $f \in H_{\text {per }}^{p}(0,2 \pi)$:

$$
\begin{aligned}
\left\|e_{N}\right\|^{2} & =2 \pi \sum_{|k|>N / 2} \frac{\left|\hat{f}_{k}\right|^{2}}{\left(k^{2}+r\right)^{2}}=2 \pi \sum_{|k|>N / 2} \frac{k^{2 p}}{k^{2 p}} \frac{\left|\hat{f}_{k}\right|^{2}}{\left(k^{2}+r\right)^{2}} \\
& \leq \frac{2 \pi}{(N / 2)^{2 p}\left(N^{2} / 4+r\right)^{2}} \sum_{|k|>N / 2} k^{2 p}\left|\hat{f}_{k}\right|^{2} \leq \frac{C(p)^{2}}{N^{2 p+2}}
\end{aligned}
$$

What Is Behind It?

Q: Why on earth does this method work that good??
A: The exponentials $e^{i k x}$ are eigenfunctions of the differential operator. (Here: $-u^{\prime \prime}+r u$)

Later on, we will see that the discrete versions of the exponentials are eigenfunctions of the finite difference discretizations of certain differential equations.

This makes it clear why they will be important for analyzing numerical schemes.

(Pseudo-)Spectral Methods

Read: Strang, p. 451-453

- Consider again the equation $-u^{\prime \prime}+r u=f$.
- Ansatz as before

$$
u_{N}=\sum_{k=-N / 2}^{N / 2-1} c_{k} e^{i k x}
$$

- Collocation: Use test functions $v_{j}(x)=\delta\left(x-x_{j}\right)$ for $x_{j}=j h-\pi, h=2 \pi / N$. Equivalently,

$$
-u_{N}^{\prime \prime}\left(x_{j}\right)+r u_{N}\left(x_{j}\right)=f\left(x_{j}\right), \quad j=-N / 2, \ldots, N / 2-1 .
$$

- Some computations:

$$
\begin{aligned}
& \sum_{k=-N / 2}^{N / 2-1} c_{k}\left(-(i k)^{2} e^{i k x_{j}}+r e^{i k x_{j}}\right)=\sum_{k=-N / 2}^{N / 2-1} \hat{f}_{k} e^{i k x_{j}} \\
& \sum_{k=-N / 2}^{N / 2-1}\left[c_{k}\left(k^{2}+r\right)-\hat{f}_{k}\right] e^{i k x_{j}}=0, \text { all } j \\
& \Longrightarrow c_{k}\left(k^{2}+r\right)-\hat{f}_{k}=0, \quad \text { all } k
\end{aligned}
$$

- The solution becomes

$$
c_{k}=\frac{\hat{f}_{k}}{k^{2}+r} .
$$

This is the same solution as obtained by the Galerkin method.

Pseudo-Spectral Methods

- Fourier series are only well-suited for periodic boundary conditions.
- In case of Dirichlet boundary conditions, Chebyshev polynomials $T_{k}(x)$ are a viable alternative. (Strang, p . 336-338)
- Chebyshev polynomials are eigenfunctions of the equation

$$
-\frac{d}{d x}\left(\frac{1}{w} \frac{d T}{d x}\right)=\lambda w T, \quad-1<x<1
$$

with $w(x)=\sqrt{1-x^{2}}$.

- The corresponding scalar product is $(f, g)_{w}=\int_{-1}^{1} w(x) f(x) g(x) d x$.

Other Applications Of FFT

- Digital signal processing
- Digital image processing (encoding [JPEG, MPEG, DVB], denoising, reconstruction, ...)
- Analysis of random processes
- Stability analysis of numerical schemes

