Plan

Chapter 7: Time-Dependent Problems

Michael Hanke
Mathematical Models, Analysis and Simulation, Part I

- Conservation laws
- Flux vector Φ
- Fourier's law $\Phi=-k \nabla T$
- The 1D heat equation by separation of variables
- Transport equation, characteristics
- Second order wave equation in 1D; d'Alembert's solution
- The wave equation and Newton's law; spring-mass oscillator

Conservation Laws

- Consider the flow of a fluid with velocity field

$$
\mathbf{u}(x, y, t)=\binom{u(x, y, t)}{v(x, y, t)}
$$

- Let $c(x, y, t)$ denote the concentration of a species (e.g., number of molecules per m^{2} in 2D)
- Q: How many molecules pass in time Δt across a line of length l with normal \mathbf{n} ?

Conservation Laws (Cont)

- $A=$ area of parallelogram $=l|\mathbf{u}| \Delta t \cos \phi$
- number of molecules: $c A$
- At every instant (number of molecules per second and meter):

$$
c|\mathbf{u}| \cos \phi=c \mathbf{u} \cdot \mathbf{n}
$$

Definition. The flux vector is Φ if the number of molecules per length and time unit is $\Phi \cdot \mathbf{n}$.

In case of (passive) advection in velocity field u
$\Phi=c \mathbf{u}$

Conservation Laws (Cont)

- Consider the number c of molecules in a fixed control volume Ω.
- c can only change if molecules are going through (in/out) of the boundary $\partial \Omega$:

$$
\frac{d}{d t} \int_{\Omega} c d \Omega=-\int_{\partial \Omega} \Phi \cdot \mathbf{n} d \Gamma
$$

- Divergence theorem provides:

$$
\int_{\Omega} \frac{\partial}{\partial t} c d \Omega=-\int_{\Omega} \operatorname{div} \Phi d \Omega .
$$

This equation holds for any control volume.

- Conservation law (continuity equation)

$$
\frac{\partial}{\partial t} c+\operatorname{div} \Phi=0
$$

The Heat Equation

- Consider heat conduction: temperature T.
- Conserved quantity is energy:

$$
\Delta H=\rho c_{p} \Delta T
$$

(change in energy per volume).

- Fourier's law:

$$
\Phi=-k \nabla T
$$

- Conservation of energy:

$$
\frac{\partial}{\partial t}\left(\rho c_{p} T\right)-\operatorname{div}(k \nabla T)=0 .
$$

- For constant ρ, c_{p}, k :

$$
\frac{\partial T}{\partial t}-\alpha \Delta T=0
$$

with $\Delta \equiv \operatorname{div} \nabla$ is the Laplacian operator. This is the celebrated heat equation.

- Continuity equation:

$$
\frac{\partial}{\partial t} c+\operatorname{div} \Phi=0
$$

- In integral form:

$$
\int_{\Omega} \frac{\partial}{\partial t} c d \Omega+\int_{\partial \Omega} \Phi \cdot \mathbf{n} d \Gamma=0
$$

- In our case:

$$
\frac{\partial}{\partial t} c+\operatorname{div}(c \mathbf{u})=0
$$

The 1D Heat Equation

- Let $\Omega=(0,1)$:

$$
u_{t}=\alpha u_{x x}, x \in(0,1) .
$$

- Boundary conditions:
- prescribed temperature: Dirichlet condition (e.g., $u(0)=0$)
- isolated boundary: Neumann condition (no flux, e.g., $\partial u / \partial \mathbf{n}=0$)
- partly isolated boundary: Robin condition
- Initial condition: $u(x, 0)=u_{0}(x)$ for $x \in(0,1)$.

Solution by Separation of Variables

- To be specific assume $u(0, t)=u(1, t)=0$.
- Ansatz: Find solutions of the form $u(x, t)=T(t) X(x)$.
- $T^{\prime} X-\alpha T X^{\prime \prime}=0$ yields

$$
\frac{T^{\prime}}{T}=\alpha \frac{X^{\prime \prime}}{X}
$$

- Since this identity must be fulfilled for all (x, t), the quotient must be constant. Denote this constant by λ :

$$
T^{\prime}=\lambda T, \quad X^{\prime \prime}-\frac{\lambda}{\alpha} X=0 .
$$

- Solutions

$$
T(t)=c e^{\lambda t}, \quad X(x)=A e^{\mu x}+B e^{-\mu x} \quad(\mu=\sqrt{\lambda / \alpha})
$$

- We must have $X(0)=X(1)=0$, hence A and B must fulfil

$$
\left(\begin{array}{cc}
1 & 1 \\
e^{\mu} & e^{-\mu}
\end{array}\right)\binom{A}{B}=\binom{0}{0}
$$

In order to obtain nontrivial solutions, the system matrix must be singular.

The Heat Equation: Comments

- - small n : low frequency components
- large n : high frequency components
- High frequency components decay very rapidly: like $\exp \left(-\alpha n^{2} \pi^{2}\right)$.
- After some time, only the component for $n=1$ is left.
- The smoothing property is expected from intuition about heat conduction.
- The strong smoothing property makes solving the heat equation backwards very difficult.
The initial value problem $u_{t}=-u_{x x}$ is ill-posed, i.e., perturbations of the initial state grow exponentially fast.
- Heat conduction has a wide range of time scales $\exp \left(-\alpha^{2} \pi^{2}\right)$. Even on a grid (which limits n to a finite number) it requires small time steps to follow the fastest variations whereas the solution changes globally only like $\exp \left(-\alpha \pi^{2} t\right)$. (A very stiff problem!)

Separation of Variables (Cont)

- This leads to the (imaginary!!) values $\mu=n \cdot 2 \pi i$,

$$
\lambda=-n^{2} \pi^{2} \alpha, n= \pm 1, \pm 2, \ldots
$$

- Solutions to the odes:

$$
T_{n}(t)=c_{n} e^{-\alpha n^{2} \pi^{2} t}, \quad X_{n}(x)=\sin n \pi x .
$$

- Superposition principle:

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-\alpha n^{2} \pi^{2} t} \sin n \pi x
$$

- Theorem: If u_{0} permits a convergent Fourier series, then this representation is the solution of the heat equation.
- The coefficients c_{n} can be determined from u_{0}.

The Transport Equation

- Consider (in 2D)

$$
c_{t}+\operatorname{div}(c \mathbf{u})=0 .
$$

- Assume that c is given on a curve Γ in the (x, y)-plane.

Q: Can we determine $c(x, y, t)$ in some region in (x, y, t) from this?
A: In general, yes!

The Material Derivative

The transport equation can be written as

$$
c_{t}+u c_{x}+v c_{y}=-c \operatorname{div} \mathbf{u}
$$

Definition. The expression

$$
\frac{D c}{D t}=c_{t}+u c_{x}+v c_{y}
$$

is the material derivative of c.
The material derivative is the time rate of change of a fluid particle which moves with the stream.

There is a nice discussion of the material derivative in Strang!

Characteristics: Consequences

- If we know c at $\left(x_{0}, y_{0}\right) \in \Gamma$, the values of $c(x, y, t)$ can be determined on the characteristic.
- If Γ is not a characteristic, the solution is determined in a region of (x, y, t)-space.
- Incompressible flow means $\operatorname{div} \mathbf{u}=0$.

For an incompressible flow, c is constant along characteristics.

- If there are sources and sinks $Q(x, y, t)$, the transport equation reads

$$
\frac{D c}{D t}=-c \operatorname{div} \mathbf{u}+Q
$$

- c will be smooth along trajectories, but can be discontinuous across.
Such a solution does not satisfy the differential equation, but of course the integral form,

$$
\frac{d}{d t} \int_{\Omega} c d \Omega+\int_{\partial \Omega} c \mathbf{u} \cdot \mathbf{n} d \Gamma=Q .
$$

The Transport Equation: Characteristics
Read: Strang, p 472-474

- Taylor expansion:
$c(x+\Delta x, y+\Delta y, t+\Delta t)=c(x, y, t)+c_{t} \Delta t+c_{x} \Delta x+c_{y} \Delta y+$ h. o. t..
- Let $(x(t), y(t))$ be the trajectory of a particle following the stream:

$$
\frac{d x}{d t}=u(x, y, t), \quad \frac{d y}{d t}=v(x, y, t)
$$

This curve is called a characteristic.

- In differentials: $\Delta x=u \Delta t, \Delta y=v \Delta t$.
- Thus, on a characteristic it holds

$$
\Delta c=\underbrace{\Delta t\left(c_{t}+u c_{x}+v c_{y}\right)}_{-c \text { div } \mathbf{u}}+\text { higher order terms }
$$

- Going to the limit:

$$
\begin{gathered}
\frac{d x}{d t}=u, \quad \frac{d y}{d t}=v \\
\frac{D c}{D t}=-c \operatorname{div} \mathbf{u}
\end{gathered}
$$

This is a system of ordinary differential equations (on the characteristic!)

Method of Characteristics: Example

- Burger's equation:

$$
\begin{aligned}
u_{t}+u u_{x} & =1 \text { for } t \geq 0 \\
u(x, 0) & =x \text { for } x \in \mathbb{R}
\end{aligned}
$$

- Here, we have $c=u$. Hence, $\frac{D u}{D t}=u_{t}+u u_{x}$ such that the system becomes

$$
\frac{d x}{d t}=u, \frac{D u}{D t}=1
$$

- Solutions (note: $u\left(x_{0}, 0\right)=x_{0}$):

$$
u=x_{0}+t, x=x_{0}+x_{0} t+\frac{1}{2} t^{2}
$$

Example (Cont)

- Material derivative \equiv moving with the particle. Hence, we must go back in time to find the initial point on the characteristics:

$$
x_{0}=\frac{x-t^{2} / 2}{1+t}
$$

- Insert this into the expression for u :

$$
u(x, t)=t+\frac{x-t^{2} / 2}{1+t}
$$

Exercise: Verify this!

- Note: This is a pure initial-value problem, or Cauchy problem.

A Vibrating Bar: The Wave Equation

Read: Strang, p 546-548

- Consider longitudinal vibrations of a bar. The displacement is u, assumed to be small.
- Let S denote the tension in the bar. Consider a small element of length $d x$.
Force over that element: $d S$
- Newton's law: mass times acceleration equals force:

$$
\rho d x \cdot \frac{\partial^{2} u}{\partial t^{2}}=d S
$$

Going to differentials: $\rho u_{t t}=S_{x}$.

- Hooke's law (modulus of elasticity E):

$$
S=E \frac{\partial u}{\partial x} .
$$

The Vibrating Bar (Cont)

- Putting everything together,

$$
u_{t t}=c^{2} u_{x x}
$$

where $c^{2}=E / \rho$.

- This is the wave equation. Since it is second order in time, we need two initial conditions,

$$
u(x, 0)=u_{0}(x), \quad \frac{\partial u}{\partial t}(x, 0)=v_{0}(x) .
$$

Solution of The 1D Wave Equation

Read: Strang, p 485-486

- The standard way to solve the wave equation would be to use the separation of variables approach.
- Here, we observe

$$
u_{t t}-c^{2} u_{x x}=\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right) u
$$

The equation $u_{t} \pm c u_{x}=0$ can be solved by the method of characteristics which provides $F(x \mp c t)$.

- This motivates the change of variables

$$
\xi=x+c t, \eta=x-c t .
$$

Exercise: Show that the wave equations is $\frac{\partial^{2} u}{\partial \xi \eta \eta}=0$!
The general solution is (called d'Alembert's solution)

$$
u=F_{1}(\xi)+F_{2}(\eta)=F_{1}(x+c t)+F_{2}(x-c t)
$$

Consequences of d'Alembert's Solution

- The solution consists of one wave traveling right $F_{2}(x-c t)$ and one wave travelling left $F_{1}(x+c t)$.
- F_{1} is the general solution of $u_{t}-c u_{x}=0$, while F_{2} is the general solution of $u_{t}+c u_{x}=0$.
- The wave equation (scalar of second order) has two sets of characteristics,

$$
\frac{d x}{d t}=+c \text { and } \frac{d x}{d t}=-c .
$$

