Chapter 8: Discretization of Time-Dependent problems

Michael Hanke

Mathematical Models, Analysis and Simulation, Part I

Classification of Numerical Methods

When constructing numerical methods, we use the idea of separation of variables:

$$
u(t, x, y)=T(t) X(x, y)
$$

Semi-discretization in space For X, we got an elliptic boundary value problem:
\Longrightarrow Use finite difference or finite element methods.
This is the method of lines (MOL).
Semi-discretization in time For T, we got an initial value problem:
\Longrightarrow Use a finite difference method (e.g., Runge-Kutta or multistep methods).
This method is often called Rothe's method.
Complete discretization in space and time Use finite difference methods simultaneously.
This approach will be considered in subsequent lectures.

A Parabolic Problem

Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain with boundary $\Gamma=\partial \Omega$.

- Differential equation

$$
u_{t}-\operatorname{div}(k \nabla u)=f(x, y), \quad(x, y) \in \Omega
$$

- Boundary condition

$$
\left.u\right|_{\Gamma}=g(x, y), \quad(x, y) \in \Gamma
$$

- Initial condition

$$
u(x, y, 0)=u_{0}(x, y), \quad(x, y) \in \Omega
$$

- Trial function space: $V_{g}=\left\{v\left|v \in H^{1}(\Omega), v\right|_{\Gamma}=g\right\}$.
- Test function space: $V_{0}=H_{0}^{1}(\Omega)$.
- Weak formulation: Find $u \in V_{g} \times[0, T]$ such that

$$
\int_{\Omega} u_{t} v d \Omega+\int_{\Omega} k \nabla u \cdot \nabla v d \Omega=\int_{\Omega} f v d \Omega \text { for all } v \in V_{0} .
$$

- Replace V_{g} by a finite element space $V_{h}(h-$ discretization parameter) with

$$
V_{h}=\operatorname{lin}\{\underbrace{\phi_{1}, \ldots, \phi_{N}}_{\text {nodes inside } \Omega}, \underbrace{\phi_{N+1}, \ldots, \phi_{N+M}}_{\text {nodes on } \Gamma}\} .
$$

- $u_{h} \in V_{h} \times[0, T]$ means

$$
u_{h}(x, y, t)=\sum_{i=1}^{N} \tau_{i}(t) \phi_{i}(x, y)+\underbrace{\sum_{i=N+1}^{N+M} g\left(x_{i}, y_{i}\right) \phi_{i}(x, y)}_{\text {Dirichlet bc }}
$$

A 1D Example: Discretization by Explicit Methods

As a typical example, use the explicit Euler method:

$$
\mathbf{M} \frac{\tau^{n+1}-\tau^{n}}{\Delta t}+\mathbf{A} \tau^{n}=\mathbf{f}
$$

Hence:

$$
\mathbf{M} \tau^{n+1}=\mathbf{M} \tau^{n}+\Delta t\left(\mathbf{f}-\mathbf{A} \tau^{n}\right)
$$

We must solve a linear system in every time step, even if the method is explicit!

Trick: Modify \mathbf{M} such that the modified matrix $\tilde{\mathbf{M}}$ is diagonal:

$$
\tilde{m}_{i j}= \begin{cases}\sum_{k=1}^{N} m_{i k}, & i=j \\ 0 & i \neq j\end{cases}
$$

This is called mass lumping.
Mass lumping cannot be used for highly oscillatory problems.

Example: Pollution Of Water In A River

- The river is stretched along the x-axis with velocity V in positive direction,

$$
V u_{x}=\varepsilon\left(u_{x x}+u_{y y}\right), V>0 .
$$

- At time $t=0$, a pollutant is released near the left river side,

$$
u(0, y)=H(y)= \begin{cases}1, & y>0 \\ 0, & y<0\end{cases}
$$

H is the Heaviside function.

- At least near $x=0$, we can neglect the contribution of $u_{x x}$ since the spreading is dominated by advection,

$$
u_{x}=(\varepsilon / V) u_{y y}
$$

subject to pure intial conditions.
Q: What happens if diffusion is small compared to advection?

A 1D Example: Discretization by Implicit Methods

Implicit Euler:

$$
\mathbf{M} \frac{\tau^{n+1}-\tau^{n}}{\Delta t}+\mathbf{A} \tau^{n+1}=\mathbf{f}
$$

Hence:

$$
(\mathbf{M}+\Delta t \mathbf{A}) \tau^{n+1}=\mathbf{M} \tau^{n}+\Delta t \mathbf{f}
$$

Here, a linear system must be solved in every step, even for lumped mass matrices.

Note: $\mathbf{A u} \approx-\operatorname{div}(k \nabla u), \mathbf{M u} \approx u$. Hence,

$$
\left(\frac{1}{\Delta t} \mathbf{M}+\mathbf{A}\right) \tau^{n+1} \approx \frac{1}{\Delta t} u^{n+1}-\operatorname{div}\left(k \nabla u^{n+1}\right)
$$

such that a steady-state reaction-diffusion problem must be solved in every step.

Note: Stability considerations will be postponed.

Read: Strang, p 538-542

- Consider

$$
u_{x}=\beta u_{y y} \quad 0<\beta \ll 1
$$

- The solution (found by using the Fourier transform) is,

$$
u(x, y)=\Phi(y / \sqrt{4 \beta x})
$$

where Φ is the distribution function of the normal distribution.

A Case Study: Cont

Conclusion: We need elements of size $O(\sqrt{4 \beta x})$ (in y-direction) in order to resolve the gradients.

This is a stringent requirement in many applications.

Michael Hanke, NADA, November 6, 2008

Boundary Layers: Cont

- Q: How small must the elements be to resolve this boundary layer?
- Use piecewise linear elements. The FEM approximation reads

$$
\frac{u_{i+1}-u_{i-1}}{2 h}-\frac{\beta}{h^{2}}\left(u_{i+1}-2 u_{i}+u_{i-1}\right)=0
$$

subject to $u_{0}=1, u_{N+1}=0$.

- Consider the reduced problem by taking the limit $\beta \rightarrow 0$: $u_{i+1}-u_{i-1}=0$,

$$
u_{0}=u_{2}=u_{4}=\cdots=1
$$

- If N is odd: The system contains a contradiction.
- If N is even: $u_{2 j}=1, u_{2 j+1}=0$.

Boundary Layer Resolution: Quantitative estimation

- The difference equation rewritten:

$$
\left(1-\frac{2 \beta}{h}\right) u_{i+1}+\frac{4 \beta}{h} u_{i}+\left(-1-\frac{2 \beta}{h}\right) u_{i-1}=0 .
$$

- This difference equation admits solutions of the type $u_{j}=\lambda^{j}$:

$$
\left(1-\frac{2 \beta}{h}\right) \lambda^{2}+\frac{4 \beta}{h} \lambda+\left(-1-\frac{2 \beta}{h}\right)=0 .
$$

Solutions:

$$
\lambda_{1}=1, \quad \lambda_{2}=\frac{1+2 \beta / h}{2 \beta / h-1}
$$

- The general solution

$$
u_{j}=c_{1} \lambda_{1}^{j}+c_{2} \lambda_{2}^{j}=c_{1}+c_{2} \lambda_{2}^{j}
$$

This solution is monotone iff $\lambda_{2}>0$

- We obtain the requirement

$$
\frac{h}{2 \beta}<1
$$

i.e., $h=O(\beta)$, which is even more stringent than the requirement before.

Comments, Artificial Diffusion

- This is not a stability requirement. It is necessary to reflect a qualitative property of the exact solution, namely, to avoid unphysical oscillations.
- If the step size restriction is too hard to fulfill, increase β artificially:

$$
\hat{\beta}:=\max (\beta, h / 2) .
$$

Notation: Artificial diffusion

Artificial Diffusion In Higher Dimensions

- Consider a non-oscillatory advection-dominated transport problem

$$
\mathbf{V} \cdot \nabla u-\varepsilon \Delta u=f .
$$

- Discretized by finite elements, enough diffusion is necessary. For elements of size h,
- choose $\hat{\varepsilon}=\max (\varepsilon,|\mathbf{V}| h / 2)$.
- The resulting discretization is first-order accurate.

Artificial Diffusion: How Does It Look Like In 1D?

Discretization:

$$
\begin{aligned}
f\left(x_{i}\right) & =\frac{V}{2 h}\left(u_{i+1}-u_{i-1}\right)-\frac{\hat{\varepsilon}}{h^{2}}\left(u_{i+1}-2 u_{i}+u_{i-1}\right) \\
& =u_{i+1}\left(\frac{V}{2 h}-\frac{|V|}{2 h}\right)+\frac{|V|}{h} u_{i}+u_{i-1}\left(-\frac{V}{2 h}-\frac{|V|}{2 h}\right) \\
& = \begin{cases}\frac{V}{h}\left(u_{i}-u_{i-1}\right), & \text { if } V>0, \\
\frac{V}{h}\left(u_{i+1}-u_{i}\right), & \text { if } V<0 .\end{cases}
\end{aligned}
$$

These are one-sided differences depending on the sign of V, that is on the direction of the stream.

This is an upstream or upwind discretization.

