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• A simple upstream discretization of the transport equation

• Proof of convergence via Fourier transformations

• Nonlinear conservation laws

• Shock waves

• Unique solvability: viscosity solutions
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The problem

• Consider the pure initial value problem

ut = cux, x ∈ R, u(x,0) = u0(x)

with c > 0.

• The discretization is

un+1
j −un

j

∆t
= c

un
j+1−un

j

∆x
.

• Convergence:
Q: How to compare the discrete solution un

j and the
continuous solution u(x, tn)?
A: Use interpolation by trigonometric polynomials!
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Trigonometric Interpolation

• Let f = { f j| j ∈ Z} be an infinite sequence:

f̃ (x) :=
+∞

∑
j=−∞

sinc
π
h
(x− x j) f j, x ∈ R.

• Because of

sinc
π
h
(x− x j) =

sinπ
h(xk − x j)

π
h(xk − x j)

=

{
0, k 6= j

1, k = j

it holds

f̃ (x j) = f j

f̃ is a trigonometric interpolant of f.
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Semi-Discrete Fourier Transform

• The semi-discrete Fourier transform is given by

f̂ (k) = h
+∞

∑
j=−∞

f je
−ikx j,k ∈ R.

Notes:
– f̂ is defined on all of R.
– Compared to the DFT, a different scaling is used.

• f̂ is 2π/h-periodic,

f̂ (k) = f̂ (k +2π/h).

• The band-limited Fourier transform:

f̆ (k) =

{
f̂ (k), |k| < π/h,

0, otherwise.

Theorem.
ˆ̃f (k) ≡ f̆ (k)
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Proof of Theorem

• Define, for a > 0,

χa(x) =

{
1, |x| < a,

0, otherwise.

• Fourier transform (Strang, p 310):

χ̂a(k) = 2a
sinak

ak
.

• Using the inversion theorem, one gets

(sinbx
bx

)̂
=

π
b

χb(x)
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Proof: Cont

ˆ̃f (k) =

+∞
Z

−∞

( +∞

∑
j=−∞

sinπ
h(x− x j)

π
h(x− x j)

f j

)
e−ikxdx

=
+∞

∑
j=−∞

f j

+∞
Z

−∞

sinπ
h(x− x j)

π
h(x− x j)

e−ikxdx

y=x−x j
=

+∞

∑
j=−∞

f je
−ikx j

+∞
Z

−∞

sinπ
hy

π
hy

e−ikydy

=
+∞

∑
j=−∞

f je
−ikx jhχπ/h(k)

=

{
h∑+∞

j=−∞ f je−ikx j, |k| < π/h

0, otherwise

= f̆ (k)
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Convergence

‖u(·, tn)− ũ(·, tn)‖
h,∆t→0−−−−→ 0??

Continuous Fourier transform of ut = cux, u(·,0) = u0 yields

dû
dt

= ickû, û(·,0) = û0.

Hence,
û(k, t +∆t) = eick∆tû(k, t).

Finally,

û(·, t) = H(∆t)nû(·,0) = H(k,∆t)nû0

H(k,∆t) = eick∆t.
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Convergence: Cont

Discrete Write the discretization like

un+1
j = un

j + r(un
j+1−un

j), r =
c∆t
∆x

.

Semi-discrete Fourier transform

ûn+1 = ûn + r(eikhûn − ûn).

Finally,

ûn = Gnû0

ŭn = Gnŭ0, |kh| < π

G = 1+ r(e−ikh−1).

The initial value can be chosen in different ways. We use
the most obvious

u0
j = u0(x j).
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Convergence: Cont

Remember Plancherel’s and Parseval’s identities:

‖û‖2 = 2π‖u‖2, 2π‖ũ0‖2 = ‖ŭ0‖2.

We obtain

‖u(·, tn)− ũ(·, tn)‖ =
1√
2π

‖û(·, tn)− ŭn‖

=
1√
2π

‖Hnû0−Gnŭ0‖

=
1√
2π

‖Hnû0−Hnŭ0+Hnŭ0−Gnŭ0‖

≤ 1√
2π

(
‖Hn(û0− ŭ0)‖+‖(Hn−Gn)ŭ0‖

)

• The first term contains the propagation of the initial error
(in frequency space). In the present case, |H| = 1.

• The first term becomes small if the approximation of the
initial values is consistent:

‖û0− ŭ0‖→ 0 for all u0 ∈ L2(R).
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The Second Term

• Assume stability:

|G| < 1⇔ 0 < c∆t < h.

• Split the factors:

Hn−Gn = (H −G)
n−1

∑
j=0

Hn− j−1G j.

• Because of stability, it holds

∣∣∣∣
n−1

∑
j=0

Hn− j−1G j

∣∣∣∣ ≤
n−1

∑
j=0

1 · |G j| < n =
tn
∆t

.
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The Second Term: Cont

• Fix the wave number k now. Then

H −G = eick∆t − (1+ r(eikh−1))

= 1+ ick∆t +O
(
(∆t)2

)
− (1+

c∆t
h

(1+ ikh+O(h2)−1))

= 1+ ick∆t +O
(
(∆t)2

)
− (1+ ick∆t +O

(
(∆t)2

)
)

= O
(
(∆t)2

)
)

This is a consequence of first order consistency:
|H −G| = O

(
(∆t)p+1

)

• Putting everything together,

|Hn−Gn| = tn ·O(∆t).
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Conclusions

• We have just seen:

consistency+stability ⇒ convergence.

• Previous chapter:

no stability ⇒ no convergence.

• This is obvious:

convergence ⇒ consistency.

• Conclusion:

consistency+stability ⇔ convergence

This is one instance of the Lax Equivalence Theorem.
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Nonlinear Conservation Laws: An Example
Read: Strang, Ch 6.6

Problem: Determine the flow of cars on a narrow street.

• Density ρ of cars: number of cars per unit length.
• Velocity of cars v depends on density: v = v(ρ).

ρ small ⇒ v large

ρ large ⇒ v low

Normalization:
– Largest possible velocity: v = 1.
– Road full means v = 0. Let this be at ρ = 1.

• Simple velocity model: v(ρ) = 1−ρ.
• Conservation: Flux is Φ = vρ = (1−ρ)ρ,

ρt +div((1−ρ)ρ) = 0.

• Initial data: ρ(x,0) = ρ0(x).
• Solution by characteristics:

dx
dt

= 1−2ρ,
dρ(x(t), t)

dt
= 0.

– ρ is constant along each characteristic.
– Since dx/dt is constant, the characteristics are straight

lines.
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Example: Smooth Solutions

• Assume initial data:

ρ0(x) =





1, x ≤ 0

1− x, 0 < x < 1

0, x ≥ 1
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Initial profile ρ0

• Characteristics:

x(t) =
dx
dt

∣∣∣∣
x0

t + x0 = (1−2ρ0(x0))t + x0.
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Example: Cont

• The following possibilities arise:
case density solution
x ≥ t +1 ρ0 = 0 ρ = 0
x ≤−t ρ0 = 1 ρ = 1
−t < x < t +1 ρ0 = 1− x0

x = (1−2(1− x0))t + x0

x0 =
x+ t

2t +1

ρ = 1− x0 =
1+ t − x
2t +1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.5

1

x

ρ

Profile ρ at different times

t=0
t=0.5
t=1
t=1.5
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Example: Shocks

• Initial data:

ρ0(x) =





0, x ≤ 0

x, 0 < x < 1

1, x ≥ 1
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Initial profile ρ0

• Characteristics:
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Characteristics

– What is the correct solution at crossing characteristics?
– A shock will form. Where?
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Shocks: Cont

Compute the shock location s(t): Integrate the equation on
[s− ε,s+ ε]:

s(t)+ε
Z

s(t)−ε

∂ρ
∂t

dx+Φ(ρ(s(t)+ ε))−Φ(ρ(s(t)− ε)) = 0

It holds

d
dt

s(t)+ε
Z

s(t)−ε

∂ρdx =

s(t)+ε
Z

s(t)−ε

∂ρ
∂t

dx+ρ(s(t)+ ε)
ds
dt

−ρ(s(t)− ε)
ds
dt

Taking the limit ε → 0, this leads to

0 = lim
ε→0

s(t)+ε
Z

s(t)−ε

∂ρ
∂t

dx+ρ(s(t)+)
ds
dt

−ρ(s(t)−)
ds
dt

.
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Rankine-Hugoniot Jump Condition

Result:

ds
dt

=
Φ(ρ+)−Φ(ρ−)

ρ+−ρ−

This is the famous Rankine-Hugoniot jump condition.
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Profile ρ at different times

t=0
t=0.16
t=0.33
t=0.5
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Entropy Solutions, Rarefaction Waves

• Consider initial data

ρ0(x) =

{
1, x ≤ 0

0, x > 0
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Initial profile ρ0

• Characteristics
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Entropy Solutions, Rarefaction Waves: Cont

There are (at least) two solutions which satisfy the
Rankine-Hugoniot condition:

• ρ(x, t) = ρ0(x) for all t > 0.

• Rarefaction wave

ρ(x, t) =






1, x ≤−t

0, x ≥ t
1
2(1− x

t ), −t < x < t

Which one is the “correct” one?
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Profile ρ at different times

t=0
t=0.5
t=0.1
t=1.5

In order to select one solution, we must use physical
considerations.
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Entropy Solutions, Rarefaction Waves: Cont

Idea: Modify the equation by adding small artificial diffusion:

v = 1−ρ− ερx/ρ,0 < ε ≪ 1

(Say, drivers look ahead.)

Modified equation:

ρt +(ρ(1−ρ)x = ερxx

• Entropy solution: The limiting function ρ = limε→0ρε

• All solutions are smooth. However, gradients may become
large.

• The added diffusion is also necessary for numerical
schemes.
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Entropy Solutions, Rarefaction Waves: Cont

Numerical approximations: How to choose ε?

1. ε = O(h) gives nice, non-wiggly solutions, but only
first-order accurate.

2. Choose ε = ε(ρx), where

ε ∼
{

h, if ρx is large

0, if ρx is small

This is called switched artificial diffusion.
• ON: near shocks,
• OFF: where the solution is smooth.
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