Chapter 10: Linear And Nonlinear

Conservation Laws

Michael Hanke

Mathematical Models, Analysis and Simulation, Part I

- A simple upstream discretization of the transport equation
- Proof of convergence via Fourier transformations
- Nonlinear conservation laws
- Shock waves
- Unique solvability: viscosity solutions

The problem

- Consider the pure initial value problem

$$
u_{t}=c u_{x}, \quad x \in \mathbb{R}, \quad u(x, 0)=u^{0}(x)
$$

with $c>0$.

- The discretization is

$$
\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}=c \frac{u_{j+1}^{n}-u_{j}^{n}}{\Delta x} .
$$

- Convergence:

Q: How to compare the discrete solution u_{j}^{n} and the continuous solution $u\left(x, t_{n}\right)$?
A: Use interpolation by trigonometric polynomials!

- Let $\mathbf{f}=\left\{f_{j} \mid j \in \mathbb{Z}\right\}$ be an infinite sequence:

$$
\tilde{f}(x):=\sum_{j=-\infty}^{+\infty} \operatorname{sinc} \frac{\pi}{h}\left(x-x_{j}\right) f_{j}, \quad x \in \mathbb{R} .
$$

- Because of

$$
\operatorname{sinc} \frac{\pi}{h}\left(x-x_{j}\right)=\frac{\sin \frac{\pi}{h}\left(x_{k}-x_{j}\right)}{\frac{\pi}{h}\left(x_{k}-x_{j}\right)}= \begin{cases}0, & k \neq j \\ 1, & k=j\end{cases}
$$

it holds

$$
\tilde{f}\left(x_{j}\right)=f_{j}
$$

\tilde{f} is a trigonometric interpolant of \boldsymbol{f}.

- The semi-discrete Fourier transform is given by

$$
\hat{f}(k)=h \sum_{j=-\infty}^{+\infty} f_{j} e^{-i k x_{j}}, k \in \mathbb{R} .
$$

Notes:

- \hat{f} is defined on all of \mathbb{R}.
- Compared to the DFT, a different scaling is used.
- \hat{f} is $2 \pi / h$-periodic,

$$
\hat{f}(k)=\hat{f}(k+2 \pi / h)
$$

- The band-limited Fourier transform:

$$
\breve{f}(k)= \begin{cases}\hat{f}(k), & |k|<\pi / h, \\ 0, & \text { otherwise } .\end{cases}
$$

Theorem.

$$
\hat{\tilde{f}}(k) \equiv \breve{f}(k)
$$

- Define, for $a>0$,

$$
\chi_{a}(x)= \begin{cases}1, & |x|<a \\ 0, & \text { otherwise } .\end{cases}
$$

- Fourier transform (Strang, p 310):

$$
\widehat{\chi_{a}}(k)=2 a \frac{\sin a k}{a k} .
$$

- Using the inversion theorem, one gets

$$
\left(\frac{\sin b x}{b x}\right)^{\wedge}=\frac{\pi}{b} \chi_{b}(x)
$$

$$
\left\|u\left(\cdot, t_{n}\right)-\tilde{u}\left(\cdot, t_{n}\right)\right\| \xrightarrow{h, \Delta t \rightarrow 0} 0 ? ?
$$

Continuous Fourier transform of $u_{t}=c u_{x}, u(\cdot, 0)=u^{0}$ yields

$$
\frac{d \hat{u}}{d t}=i c k \hat{u}, \quad \hat{u}(\cdot, 0)=\widehat{u^{0}} .
$$

Hence,

$$
\hat{u}(k, t+\Delta t)=e^{i c k \Delta t} \hat{u}(k, t) .
$$

Finally,

$$
\frac{\hat{u}(\cdot, t)=H(\Delta t)^{n} \hat{u}(\cdot, 0)=H(k, \Delta t)^{n} \widehat{u^{0}}}{H(k, \Delta t)=e^{i c k \Delta t}}
$$

Convergence: Cont

Discrete Write the discretization like

$$
u_{j}^{n+1}=u_{j}^{n}+r\left(u_{j+1}^{n}-u_{j}^{n}\right), \quad r=\frac{c \Delta t}{\Delta x}
$$

Semi-discrete Fourier transform

$$
\hat{u}^{n+1}=\hat{u}^{n}+r\left(e^{i k h} \hat{u}^{n}-\hat{u}^{n}\right) .
$$

Finally,

$$
\begin{aligned}
& \hat{u}^{n}=G^{n} \hat{u}^{0} \\
& \breve{u^{n}}=G^{n} \breve{u}^{0},|k h|<\pi \\
& G=1+r\left(e^{-i k h}-1\right) .
\end{aligned}
$$

The initial value can be chosen in different ways. We use the most obvious

$$
u_{j}^{0}=u^{0}\left(x_{j}\right) .
$$

Remember Plancherel's and Parseval's identities:

$$
\|\hat{u}\|^{2}=2 \pi\|u\|^{2}, \quad 2 \pi\left\|\widetilde{u^{0}}\right\|^{2}=\left\|\breve{u^{0}}\right\|^{2} .
$$

We obtain

$$
\begin{aligned}
\left\|u\left(\cdot, t_{n}\right)-\tilde{u}\left(\cdot, t_{n}\right)\right\| & =\frac{1}{\sqrt{2 \pi}}\left\|\hat{u}\left(\cdot, t_{n}\right)-\breve{u^{n}}\right\| \\
& =\frac{1}{\sqrt{2 \pi}}\left\|H^{n} \widehat{u^{0}}-G^{n} \breve{u^{0}}\right\| \\
& =\frac{1}{\sqrt{2 \pi}}\left\|H^{n} \widehat{\widehat{u^{0}}}-H^{n} \breve{u^{0}}+H^{n} \breve{u^{0}}-G^{n} \breve{u^{0}}\right\| \\
& \leq \frac{1}{\sqrt{2 \pi}}\left(\left\|H^{n}\left(\widehat{u^{0}}-\breve{u^{0}}\right)\right\|+\left\|\left(H^{n}-G^{n}\right) \breve{u^{0}}\right\|\right)
\end{aligned}
$$

- The first term contains the propagation of the initial error (in frequency space). In the present case, $|H|=1$.
- The first term becomes small if the approximation of the initial values is consistent:

$$
\left\|\widehat{u^{0}}-\breve{u^{0}}\right\| \rightarrow 0 \text { for all } u^{0} \in L^{2}(\mathbb{R})
$$

Convergence: Cont

- Assume stability:

$$
|G|<1 \Leftrightarrow 0<c \Delta t<h
$$

- Split the factors:

$$
H^{n}-G^{n}=(H-G) \sum_{j=0}^{n-1} H^{n-j-1} G^{j}
$$

- Because of stability, it holds

$$
\left|\sum_{j=0}^{n-1} H^{n-j-1} G^{j}\right| \leq \sum_{j=0}^{n-1} 1 \cdot\left|G^{j}\right|<n=\frac{t_{n}}{\Delta t} .
$$

- Split the factors:

The Second Term

- Fix the wave number k now. Then

$$
\begin{aligned}
H-G & =e^{i c k \Delta t}-\left(1+r\left(e^{i k h}-1\right)\right) \\
& =1+i c k \Delta t+O\left((\Delta t)^{2}\right)-\left(1+\frac{c \Delta t}{h}\left(1+i k h+O\left(h^{2}\right)-1\right)\right) \\
& =1+i c k \Delta t+O\left((\Delta t)^{2}\right)-\left(1+i c k \Delta t+O\left((\Delta t)^{2}\right)\right) \\
& \left.=O\left((\Delta t)^{2}\right)\right)
\end{aligned}
$$

This is a consequence of first order consistency: $|H-G|=O\left((\Delta t)^{p+1}\right)$

- Putting everything together,

$$
\left|H^{n}-G^{n}\right|=t_{n} \cdot O(\Delta t)
$$

Conclusions

- We have just seen:

$$
\text { consistency }+ \text { stability } \Rightarrow \text { convergence. }
$$

- Previous chapter:

$$
\text { no stability } \Rightarrow \text { no convergence. }
$$

- This is obvious:

$$
\text { convergence } \Rightarrow \text { consistency. }
$$

- Conclusion:

$$
\text { consistency }+ \text { stability } \Leftrightarrow \text { convergence }
$$

This is one instance of the Lax Equivalence Theorem.

Nonlinear Conservation Laws: An Example

Read: Strang, Ch 6.6

Problem: Determine the flow of cars on a narrow street.

- Density ρ of cars: number of cars per unit length.
- Velocity of cars v depends on density: $v=v(\rho)$.

$$
\begin{aligned}
& \rho \text { small } \Rightarrow v \text { large } \\
& \rho \text { large } \Rightarrow v \text { low }
\end{aligned}
$$

Normalization:

- Largest possible velocity: $v=1$.
- Road full means $v=0$. Let this be at $\rho=1$.
- Simple velocity model: $v(\rho)=1-\rho$.
- Conservation: Flux is $\Phi=v \rho=(1-\rho) \rho$,

$$
\rho_{t}+\operatorname{div}((1-\rho) \rho)=0
$$

- Initial data: $\rho(x, 0)=\rho^{0}(x)$.
- Solution by characteristics:

$$
\frac{d x}{d t}=1-2 \rho, \quad \frac{d \rho(x(t), t)}{d t}=0 .
$$

- ρ is constant along each characteristic.
- Since $d x / d t$ is constant, the characteristics are straight lines.

Example: Smooth Solutions

- Assume initial data:

$$
\rho^{0}(x)= \begin{cases}1, & x \leq 0 \\ 1-x, & 0<x<1 \\ 0, & x \geq 1\end{cases}
$$

- Characteristics:

$$
x(t)=\left.\frac{d x}{d t}\right|_{x_{0}} t+x_{0}=\left(1-2 \rho^{0}\left(x_{0}\right)\right) t+x_{0}
$$

Example: Cont

- The following possibilities arise:

case	density	solution
$x \geq t+1$	$\rho^{0}=0$	$\rho=0$
$x \leq-t$	$\rho^{0}=1$	$\rho=1$
$-t<x<t+1$	$\rho^{0}=1-x_{0}$	
		$x=\left(1-2\left(1-x_{0}\right)\right) t+x_{0}$
		$x_{0}=\frac{x+t}{2 t+1}$
		$\rho=1-x_{0}=\frac{1+t-x}{2 t+1}$

Profile ρ at different times

Example: Shocks

- Initial data:

$$
\rho^{0}(x)= \begin{cases}0, & x \leq 0 \\ x, & 0<x<1 \\ 1, & x \geq 1\end{cases}
$$

- Characteristics:

- What is the correct solution at crossing characteristics?
- A shock will form. Where?

Rankine-Hugoniot Jump Condition

Result:

$$
\frac{d s}{d t}=\frac{\Phi\left(\rho^{+}\right)-\Phi\left(\rho^{-}\right)}{\rho^{+}-\rho^{-}}
$$

This is the famous Rankine-Hugoniot jump condition.

Compute the shock location $s(t)$: Integrate the equation on $[s-\varepsilon, s+\varepsilon]$:

$$
\int_{s(t)-\varepsilon}^{s(t)+\varepsilon} \frac{\partial \rho}{\partial t} d x+\Phi(\rho(s(t)+\varepsilon))-\Phi(\rho(s(t)-\varepsilon))=0
$$

It holds

$$
\frac{d}{d t} \int_{s(t)-\varepsilon}^{s(t)+\varepsilon} \partial \rho d x=\int_{s(t)-\varepsilon}^{s(t)+\varepsilon} \frac{\partial \rho}{\partial t} d x+\rho(s(t)+\varepsilon) \frac{d s}{d t}-\rho(s(t)-\varepsilon) \frac{d s}{d t}
$$

Taking the limit $\varepsilon \rightarrow 0$, this leads to

$$
0=\lim _{\varepsilon \rightarrow 0} \int_{s(t)-\varepsilon}^{s(t)+\varepsilon} \frac{\partial \rho}{\partial t} d x+\rho(s(t)+) \frac{d s}{d t}-\rho(s(t)-) \frac{d s}{d t}
$$

- Consider initial data

$$
\rho^{0}(x)= \begin{cases}1, & x \leq 0 \\ 0, & x>0\end{cases}
$$

- Characteristics

Entropy Solutions, Rarefaction Waves: Cont

There are (at least) two solutions which satisfy the Rankine-Hugoniot condition:

- $\rho(x, t)=\rho^{0}(x)$ for all $t>0$.
- Rarefaction wave

$$
\rho(x, t)= \begin{cases}1, & x \leq-t \\ 0, & x \geq t \\ \frac{1}{2}\left(1-\frac{x}{t}\right), & -t<x<t\end{cases}
$$

Which one is the "correct" one?

In order to select one solution, we must use physical considerations.

Entropy Solutions, Rarefaction Waves: Cont

Numerical approximations: How to choose ε ?

1. $\varepsilon=O(h)$ gives nice, non-wiggly solutions, but only first-order accurate.
2. Choose $\varepsilon=\varepsilon\left(\rho_{x}\right)$, where

$$
\varepsilon \sim \begin{cases}h, & \text { if } \rho_{x} \text { is large } \\ 0, & \text { if } \rho_{x} \text { is small }\end{cases}
$$

This is called switched artificial diffusion.

- ON: near shocks,
- OFF: where the solution is smooth.

Entropy Solutions, Rarefaction Waves: Cont

Idea: Modify the equation by adding small artificial diffusion:

$$
v=1-\rho-\varepsilon \rho_{x} / \rho, 0<\varepsilon \ll 1
$$

(Say, drivers look ahead.)
Modified equation:

$$
\rho_{t}+\left(\rho(1-\rho)_{x}=\varepsilon \rho_{x x}\right.
$$

- Entropy solution: The limiting function $\rho=\lim _{\varepsilon \rightarrow 0} \rho_{\varepsilon}$
- All solutions are smooth. However, gradients may become large.
- The added diffusion is also necessary for numerical schemes.

