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The problem

e Consider the pure initial value problem
W=cly, XER, u(x0)=u’(x)

with ¢ > 0.
e The discretization is

n+l_.n n__mn
I L % Sl

At AX

e Convergence:
Q: How to compare the discrete solution u? and the
continuous solution u(x,ty)?
A: Use interpolation by trigopnometric polynomials!
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Trigonometric Interpolation

e Letf={fj|j € Z} be an infinite sequence:
P L o.omn
f(x) = i:stmcﬁ(x—xJ-)fj, xeR.

e Because of

LT
smcﬁ(x— Xj) =

sing(%—Xj) {0,

) 1

)

it holds

f(x) = fj

f is a trigonometric interpolant of f.
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Semi-Discrete Fourier Transform

e The semi-discrete Fourier transform is given by
~ +°° .
fl=hy fie™™ keR.
j=—00

Notes:
— fis defined on all of R.

— Compared to the DFT, a different scaling is used.

o fis 2m/h-periodic,
f(k) = f(k+2m/h).
e The band-limited Fourier transform:

Fg = {f(k), k| < /h,

0, otherwise.

Theorem.
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Proof of Theorem

e Define, for a> 0,

x| <a,
otherwise.

e Fourier transform (Strang, p 310):

sinak

e Using the inversion theorem, one gets

(5~ oo
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Proof: Cont

/(z SO e

j=—00

z fJ/sm (x—=xj) o
]7700 X— X)

+oo .
y=xx *z _Ikxj/sm%‘ye_ikydy
< ny

+o .
= 5 fie ™ ihxyn(k)

j=—0

hy = fie?i, |k <m/h
otherwise
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Convergence

~ h,At—0
[[u(-,tn) = (-, t) [| —— 0?2

Continuous  Fourier transform of u; = cuy, u(-,0) = U yields

da ~

—— —ickd (- — 0

it ickd, Q(-,0) =u0.
Hence, .

a(k, t -+ At) = %Mk, t).
Finally,

a(-,t) = H(AH)"G(-, 0) = H(k, At

H(k,At) = %,
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Convergence: Cont

Discrete Write the discretization like

cAt
n+l_ .n n__n —
upt =l (U ), M=

Semi-discrete Fourier transform
0n+l =0+ r(eik“O" _ an).

Finally,

0" = GnI:IO

i = G"WO, |kh| < Tt

G=1+r(e_1).
The initial value can be chosen in different ways. We use

the most obvious
W =u(xj).
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Convergence: Cont

Remember Plancherel’s and Parseval’s identities:
[[6]1> = 2mjull?,  2m|uo)? = [ju°]|*.
We obtain

[[u(-,t) = G(, to) | = (-ta) — 0|

L
V2n

1
T V2n

1 ~ . . .
= ——[[H"W0—H"W0+ H"WC — G"wO||
V2n

[H"P— G|

1
< _—

< (IR =)+ | (H" =GN

e The first term contains the propagation of the initial error
(in frequency space). In the present case, |[H| = 1.

e The first term becomes small if the approximation of the
initial values is consistent:

|0 — WO|| — O for all W € L2(R).
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The Second Term

e Assume stability:
|Gl <1le0<cAt<h.

e Split the factors:

n-1
H'-G'=(H-G) § HI Gl
2

e Because of stability, it holds

n-1 . . n-1 . t
H”*HGJ‘S 116G <n=".
J= J= At
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The Second Term: Cont

e Fix the wave number k now. Then
H-G=€%— (14r(d"-1))
= 1+ickAt+O((At)?) — (1+%(1+ikh+0(h2) -1)
= 1+ickAt +O((At)?) — (1+ickAt + O((At)?))
=0((At)?))

This is a consequence of first order consistency:
|H— G| =0O((at)PH)
e Putting everything together,

IH"—G"| =t,- O(At).
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Conclusions

We have just seen:
consistency + stability = convergence.
Previous chapter:
no stability =- no convergence.
This is obvious:
convergence = consistency.

Conclusion:

consistency + stability < convergence

This is one instance of the Lax Equivalence Theorem.
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Nonlinear Conservation Laws: An Example
Read: Strang, Ch 6.6

Problem: Determine the flow of cars on a narrow street.

e Density p of cars: humber of cars per unit length.
e Velocity of cars vdepends on density: v=v(p).

p small = v large

p large = vlow

Normalization:

— Largest possible velocity: v= 1.

— Road full means v=0. Let this be at p = 1.
Simple velocity model: v(p) =1—p.
Conservation: Fluxis ® =vp = (1-p)p,

pi+div((1-p)p) =0.

Initial data: p(x,0) = p°(x).

Solution by characteristics:
dx dp(x(t),t)
dt dt

— pis constant along each characteristic.

— Since dx/dt is constant, the characteristics are straight
lines.

1-2p, =0.
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Example: Smooth Solutions

e Assume initial data:

1, x<0
p°(x) 1-x, 0<x<1
0, Xx>1

Initial profile p°

e Characteristics:

x(t) = dx t+ X0 = (1—2p%(%o))t + Xo.

dt,,

Characteristics
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Example: Cont

e The following possibilities arise:
case density solution

x>t+1 p°=0 p=0
X< —t pl=1 p=1
—t<x<t+1l | p®=1-x

X=(1-2(1— X))t +Xo
X+t
|

1 _1+t—x
pP=t=%=7517

Profile p at different times
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Example: Shocks

e Initial data:
0, x<0
P’ =<{x O0<x<1
1, x>1

Initial profile p0

Characteristics

-0.5 0 05 1 15 2
X

— What is the correct solution at crossing characteristics?
— A shock will form. Where?
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Shocks: Cont

Compute the shock location s(t): Integrate the equation on
[s—g,s+¢]:

s(t)+e
/ Epdxﬂb S(t) +€)) — P(p(sit) —€)) =0

s(t)—¢
It holds

d s(t)+€ S(t)+sa d d
_ [ o as_ g%

[ optx= [ Faxrpst) e p(sh) o)
s(t)—¢€ s(t)—e

Taking the limit € — 0, this leads to

s(t)+sa dS
0=lim / Epdx-&—p(s(t) )= —p(s(t)— )

s(t)—¢
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Rankine-Hugoniot Jump Condition

ds_ ®(p*)—®(p)
dt pr—p

This is the famous Rankine-Hugoniot jump condition.

Profile p at different times

Michael Hanke, NADA, November 6, 2008

Entropy Solutions, Rarefaction Waves

e Consider initial data

p%(x)

1, x<0
0, x>0

Initial profile pO
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Entropy Solutions, Rarefaction Waves: Cont

There are (at least) two solutions which satisfy the
Rankine-Hugoniot condition:

o p(x,t) =p°(x) for allt > 0.
e Rarefaction wave

p(x.t) =

Which one is the “correct” one?

Profile p at different times

N

In order to select one solution, we must use physical
considerations.
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Entropy Solutions, Rarefaction Waves: Cont

Idea: Modify the equation by adding small artificial diffusion:
v=1—-p—gpy/p,0<exl
(Say, drivers look ahead.)

Modified equation:

pr+ (P(1—p)x = €Pxx

e Entropy solution: The limiting function p = limg_ope

e All solutions are smooth. However, gradients may become
large.

e The added diffusion is also necessary for numerical
schemes.
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Entropy Solutions, Rarefaction Waves: Cont

Numerical approximations: How to choose €?

1. £ =0O(h) gives nice, non-wiggly solutions, but only
first-order accurate.

2. Choose € = g(px), where

. h, if pxis large
0, if pyxissmall

This is called switched artificial diffusion.
e ON: near shocks,
e OFF: where the solution is smooth.
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