Introduction

Chapter 2: Introduction to Singular Perturbations

Michael Hanke

Mathematical Models, Analysis and Simulation, Part I

The Problem

- Assume that our problem contains only one small, positive parameter $\varepsilon(0<\varepsilon \ll 1)$
- Denote the problem by \mathbf{P}_{ε}.
- What happens if $\varepsilon \longrightarrow 0$?

Read: R.E. O'Malley, Jr.: pp 208-223
A mathematical model contains usually many (physical) parameters.

Q: How does the solution depend on the parameters?

- Scale the system appropriately.
- Find out the important parameters.

Observation: Often, one or more of these parameters are very small (or large) in magnitude.

Q: Does the reduced model (that is, setting the small parameter to zero) say something about the original problem?

A first example

$$
\mathbf{P}_{\varepsilon}: \quad f(y, \boldsymbol{\varepsilon})=y^{2}-\varepsilon y-1=0
$$

Solutions:

$$
y(\varepsilon)=\frac{1}{2}\left(\varepsilon \pm \sqrt{\varepsilon^{2}+4}\right)
$$

Properties:

- Taylor expansion

$$
y(\varepsilon)= \pm 1-\frac{\varepsilon}{2} \pm \frac{\varepsilon^{2}}{8}+\cdots
$$

- $y(\varepsilon) \longrightarrow \pm 1$ for $\varepsilon \longrightarrow 0$
- ± 1 are the solutions of the limiting (reduced) equation $Y_{0}^{2}-1=0$.

A Second Example

$$
\mathbf{P}_{\varepsilon}: \quad f(y, \varepsilon)=\varepsilon y^{2}+2 y+1=0
$$

- Tempting: Neglect the εy^{2} term.
- Problem: $\mathbf{P}_{0}: f(y, 0)=2 y+1=0$ has only one solution.
- Q: Where has the second root disappeared?
- A: εy^{2} cannot be neglected! This term may become large.

Solutions:

$$
\begin{aligned}
& y^{(1)}=-\frac{1}{2}-\frac{\varepsilon}{8}-\frac{\varepsilon^{2}}{16}+\cdots, \\
& y^{(2)}=-\frac{2}{\varepsilon}+\frac{1}{2}+\frac{\varepsilon}{8}+\cdots
\end{aligned}
$$

Observation: $y^{(2)}$ consists of a "regular" expansion plus a singular correction term.

Singular Perturbations

A perturbation problem \mathbf{P}_{ε} is called regular if its solution y_{ε} features smooth dependence on the parameter.

Interpretation: Since ε usually represents a physically meaningful parameter, letting ε tend to 0 corresponds to neglecting the effect of small perturbations.

A perturbation problem is called singular if it is not regular.

The first example is a regular perturbation while the second one is a singular perturbation.

Loosely spoken, in a singular perturbation problem, the problem changes its character.

Example: Initial Value Problem

$$
\mathbf{P}_{\varepsilon}: \quad \varepsilon \dot{x}+x=0, \quad x(0)=1
$$

- Solution: $x(t, \varepsilon)=\exp (-t / \varepsilon)$
- Note: If $\varepsilon<0$, the solution blows up!
- Limiting solution:

$$
x(t, \varepsilon) \longrightarrow \begin{cases}1, & t=0, \\ 0, & t>0 .\end{cases}
$$

- The limiting solution does not satisfy the limiting problem

$$
X_{0}=0 .
$$

- A regular expansion of the type

$$
x(t, \varepsilon) \sim X_{0}(t)+\varepsilon X_{1}(t)+\varepsilon^{2} X_{2}(t)+\cdots
$$

cannot hold.

- What has happened to the initial condition?? \Longrightarrow Indication of a singular perturbation problem.

The Example Continued

- The behavior near $t=0$ is called an initial layer.
- The nonuniform convergence takes place in a layer of thickness ε in t.

The initial layer can conveniently be described by introducing the stretched variable

$$
\tau=t / \varepsilon
$$

In that variable, the problem becomes

$$
\frac{d z}{d \tau}+z=0, \quad z(0)=1
$$

Linear Initial Value Problems

$$
\varepsilon \dot{x}=A(t) x+b(t)
$$

Assumptions:

- $A(t)$ is stable for all $t \geq 0$, i.e., all eigenvalue lie in the left complex halfplane.
- A and b are smooth.

Basic idea: Decompose the solution into two parts, a regular one $X(t, \varepsilon)$ and a singular correction term $z(\tau, \varepsilon)$,

$$
x(t, \varepsilon)=X(t, \varepsilon)+z(t / \varepsilon, \varepsilon)
$$

Notation:

- $X(t, \varepsilon)$ is the outer solution.
- $z(\tau, \varepsilon)$ is the initial layer correction.

The Initial Layer Correction

In order to match the initial value $x(0)$, introduce the stretched variable

$$
\tau=t / \varepsilon
$$

The initial layer correction becomes

$$
z(\tau, \varepsilon)=x(t, \varepsilon)-X(t, \varepsilon)
$$

This gives:

$$
\begin{aligned}
\frac{d}{d \tau} z(\tau, \varepsilon) & =\varepsilon \frac{d}{d t} z(\tau, \varepsilon) \\
& =\varepsilon \frac{d}{d t}(x(t, \varepsilon)-X(t, \varepsilon)) \\
& =(A(t) x(t, \varepsilon)+b(t))-(A(t) X(t, \varepsilon)+b(t)) \\
& =A(\varepsilon \tau) z(\tau, \varepsilon) \\
& \frac{d}{d \tau} z(\tau, \varepsilon)=A(\varepsilon \tau) z(\tau, \varepsilon)
\end{aligned}
$$

Initial value:

$$
z(0, \varepsilon)=x(0)-X(0, \varepsilon)
$$

The right hand side is known from the outer solution.

Requirement: $z(\tau, \varepsilon) \longrightarrow 0$ for $\tau \longrightarrow \infty$

The Outer Expansion

$$
X(t, \varepsilon)=X_{0}(t)+\varepsilon X_{1}(t)+\varepsilon^{2} X_{2}(t)+\cdots
$$

Insert this into the differential equation:

$$
\varepsilon\left(\dot{X}_{0}(t)+\varepsilon \dot{X}_{1}(t)+\varepsilon^{2} \dot{X}_{2}(t)+\cdots\right)=A\left(X_{0}(t)+\varepsilon X_{1}(t)+\varepsilon^{2} X_{2}(t)+\cdots\right)+b
$$

Equating equal powers of ε, we obtain:

$$
\begin{array}{lll}
\varepsilon^{0}: & 0=A X_{0}+b & \Rightarrow X_{0}=-A^{-1} b \\
\varepsilon^{1}: & \dot{X}_{0}=A X_{1} & \Rightarrow X_{1}=-A^{-1} \frac{d}{d t}\left(A^{-1} b\right) \\
\varepsilon^{2}: & \dot{X}_{1}=A X_{2} & \Rightarrow X_{2}=-A^{-1} \frac{d}{d t}\left(A^{-1}\left(\frac{d}{d t}\left(A^{-1} b\right)\right)\right.
\end{array}
$$

This procedure can be continued as long as A is nonsingular and both A and b are sufficiently often differentiable.

Hint: In practice, a few terms will often do.

The Initial Layer Correction (cont)

Equating coefficients,

$$
\begin{array}{lll}
\varepsilon^{0}: & \frac{d}{d \tau} z_{0}=A(0) z_{0} & z_{0}(0)=x(0)-X_{0}(0) \\
\varepsilon^{1}: & \frac{d}{d \tau} z_{1}=A(0) z_{1}+\tau \dot{A}(0) z_{0} & z_{1}(0)=-X_{1}(0)
\end{array}
$$

Properties:

- $A(0)$ is a stable matrix. Hence, $z_{*}=0$ is a stable equailibrium point.
- All solutions z_{i} are decaying exponentially towards 0 .

We have now formally an expansion of $x(t, \varepsilon)$:

$$
X(t, \varepsilon)+z(t / \varepsilon, \varepsilon) .
$$

Q: Will it converge?

A: In generally, not! This is similar to Taylor expansions.

Matched Asymtotic Expansions

In the literature, often a slightly different approach is taken:

1. Find an asymptotic expansion of the outer solution $X(t, \varepsilon)$.
2. Transform the system into stretched variables,

$$
\frac{d}{d \tau} v=A(\varepsilon \tau) v+b(\varepsilon \tau), \quad v(0)=x(0)
$$

3. Find an asymptotic expansion of the inner solution $v(\tau, \varepsilon)$.
4. Apply matching rules with the outer expansion. These matching rules depend on the outer expansion, e.g.,

$$
\lim _{\tau \rightarrow \infty} v_{0}(\tau)=\lim _{t \rightarrow 0} X_{0}(t) .
$$

Asymptotic Expansions

Let us consider partial sums,

$$
X^{N}(t, \varepsilon):=\sum_{j=0}^{N}\left(X_{j}(t)+z_{j}(t / \varepsilon)\right) \varepsilon^{j}
$$

The representation is called an asymtotic expansion if, for any N, there exist a constant B_{N} such that

$$
\left|x(t, \varepsilon)-X^{N}(t, \varepsilon)\right| \leq B_{N} \varepsilon^{N+1}
$$

or, alternatively

$$
x(t, \varepsilon)-X^{N}(t, \varepsilon)=O\left(\varepsilon^{N+1}\right) .
$$

Notation:

$$
x(t, \varepsilon) \sim X(t, \varepsilon)+z(t / \varepsilon, \varepsilon)
$$

Note:

- Equality does not hold in general!!
- Away from the left boundary, $z(t / \varepsilon, \varepsilon)$ is negligible.

Nonlinear Problems

- The construction principle is similar to the one given above.
- The construction is technically often very expensive.
- Often, the first few terms will do.
- Example

$$
\begin{aligned}
\dot{x} & =f(x, y, t, \varepsilon), \\
\varepsilon \dot{y} & =g(x, y, t, \varepsilon)
\end{aligned}
$$

with given initial values $x(0)$ and $y(0)$.
Under the assumption that the reduced system

$$
\begin{aligned}
\dot{X}_{0} & =f\left(X_{0}, Y_{0}, t, 0\right), \\
0 & =g\left(X_{0}, Y_{0}, t, 0\right)
\end{aligned}
$$

has a solution such that $g_{y}\left(X_{o}(t), Y_{0}(t), t, 0\right)$ is stable, the existence of an asymptotic expansion can be proven.

- In the homework, you will consider a simple nonlinear example from biochemistry.

