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Introduction

Read: R.E. O’Malley, Jr.: pp 208–223

A mathematical model contains usually many (physical)
parameters.

Q: How does the solution depend on the parameters?

• Scale the system appropriately.

• Find out the important parameters.

Observation: Often, one or more of these parameters are
very small (or large) in magnitude.

Q: Does the reduced model (that is, setting the small
parameter to zero) say something about the original problem?
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The Problem

• Assume that our problem contains only one small, positive
parameter ε (0 < ε ≪ 1)

• Denote the problem by Pε.

• What happens if ε −→ 0?
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A first example

Pε : f (y,ε) = y2− εy−1 = 0

Solutions:
y(ε) =

1
2

(

ε±
√

ε2+4
)

Properties:

• Taylor expansion

y(ε) = ±1−
ε
2
±

ε2

8
+ · · ·

• y(ε) −→±1 for ε −→ 0

• ±1 are the solutions of the limiting (reduced) equation
Y 2

0 −1 = 0.
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A Second Example

Pε : f (y,ε) = εy2+2y+1 = 0

• Tempting: Neglect the εy2 term.

• Problem: P0 : f (y,0) = 2y+1 = 0 has only one solution.

• Q: Where has the second root disappeared?

• A: εy2 cannot be neglected! This term may become large.

Solutions:

y(1) = −
1
2
−

ε
8
−

ε2

16
+ · · · ,

y(2) = −
2
ε

+
1
2

+
ε
8

+ · · ·

Observation: y(2) consists of a ”regular” expansion plus a
singular correction term.
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Singular Perturbations

A perturbation problem Pε is called regular if its solution yε
features smooth dependence on the parameter.

Interpretation: Since ε usually represents a physically
meaningful parameter, letting ε tend to 0 corresponds to
neglecting the effect of small perturbations.

A perturbation problem is called singular if it is not regular.

The first example is a regular perturbation while the second
one is a singular perturbation.

Loosely spoken, in a singular perturbation problem, the
problem changes its character.
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Example: Initial Value Problem

Pε : εẋ+ x = 0, x(0) = 1

• Solution: x(t,ε) = exp(−t/ε)
• Note: If ε < 0, the solution blows up!

• Limiting solution:

x(t,ε) −→

{

1, t = 0,

0, t > 0.

• The limiting solution does not satisfy the limiting problem

X0 = 0.

• A regular expansion of the type

x(t,ε) ∼ X0(t)+ εX1(t)+ ε2X2(t)+ · · ·

cannot hold.

• What has happened to the initial condition?? =⇒

Indication of a singular perturbation problem.
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The Example Continued
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• The behavior near t = 0 is called an initial layer.
• The nonuniform convergence takes place in a layer of

thickness ε in t.

The initial layer can conveniently be described by introducing
the stretched variable

τ = t/ε.

In that variable, the problem becomes

dz
dτ

+ z = 0, z(0) = 1.
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Linear Initial Value Problems

εẋ = A(t)x+b(t)

Assumptions:

• A(t) is stable for all t ≥ 0, i.e., all eigenvalue lie in the left
complex halfplane.

• A and b are smooth.

Basic idea: Decompose the solution into two parts, a regular
one X(t,ε) and a singular correction term z(τ,ε),

x(t,ε) = X(t,ε)+ z(t/ε,ε)

Notation:

• X(t,ε) is the outer solution.

• z(τ,ε) is the initial layer correction.
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The Outer Expansion

X(t,ε) = X0(t)+ εX1(t)+ ε2X2(t)+ · · ·

Insert this into the differential equation:

ε(Ẋ0(t)+εẊ1(t)+ε2Ẋ2(t)+ · · ·) = A(X0(t)+εX1(t)+ε2X2(t)+ · · ·)+b

Equating equal powers of ε, we obtain:

ε0 : 0 = AX0+b ⇒ X0 = −A−1b

ε1 : Ẋ0 = AX1 ⇒ X1 = −A−1 d
dt

(A−1b)

ε2 : Ẋ1 = AX2 ⇒ X2 = −A−1 d
dt

(A−1
( d

dt
(A−1b)

)

This procedure can be continued as long as A is nonsingular
and both A and b are sufficiently often differentiable.

Hint: In practice, a few terms will often do.

Michael Hanke, NADA, November 6, 2008 9

The Initial Layer Correction

In order to match the initial value x(0), introduce the stretched
variable

τ = t/ε.
The initial layer correction becomes

z(τ,ε) = x(t,ε)−X(t,ε)

This gives:

d
dτ

z(τ,ε) = ε
d
dt

z(τ,ε)

= ε
d
dt

(x(t,ε)−X(t,ε))

= (A(t)x(t,ε)+b(t))− (A(t)X(t,ε)+b(t))

= A(ετ)z(τ,ε).

d
dτ

z(τ,ε) = A(ετ)z(τ,ε)

Initial value:

z(0,ε) = x(0)−X(0,ε)

The right hand side is known from the outer solution.

Requirement: z(τ,ε) −→ 0 for τ −→ ∞
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The Initial Layer Correction (cont)

Equating coefficients,

ε0 :
d
dτ

z0 = A(0)z0 z0(0) = x(0)−X0(0)

ε1 :
d
dτ

z1 = A(0)z1+ τȦ(0)z0 z1(0) = −X1(0)

Properties:

• A(0) is a stable matrix. Hence, z∗ = 0 is a stable
equailibrium point.

• All solutions zi are decaying exponentially towards 0.

We have now formally an expansion of x(t,ε):

X(t,ε)+ z(t/ε,ε).

Q: Will it converge?

A: In generally, not! This is similar to Taylor expansions.
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Asymptotic Expansions

Let us consider partial sums,

XN(t,ε) :=
N

∑
j=0

(X j(t)+ z j(t/ε))ε j

The representation is called an asymtotic expansion if, for
any N, there exist a constant BN such that

|x(t,ε)−XN(t,ε)| ≤ BNεN+1,

or, alternatively

x(t,ε)−XN(t,ε) = O(εN+1).

Notation:

x(t,ε) ∼ X(t,ε)+ z(t/ε,ε)

Note:

• Equality does not hold in general!!

• Away from the left boundary, z(t/ε,ε) is negligible.
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Matched Asymtotic Expansions

In the literature, often a slightly different approach is taken:

1. Find an asymptotic expansion of the outer solution X(t,ε).
2. Transform the system into stretched variables,

d
dτ

v = A(ετ)v+b(ετ), v(0) = x(0).

3. Find an asymptotic expansion of the inner solution v(τ,ε).
4. Apply matching rules with the outer expansion. These

matching rules depend on the outer expansion, e.g.,

lim
τ→∞

v0(τ) = lim
t→0

X0(t).
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Nonlinear Problems

• The construction principle is similar to the one given
above.

• The construction is technically often very expensive.

• Often, the first few terms will do.

• Example

ẋ = f (x,y, t,ε),

εẏ = g(x,y, t,ε)

with given initial values x(0) and y(0).
Under the assumption that the reduced system

Ẋ0 = f (X0,Y0, t,0),

0 = g(X0,Y0, t,0)

has a solution such that gy(Xo(t),Y0(t), t,0) is stable, the
existence of an asymptotic expansion can be proven.

• In the homework, you will consider a simple nonlinear
example from biochemistry.
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