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Introduction

Read: R.E. O'Malley, Jr.: pp 208-223

A mathematical model contains usually many (physical)
parameters.

Q: How does the solution depend on the parameters?

e Scale the system appropriately.
e Find out the important parameters.

Observation: Often, one or more of these parameters are
very small (or large) in magnitude.

Q: Does the reduced model (that is, setting the small
parameter to zero) say something about the original problem?
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The Problem

e Assume that our problem contains only one small, positive
parametere (0 < € < 1)

e Denote the problem by P..
e What happens if ¢ — 0?
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A first example

Pe: f(y,e)=y?—ey—1=0

Solutions:

) =5 (e Ver T 4)

Properties:

e Taylor expansion

e g2
T T T
y(e) >fgt

o y(e) — tlfore — 0

e +1 are the solutions of the limiting (reduced) equation
Y2-1=0.
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A Second Example

Pe: f(ye)=gy°+2y+1=0

Tempting: Neglect the gy? term.
Problem: Py : f(y,0) = 2y+ 1 = 0 has only one solution.
Q: Where has the second root disappeared?

A: gy? cannot be neglected! This term may become large.

Solutions:

Observation: y® consists of a "regular” expansion plus a
singular correction term.
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Singular Perturbations

A perturbation problem P; is called regular if its solution y;
features smooth dependence on the parameter.

Interpretation: Since € usually represents a physically
meaningful parameter, letting € tend to 0 corresponds to
neglecting the effect of small perturbations.

A perturbation problem is called singular if it is not regular.

The first example is a regular perturbation while the second
one is a singular perturbation.

Loosely spoken, in a singular perturbation problem, the
problem changes its character.

Michael Hanke, NADA, November 6, 2008

Example: Initial Value Problem

Pe: ex+x=0, x(0)=1

Solution: x(t,€) = exp(—t/€)
Note: If € < 0, the solution blows up!
Limiting solution:

t=0,

X(LE) — {1’

0, t>0.

e The limiting solution does not satisfy the limiting problem
Xo=0.
e A regular expansion of the type
X(t,€) ~ Xo(t) + eXg(t) +E2Xo(t) + -

cannot hold.

e What has happened to the initial condition?? —-
Indication of a singular perturbation problem.
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The Example Continued

e The behavior neart = Oiis called an initial layer.

e The nonuniform convergence takes place in a layer of
thickness e in t.

The initial layer can conveniently be described by introducing
the stretched variable

T=t/e.

In that variable, the problem becomes

dz
a-i-z:o, z(0)=1.
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Linear Initial Value Problems The Outer Expansion

ex = A(t)x+b(t) X(t,€) = Xo(t) + Xy (t) +&2Xa(t) + - --
Assumptions: Insert this into the differential equation:

e A(t) is stable for all t > 0, i.e., all eigenvalue lie in the left £(Xo(t) +€Xa(t) +E2Xa(t) + -+ ) = A(Xo(t) + EXa(t) +E2Xa(t) ++ -+ ) +b
complex halfplane.

Equating equal powers of €, we obtain:
e Aand b are smooth. q g equalp '

€0 0=A%+b =X=-A

Basic idea: Decompose the solution into two parts, a regular d
one X(t,€) and a singular correction term z(1, ), gl Xo=AX =X = —A’la(A’lb)

X(t,€) = X(t,€) +z(t /g, &) L X =A% =X = fA’lg(A’l(%(A’lb))

Notation: This procedure can be continued as long as A is nonsingular
and both A and b are sufficiently often differentiable.

e X(t,€) is the outer solution.
e z(1,¢) is the initial layer correction. Hint: In practice, a few terms will often do.
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The Initial Layer Correction

In order to match the initial value x(0), introduce the stretched
variable

T=t/e
The initial layer correction becomes

Z(t,€) = x(t,€) — X(t,€)

d/dt!)

This gives:

d d
EZ(T,E) = eaz(T,e)

= e%(x(t,E) —X(t,g))

= (A(t)x(t,e) +b(t)) — (At)X(t,€) +b(t))
= A(e1)Z(T,¢€).

20(1) + €21 (1) +€%2(T) + - -

Near t = 0, we can use the Taylor expansion (Note: *

7(t,€)

%Z(T, €) = A(eT)z(t,€)

The Initial Layer Correction (cont)

Initial value:

2(0,€) = x(0) — X(0,¢)

The right hand side is known from the outer solution.

Requirement: z(t,e) — 0for T — o

Inserting this into the differential equation, we obtain
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Formal ansatz:

Michael Hanke, NADA, November 6, 2008




The Initial Layer Correction (cont)

Equating coefficients,

%zo = A0)2 2(0) = X(0) — X%o(0)

%zl =A0)z+T1A0)z  z(0) = —X1(0)

Properties:
e A(0) is a stable matrix. Hence, z. =0 is a stable

equailibrium point.
e All solutions z are decaying exponentially towards 0.

We have now formally an expansion of x(t,€):
X(t,e) +z(t/g,€).

Q: Will it converge?

A: In generally, not! This is similar to Taylor expansions.
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Asymptotic Expansions

Let us consider partial sums,

N

X'(te) = 3 (Xi(0) +2(t/2)e

j=

The representation is called an asymtotic expansion if, for
any N, there exist a constant By such that

x(t,g) — XN(t,£)| < ByeN*,

or, alternatively
x(t,€) — XN(t,e) = O(eN*1).

Notation:

X(t,€) ~ X(t,€) +2(t/g,€)

Note:

e Equality does not hold in general!!
o Away from the left boundary, z(t/¢,€) is negligible.
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Matched Asymtotic Expansions

In the literature, often a slightly different approach is taken:

. Find an asymptotic expansion of the outer solution X(t,€).
. Transform the system into stretched variables,

%v = A(eT)v+b(et), v(0) =x(0).

. Find an asymptotic expansion of the inner solution v(t,€).
. Apply matching rules with the outer expansion. These
matching rules depend on the outer expansion, e.g.,

lim vo(1) = lim Xo(t).
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Nonlinear Problems

The construction principle is similar to the one given
above.

The construction is technically often very expensive.
Often, the first few terms will do.
Example

).(: f(X7y7t78)7
Ey: g(X7 y7t78)

with given initial values x(0) and y(0).
Under the assumption that the reduced system

Xo = f(Xo,Yo,t,0),
0= g(X03Y07t70)

has a solution such that g,(X(t), Yo(t),t,0) is stable, the
existence of an asymptotic expansion can be proven.

In the homework, you will consider a simple nonlinear
example from biochemistry.

Michael Hanke, NADA, November 6, 2008




