The Problem

Chapter 1: Differential-Algebraic Equations

Michael Hanke

Mathematical Models, Analysis and Simulation, Part I

Consider the differential equation

$$
A(t, x) x^{\prime}+g(t, x)=0
$$

or, more generally, $F\left(t, x, x^{\prime}\right)=0$. Here, all involved functions $x: I \rightarrow \mathbb{R}^{n}$ etc are vector-valued functions!

The matrix-valued function $A(t, x)$ is assumed to be singular for all values of their arguments.

Applications:

- Electrical circuits (see Strang, sections 2.4, 2.6, pp. 179-181, handout for homework)
- Constraint mechanical multibody systems
- Singular perturbed problems (covered in next lecture)
- (Semi-) Discretization of multiphysics systems (covered in later lectures)

Constraint Mechanical Multibody Systems

In case of holonomic constraints, Lagrangian calculus of the first kind gives:

$$
\begin{aligned}
M(p) p^{\prime \prime} & =f\left(p, p^{\prime}\right)-R(p)^{T} \lambda \\
0 & =r(p)
\end{aligned}
$$

where $R(p)=(\partial / \partial p) r(p)$.
p - (generalized) positions
Reformulation as a first order system: $x=(p, v, \lambda), v=p^{\prime}$

$$
A(t, x)=\left(\begin{array}{ccc}
I & 0 & 0 \\
0 & M(p) & 0 \\
0 & 0 & 0
\end{array}\right), g(t, x)=\left(\begin{array}{c}
-v \\
-f(p, v)+R(p)^{T} \lambda \\
r(p)
\end{array}\right)
$$

The Mathematical Pendulum

A pendulum is fixed at origo in the (x, y)-plane. Langrangian calculus of the first kind provides the mathematical model,

$$
\begin{aligned}
m x^{\prime \prime} & =-\lambda x, \\
m y^{\prime \prime} & =-m g-\lambda y, \\
0 & =x^{2}+y^{2}-l^{2} .
\end{aligned}
$$

The first two equations are differential ones while the last is an algebraic equation.

Note: Often, the algebraic relations are "hidden" in the system and not that easy to identify.

A more general example of this type is given in Strang, p. 180.

Partial Differential Equations

- Navier-Stokes equation
- Momentum equation: $\frac{\partial}{\partial t} u-v \Delta u+u \cdot \nabla u+\nabla p=0$
- Incompressibility condition: div $u=0$
- Heat equation (in more detail later)
- Conservation law: $\frac{\partial}{\partial t} T+\operatorname{div} \Phi=0$
- Material law: $\Phi=-k \nabla T$

Multiphysics problems lead to mixed systems, so-called partial differential-algebraic equation.

This is a subject of active research.

Singular Perturbed Odes

Consider

$$
\begin{aligned}
y^{\prime} & =f(y, z), \\
\varepsilon z^{\prime} & =g(y, z)
\end{aligned}
$$

Assume ε to be a small paramter. Often, the solution of the system obtained by formally setting $\varepsilon=0$ is a good approximation to the original one. See next lecture.

Semiexplicit Systems

$$
\begin{gathered}
y^{\prime}=f(y, z), \\
0=g(y, z)
\end{gathered}
$$

is a semiexplicit dae with $x=(y, z)$.

- The second equation respresents a constraint on the solution $x=(y, z)$.
- It would be natural to consider the (restricted) dynamics on the manifold

$$
\mathscr{S}=\{(y, z) \mid g(y, z)=0\} .
$$

- Hence, differential equations on manifolds are the "natural" framework.

Here, we make an elementary analysis, only!
Note: Compare the relation between Lagrangian calculus of first and second kinds!

Linear Constant Coefficient Daes

$$
A x^{\prime}(t)+B x(t)=q(t)
$$

with A, B being square $n \times n$-matrices. A dae is obtained if A is singular.

Definition: (A, B) forms a regular matrix pencil iff there exists a $\lambda \in \mathbb{C}$ such that $\lambda A+B$ is nonsingular. Otherwise, the matrix pencil is called singular.

Note: If (A, B) is a singular pencil, the homogeneous initial value problem

$$
A x^{\prime}+B x=0, \quad x(0)=0
$$

has infinitely many solutions

The Index of a Dae

Theorem: For any regular matrix pencil (A, B), there exist nonsingular matrices E, F such that

$$
E A F=\left(\begin{array}{ll}
I & \\
& J
\end{array}\right), \quad E B F=\left(\begin{array}{ll}
W & \\
& I
\end{array}\right)
$$

where J is a nilpotent Jordan block matrix,

$$
J^{\mu-1} \neq 0, J^{\mu}=0 \text { for some } \mu \in \mathbb{N}
$$

By definition $\mu=0$ means that the second block row is missing, i.e., A is nonsingular.
μ is called the index of the matrix pencil (A, B) and of the dae.
$\left(\begin{array}{ll}I & \\ & J\end{array}\right),\left(\begin{array}{ll}W & \\ & I\end{array}\right)$ is called the Kronecker canonical form of the pencil (A, B).

The Index of a Dae (cont)

Use the change of variables

$$
\binom{y}{z}=F^{-1} x
$$

and scale the dae by E :

$$
\begin{gathered}
E A F\left(F^{-1} x\right)^{\prime}+E B F\left(F^{-1} x\right)=E q(t) \\
\left(\begin{array}{ll}
I & \\
& J
\end{array}\right)\binom{y}{z}+\left(\begin{array}{ll}
W & \\
& I
\end{array}\right)\binom{y}{z}=\binom{p(t)}{r(t)}
\end{gathered}
$$

or, equivalently:

$$
\begin{aligned}
y^{\prime}+W y & =p(t), \\
J z^{\prime}+z & =r(t) .
\end{aligned}
$$

The first equation is a usual (explicit) ode.

Why Is The Index Important?

$\mu=0$ The second row is missing. The dae is in fact an ode.
$\mu=1$ Hence, $J=0$ such that the second row reads

$$
z=r .
$$

Nothing special.

Note: While y is obtained by integrating, z is determined by a pure algebraic realtion. Moreover, the initial value for z cannot be chosen freely, it is fixed by the right hand side r

Higher Index Problems: $\mu=2$

Here, $J^{1} \neq 0$ while $J^{2}=0$. Multiply the second row by J :

$$
\begin{aligned}
J^{2} z^{\prime}+J z & =J r \Longrightarrow(J z)^{\prime}=(J r)^{\prime} \Longrightarrow \\
z & =r-J z^{\prime}=r-(J r)^{\prime}
\end{aligned}
$$

- Some components of z are given by algebraic relations, others by differentiated components of the right hand side.
- Our "integration" problem contains a differentiation problem!

What is bad with differentiation problems?

- Consider $x(t)=q^{\prime}(t)$
- Add a small perturbation, $x_{\varepsilon}(t)=(q+\varepsilon \cos (\omega t))^{\prime}$
- It holds $\| q-(q+\varepsilon \cos (\omega \cdot) \|=|\varepsilon|$
- Nevertheless, $\left\|x-x_{\varepsilon}\right\|=|\omega \varepsilon|$ may become arbiritrarily large!
- Differentiating is an ill-posed problem.

Index Reductions

Start with a semiexplicit index-1 system,

$$
\begin{aligned}
y^{\prime} & =-B_{11} y-B_{12} z+p, \\
0 & =-B_{21} y-B_{22} z+r .
\end{aligned}
$$

This dae has index 1 if and only if B_{22} is nonsingular.
Then:

$$
\begin{aligned}
z & =B_{22}^{-1}\left(-B_{21} y+r\right), \\
y^{\prime} & =\left(-B_{11}+B_{12} B_{22}^{-1} B_{21}\right) y+p-B_{12} B_{22}^{-1} r .
\end{aligned}
$$

- This system is an index-1 system as before.
- The differential equation is completely decoupled such that the ode theory applies.
- Can one even avoid the assignment for z ?

Notes

- For $\mu \geq 3$, it holds

$$
z=\sum_{j=0}^{\mu-1}(-1)^{j}\left(J^{j} r\right)^{(j)}
$$

- Relations of the type $(J z)^{\prime}=(J r)^{\prime}$ are called hidden constraints.
- Initial value problems become solvable for consistent initial values, only,

$$
x(0)=F\binom{y(0)}{z(0)}=F\binom{y_{0}}{z(0)}
$$

This includes the hidden constraints!

Index Redutions (cont)

Differentiate the constraint in the original dae:

$$
0=-B_{21} y^{\prime}-B_{22} z^{\prime}+r^{\prime}
$$

Then, the system reads:

$$
\left(\begin{array}{cc}
I & 0 \\
B_{21} & B_{22}
\end{array}\right)\binom{y^{\prime}}{z^{\prime}}+\left(\begin{array}{cc}
B_{11} & B_{12} \\
0 & 0
\end{array}\right)\binom{y}{z}=\binom{p}{r^{\prime}} .
$$

This is an index-0 dae (an ode)
Conclusion: By differentiation of the algebraic constraint, the index can be reduced by one.

- The index-reduced system is not equivalent to the original one!
- The new system has more degrees of freedom (initial values for z).
- How to do that in more implicitely given systems?
- Do there exist better index reduction methods? Yes and No!

The Differentiation Index

Definition: For a general dae $F\left(x^{\prime}, x, t\right)=0$, the index along a solution trajectory $x(t)$ is the minimum number of differentiations of the system which would be required to solve for x^{\prime} uniquely in terms of x and t.

- If there does not exist such a value, the index is undefined.
- For many applications, the index is known or can easily be checked. (Introductory examples!)
- Often, structural considerations help, but this may be misleading.
- The differentiation index may underestimate the sensitivity with respect to perturbations.

Examples

1. Consider

$$
\begin{aligned}
x_{1}^{\prime} & =x_{3} \\
0 & =x_{2}\left(1-x_{2}\right) \\
0 & =x_{1} x_{2}+x_{3}\left(1-x_{2}\right)-t
\end{aligned}
$$

The system has two (continuous) solutions, one with $x_{2} \equiv 0$ and one with $x_{2} \equiv 1$.

- If $x_{2} \equiv 0$, the system has differentiation index 1 .
- If $x_{2} \equiv 1$, the system has differentiation index 2 .

2. Consider the system

$$
\begin{aligned}
x_{1}^{\prime} & =x_{3}, \\
x_{2}^{\prime} & =0, \\
0 & =x_{1} x_{2}+x_{3}\left(1-x_{2}\right)-t .
\end{aligned}
$$

Now, the index depends on the initial conditions. If $x_{2}(0)=0$, the index is 1 , and if $x_{2}(0)=1$, the index equals 2.

