Mathematical Models, Analysis and Simulation
Part |, Fall 2008.

August 29, 2008

Homework 5, Enzymatic Reactions. (Score: 6 or 7)

Most chemical reactions in biology are catalyzed by enzyrAesatalyst is a chemical substance
which influences the speed of chemical reactions by eitheglaating or slowing down the re-
action by changing activation energies. Even if the catay/gvolved in the reactions, at the
end it neither did change nor is it part of the rection produktt inorganic chemistry the catalyst
is often neglected when describing catalytic reaction® Jituation is different in bio-chemical
reactions because the number of enzyme molecules is tedtas well as their chemical activity.
Therefore, one has to include the kinetics of the catalygnvhathematically modelling enzy-
matic reactions. A more detailed description can be founthénaccompanying excerpt from
C.C. Lin, L.A. SegelMathematics Applied to Deterministic Problemsin the Natural Sciences.

1. (1.5) Let us start with a simple problem in order to repeat the Isasionsider the scalar
initial value problem

ex=(t— 1)z, z(0)=1.

a) Find the exact solution(t, ¢).

b) Show that the outer solutiaki (¢, ) for 0 < ¢ < 1 is asymptotically trivial.
c) Determinex(1,¢) and its asymtotic size.

d) Explain, on symmetry grounds, why2, ¢) = 1.

e) Show that:(¢, ) becomes exponentially large fox 0 andt > 2.




Schematically, an enzymatic reaction can be described by,
S+F+«——(C—P+F,

whereS is some substratdy the enzyme, and’ the enzyme-substrate molecule, or complex.
P is the product. Let andc denote the scaled concentrationsSodndC, respectively. After a
careful scaling of the chemical parameters (cf. the praVictgpies), the kinetics of the system
can be described by

§=—-s+(s+rK— N, (1)
eé¢=s—(s+ k), (2)

wherex and\ are positive constants of order 1 whildulfills 0 < ¢ < 1. Here,s = ds/dt and
¢ = de/dt. The initial values at = 0 are given by

s(0)=1, ¢(0)=0. (3)

This is a singular perturbation problem. Your task will bectompute a uniforn© (=) approxi-
mation to the solution of the problem (1), (2), (3).
The reduced problem is

So = —So + (So + Kk — A)C, (4)
0= S() - (So + H)Co. (5)

Since0 < ¢(t) < 1forall ¢t > 0, (4) indicates that we should expect an initial layer near0.
Therefore, the following ansatz for asymptotic expansgojustified:

s(t,e) = S(t,e) + e&(T,¢), (6)
c(t,e) = C(t,e) + n(r,e), (7)

wherer = t/¢ is the stretched time. Moreover,
S(t, E) ~ S()(t) + €Sl(t) + 5252(t) +---, C(t,E) ~ C()(t) + Ecl(t) + EZCQ(t) + -
are the regular expansions of the outer solutiSfisc) andC/(t, <), respectively, while

E(t,e) ~ &(t) +e&t) +--- ) nte) ~no(t) +em(t) +em(t) + -

are the asymtotic expansions of the inner solutigf{s, <) andn(r, ) which vanish exponen-
tially for 7 — oc.

2. (1.0) Show that the solution of the reduced problem (4), (5) will tia satisfy the initial
conditionC(0) = 0!

Note: The reaction rate in the differential equation fyrhas an important chemical interpre-
tation. This reaction rate includes saturation effectsthinbio-chemical literature, it is known
as theMichaelis-Menten kinetics.



3. (1.0) Because of
ds _dS d§ dc_dC  ldp

w - a T @ @ T car

it holds
d¢ ds dS
e h @ (SH+e)+(S+ef+r—=NC+n)+S—(S+r-XNC,
dy  (de dC\
%—5<%—%)—S+5§ (S+e£+k)(C+n)—S+(S+k)C.

By lettinge — 0 show thaty, fulfils

dno . _ _ —1
g —(1+K)no, mo(0) = —=C(0) = T+ r

Solve this equation!
4. (2.0) If your computations are correct, then it holds

s(t,€) — Solt) = O(e),
c(t,e) = (Co(t) +mo(t/€)) = O(e)

uniformly on every bounded interval. Perform numerical pomations, e.g. ilvat | ab, fore =
0.1ands = 0.01 0on, sayt € [0, 1], and compare(t, ) with Sy(t) andc(t, €) with Co(t)+no(t/¢),
respectively.

5. (0.5) It is interesting to look at the asymptotic behaviour forywemall and very large
values oft. For very small values af Sy(¢) can be approximated by a Taylor expansion,

So(t) = So(0) + t5,(0) + - - -

Do it!
6. (1.0) How doesS(t) behave for very large times?



