Mathematical Models, Analysis and Simulation
Part |, Fall 2008

November 3, 2008

Homework 7: DFT and spectral methods. (Score 7.0)

1 Spectral interpolation and differentiation

ConsiderL—periodic functionsf and the grid = kL/N, k=0,1,2,....N—1,N=2" m=
1,2,... The discrete Fourier transform (Strang Ch 4.3) establifiiesorrespondence between
function valuesf (xj) = fj, DFT coefficients, and the spectral interpolahitf,

N—1 N 1 N-1 .
j; J J J N J; J
1. (1.0) Take

f(X) _ e—M(X/L—O.S)2
on [0, L] with periodic extensiori (x) = f(x+L) for all x. Its Fourier coefficientsy decay,
L . 0 .
ay = %/O fe™hdx, f(x)= 5 ae™ht a=0(j7P).
j=—00

f’s "almost continuity” depends oM. What p do you expect for iiM = 1 and a sub-
stantially largerM, say, ii)M = 100? Why is this relevant for spectral computation of

derivatives?
For M = 60, compute the DFT coefficientg for N = 2*. Then evaluat€l f on a much
denser grid, saxpl = | inspace(0, L, 400), and plot the data and the interpolant

vs. X. Note: Complex numbers!

The grid can easily be generated using the command sequence
x1 = linspace(0,L, N+1);

X = X1(1:N);

The plot can be generated conveniently using



pl ot 3(x,real (f),img(f),o0); hold on
pl ot 3(xpl,real (fpl),imag(fpl)); hold off
Comment on the suitability dfl f for differentiation.

. (0.5) A better, much less wiggly interpolant can be constructedusiyng the interval
—N/2,...,N/2—1instead of 0...,N — 1 of the DFT coefficients and basis function wave
numbers. Look up whdtf t shi ft does, plot, and explain the formulas

fhat = fft(f);

dfhat = 2xixpi/Lx[-N2: (N 2-1)]" .«fftshift(fhat);

df = ifft(fftshift(dfhat));

for computingd fx as approximations té’(x)!

. (1.0) Show that for realff, the formula (*) is equivalent to the DP matrix in Strang ChA 5.
p449, and the formula on top of p 450.
Hints: i) the DFT coefficients ard-periodic, and so are the basis function values at grid-

points. Show!

i)
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The real part of the above development produces Shanpsm’ac. The imaginary part
vanishes on all gridpoint®ut not in between.

Let” on the sum mean taking half the first and last terms. Show yinatetrizing the sum

to
N/2

PI) = 3" ce™/t
k="N/2

makes the imaginary part vanish, and that
Pf(x) = Mf(X) +icysin(tnx/L)
This shows how to evaluatef, and its derivatives at gridpoints, by FFT.

. (0.5) Compute the RMS normi|f||rus = /& kg | k|2, Of the errors of derivatives at
grid points withm = 3,4,5,6,7; plot in a suitable lin-log diagram and discussdlleged
exponential convergence.



2 Spectral method for First-order-in-time Named Equations
Consider the model equation
O + A(QP)x + BOx = €20 + 30,  0<X<L, t>0, q(x0)=f(x) ()

with €2 > 0, f,qg L-periodic, andA, B, g constant.

2.1 Implementation (1.0)

See Strang Ch 6 p 456 and p522, and give the valuRsRE,, €3 which give the heat, convection-
diffusion, Schrodinger, Airy, Burger’s, and Kortewegutees equations. Your task is to write a
high-order method (fourth order in time, exponential ortlespace) for numerical solution of
the initial-boundary value problem for this family of model

Let the spectral differentiation matrix [@&P. Borrowing notation from MATLAB, the semi-
discretized PDE (**) becomes the system of ODEs

Qt = DP x (—BQ — AQ. * Q + DP x (€2Q +€3DP x Q)),

where
Q — (q07q17'~',qj7~'~7qul)T

The differentiations should NOT be implemented by matrixtiplication (Why?), but byf f t ,
fftshift, andifft, like above. Use the classical Runge-Kutta-4 scheme fortithe-

stepping.

2.2 Theheat equation (1.5)

For f(x) = sin(2rx/L) the exact solution is known. Take= 1€, =1,m=3,4,5,6,7 and solve
untiltimeT = 0.1 and 1.

1. What is the time-step limit . for stability? This question may be answered either the-
oretically or experimentally. The RK4 stability region dretreal line is approX—2.8,0].

2. For eachm, choose a sufficiently smaflt that the error is dominated by the spatial error,
and record the RMS norms of differences with the exact smiutPlot in a lin-log diagram
and conclude exponential convergence (or not?)

3. For parabolic initial value problems one usually choosgdicit schemes. Explain (dont
code) how to use the implicit Euler scheme. Hint: Solve theESIor the DFT coeffi-
cients! Transform to physical space only at the output tidessred. Indeed, it is easy to
compute the exact solution to this system of ODE since theixiatdiagonal. Explain!



2.3 Burgersequation (1.5)

Take f (x) = sin(tx/L),L =1, m=4,5,6,7. Fore, > 0 the solution is smooth for all times, but
for 2 = 0 it develops discontinuities after finite time, everf ifs smooth.

e Determine at what time the wave breaks and the solution besafiscontinuous. You
observe "wiggles” around a front when it becomes steep eémougok up the Gibb’s
phenomenon and comment. Use a sraalb 0 to smooth the wiggles.

¢ Verify by computation the analysis fdr(x) = &x—L/2) on Strang pp. 522-523. You
may need to choose a non-zeroand a smooth approximation to the delta-function, like
f(x) = ae"MX/L-057 for some suitably largél. Choosen so the approximate delta-
function has mass 1% f(x)dx = 1.

2.4 An equation of your choice (optional, 1.0)

Choose another equation for which you find something intiexggsn Strang, or on the web.
Solve it accurately and verify the properties.



