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Lab 8: DN2266 Modeling 
projects
Deadline: Jan 11, 2009

The last lab of the course is a modeling exercise involving some 
well-known application. The solution requires numerical 
computing, often the solution of a PDE for which COMSOL 
Multiphysics is available. You shall choose exactly one project!
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The D’Alembert Paradox – 3D mesh 
refinement

Background
The paradox states that the force exerted by potential flow on a 
closed body vanishes. Your task is not to resolve the paradox but 
rather to verify its mathematical formulation, and to investigate a 
simple model devised by the NACA-scientist M.Munk in 1924 for 
forces and moments on slender bodies.
We consider the potential model for plane incompressible flow of 
negligible viscosity,  

u ,v ,w =−∇Φ , ΔΦ=0,
∇Φ⋅n=0 on the solid boundary Γ ,
Φ≈U  xcosαz sinα  far away

where Φ is the velocity potential, Γ is the surface of an object 
immersed in a wind of magnitude U at “angle of attack” α:

The pressure is computed by Bernoulli’s law
p1 /2ρ∣u ,v ,w ∣2=const .=p

∞
1/2U2

where p(x,y,z) is the (static) pressure (unit: N/m2), pinfty is the 
undisturbed static pressure and ρ is the density (constant) of the 
fluid. The force on the solid boundary is directed along the normal 
and proportional to pressure: pn. 
Your task is to compute the force and the moment on the body, and 
compare your results with the Munk approximation for slender 
bodies: the moment is that of a pure couple and proportional to the 
volume in 3D of the body

M=qV sin2αcosα ,q=1/2ρU2

where q is called the dynamic pressure.
Force and moment around point r0 = (x0,y0,0):

F=∫
Γ

pndS ,M=∫
Γ

pn×r−r0 dS ,

Tasks
Choose some simple shape like an ellipsoid for the body, and a 
large sphere of radius about 10 times the body length. Use U = 1 
and ρ = 1. Solve the PDE with COMSOL, use boundary integration 
to plot force and moment for a range of α-values from 0 to 45o. Try 

α

Γ
(

�
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different aspect ratios for the ellipsoid, from circle to thin cigar and 
comment on the accuracy of Munk’s moment formula. 

Hints: You need a fine grid close to the body! Use local mesh 
refinement and conduct a convergence study. Plot streamlines and 
modulus of the gradient to illustrate. Define α and the expression 
for the far away (Dirichlet) condition to make it simple to change U 
and α. Try the parametric solver  (under solver parameters) to 
generate the solutions for  α = 0:5:45 degrees at once.

Questions
Show that 

i) Constant pressure give zero force and moment, so you 
can choose pressure far away as you please, like = 0.

ii) Pressure with constant gradient gives force directed 
along the gradient, proportional to the volume, 
discovered before BC 200 by … whom?

iii) For a given body, M depends on α, ρ,  and U. Show, by 
using linearity of the flow equations, that 

M α ,ρ ,U =2qM α ,1 ,1
(Looks funny, but remember that q far away is 1/2). You 

can also use dimensional analysis to derive the formula.

Report
1. Description of COMSOL model, explanations on how the 

mesh was refined, etc.
2. Plots of the Munk result and your obtained results for M for a 

fat ellipsoid (sphere) and a thin cigar.
3. Answers to questions
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The FitzHugh-Nagumo model for neural wave 
propagation

The model
Look up the FitzHugh-Nagumo model on 
Wikipedia. This URL is historical but writes 
the equations differently: 

http://www.scholarpedia.org/article/FitzHugh-Nagumo_model
 The FHN-equations are

v t=DΔvf v −wIapp
w t=εv−γw 

f v =vv−α 1−v 
and a time-plot of v at a point for a particular set of parameter 
values is shown right. The cubic non-linearity gives the system 
bifurcations. There are limit cycles, or stable equilibria, or “single 
pulse” solutions depending on the applied current Iapp. We fix the 
parameters

α = 0.14, ε  = 0.01 and γ  = 0.254 
for the lab work and look for values of D and Iapp which produce 
interesting results.

Make a model for the spike generation and 
propagation by diffusion of a nerve impulse 
on a plane domain as follows. The result of a 
similar simulation is in fig 2. The task is to 
find parameter values which produce the 
different types of solution and show 
simulations.
The excitation is an applied current in a 
small circular sub-domain, say at (x0,y0) with 
radius R. If the current is too small, nothing 
much happens. 

Tasks
1. Identify the parameter values with an ODE model (i.e. D = 0) 

for which you can run simulations quickly in MATLAB. That 
also gives information on the time-scale: the period and 
length of pulses. Find the threshold (actually, “quasi-
threshold”) current for the appearance of the limit cycle of 
spikes.
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2. COMSOL modeling
Construct a “pepparkakehjärta”-shaped geometry and 

position the excitation electrode. Use homogeneous Neumann 
boundary conditions for v and w. 

Try also Dirichlet for v – what happens if you try Dirichlet for 
w?

Hints: Choose the PDE Modes/PDE Coefficient form/Time-
dependent analysis mode, 2D, in the Model Navigator, and name 
two variables v and w. Create constants alpha, epsil, gamma, D, 
x0, y0, R and Iapp (and maybe a few more) under Options

3. The ODE runs will give an idea of the period of the spikes. 
Once you know the time scale, you can choose a value for D 
which gives steep fronts without too slow wave speed. 
Measure the wave speeds for two different D. Theory predicts 
that wave speed c≈const .D , assuming that the v-wave has 
an amplitude of about 1. 

4. For enthusiasts only:  Suppose the impulses travel in a thin 
layer on the surface of a simple 3D object like an ellipsoid – 
the heart, for instance, or a doughnut. Then, there are no 
boundary conditions to worry about. For a spherical surface 
of radius R, one can use spherical coordinates (θ,φ ), and the 
Laplace (-Beltrami) operator for surface diffusion is

R2ΔSu=
1

sinθ
∂

∂θ sinθ ∂u
∂θ  1

sin2θ

∂2u

∂φ2

which of course is not so good at θ  = 0, but …. Propose how 
to solve the  FHN-equations on a spherical surface in 
COMSOL.

Report
1. The results of ODE-simulations – parameter values and a few 

plots with explanations.
2. Surface plots of v and w in the COMSOL solution for a 

representative time, measurements of wave speed, 
explanations; plot of v(t) and w(t) at a point close to the 
excitation electrode. Don’t forget axis labelling etc.!
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Shortest escape times by a PDE

Background
Suppose a particle wants to escape from a bounded 2D domain Ω 
as quickly as possible. It knows that the speed is limited by the 
speed of light c(x,y) and can choose direction freely. The task is to 
compute the fastest escape route for all points in W. One solution 
comes from defining T(x,y) as the shortest travel time from (x,y) to 
the boundary where, of course, T = 0. It follows that

∣∇ T∣=1/c (1)
the Hamilton-Jacobi equation for the optimization problem.
Your task is to set up such a problem and solve it by COMSOL, and 
to compare the solution with a known solution computed by 
geometrical optics. The domain is the unit square, and c = 1 
everywhere except in a circular disk centred at (x0,y0) with radius R 
where c = c2.

Geometrical Optics
We know that 
i) when c is constant, the fastest route is a straight line and light 
travels so.
ii) If c is piecewise constant, the rays are refracted at the interface 
to follow Snell’s law,

c1

sinθ1

=
c2

sinθ2

usually written in terms of the index of refraction, n = cinf/c(x,y), 
where θ is the angle between the ray and the interface normal, and 
cinf is a reference speed (e.g speed in vacuum). These facts allow 
you to compute and plot fastest routes which don’t cross the circle 
or once (or twice) by a little matlab programming.

COMSOL modeling
Equation (1) is very non-linear and its solutions are not expected to 
be differentiable. This is clear from the known solution to the 
problem with c2 = 1 (no interface) where T has discontinuous 
gradient at the square diagonals. Let us look at the time-dependent 
variant of (1) with homogeneous initial data

T t−∣∇ T∣=1/c ,T  x , y ,0 =0 (2)
Linearization of (2) indicates that small perturbations travel with 
velocity 1 (yes, 1, not c) along the characteristics which are the 
gradients of the steady solution, i.e., the fastest escape routes. This 
leads us to believe that the steady solution will be reached in finite 
time = length of longest fastest escape route.
The non-differentiability must be relieved by addition of artificial 
viscosity,

T t−∣∇ T∣=DΔT1/c ,T  x ,y ,0=0 (3)
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Tasks
1. Implement (3) in COMSOL on the geometry suggested.
2. Use a “large” D and c2 = 1 and plot:

a. the gradient as arrows
b. escape routes as streamlines

3. Compare with the exact solution and choose a D and element 
sizes to give 1% max. error in T. Plot the l2 norm of dT/dt as 
function of t. Is it true that the steady solution is reached 
after finite time?

4. Now choose c2 > 1 and solve and plot. Compare to the exact 
solution computed by ray-tracing. Hint: The ray-tracer find 
fastest paths easily from the boundary, but it is hard to find 
the fastest path from a given (x,y). So choose an (x,y) on a 
ray-traced path and compare the T so obtained with 
COMSOLs which is easy to get for any (x,y) by e.g the post 
processing/data display menu)

5. For c2 < 1 the paths are quite different. Explain.

Report
1. Motivate equation (1), assuming that T is differentiable.
2. Explain your matlab-program and show plots of the rays 

computed for c2 > 1.
3. Carry out the linearization indicated of the equation, written 

out for your convenience as
Tt−T x

2T y
2=1 /c  x ,y ,

T=u x , y , t T
∞
 x ,y ,T∞ , x

2 T
∞ , y
2 =1/c  x ,y  ,

Hint:You should arrive at

ut−v⋅∇ u=0,v=
1

∣∇ T
∞
∣
∇ T∞

4. Include the plots indicated in the tasks 1-5 above, with 
explanations, proper axis labelling, etc.
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