Homework 5. Dynamic programming

(The exercise was formulated by Anders Szepessy using ideas from Jonathan Goodman, NYU.)
The following is a qualitative model, unrealistic in several ways in order to be simple. A loan of 300000 kr is to be repaid in 30 years. Each year, we add some interest and make a payment. If our interest rate at year t is $r(t)$, and the outstanding balance is $B(t)$, then, at year t we first add interest, replacing $B(t)$ by $B^{\prime}(t)=(1+r(t)) B(t)$. Next we make a prorated payment, $P(t)=3 B^{\prime}(t) /(33-t)$. This leaves $B(t+1)=B^{\prime}(t)-P(t)$. The goal is to minimize the total payment in two cases.

5a. Deterministic control. Assume that the floating interest rate $R(t)$ is the given 10 -year periodic function which is linear between the points $R(0)=0.05, R(2.5)=0.1, R(7.5)=0.01, R(10)=0.05, \ldots$ Our interest rate r is determined as follows. At year $0, r(0)=R(0)=0.05$. However, $r(t)$ remains fixed until we "refinance". Whenever we refinance, $r(t)$ is replaced by $R(t)$. We are allowed to refinance up to four times during this 30 year period. We want to do so to minimize our total payments, $P(0)+P(1)+\cdots+P(30)$. Set this up as a dynamic programming problem. Identify the state space. Write a computer program to solve it by dynamic programming. Use interpolation to estimate unknown values of the cost to go function from previously computed values. Identify the optimal control.

5b. Stochastic control. We assume now that the deterministic floating interest rate $R(t)$ is replaced by a stochastic interest that fluctuates between 1% and 10% (annualized). Now it is 5%. Each year it may move up or down by 2%, except that it is blocked from moving outside its range. It moves in either direction with probability $1 / 3$ and also remains unchanged with this probability. All movements are independent. This interest rate is $R(t)$. Otherwise, everything is as in exercise 5 a , and we want to minimize the expected total payment $E[P(0)+P(1)+\cdots+P(30)]$. Formulate this as a dynamic programming problem and extend the computer program in exercise 5 a to solve it. What is the optimal control?

