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Abstract

A network representation has shown to be usefull when studying complex

systems with a large number of connected componets, these systems can be

found in a variety if different places for example in biology, in social contexts

and in technical applications. As of now there are not that many measures

that can quantify network properties so that different networks can be com-

pared. One such property is the entropy of the network. In this master thesis

the properties of an signaling based entropy are investigated. The signaling

is assumed to be along the shortest paths in the network and this partitions

the network around the nodes and the entropy reflects how homogeniesly the

network is around the nodes.

By looking at the entropy average over all the nodes in the network we can see

that the meassure can differentiate between different structural, topological,

properties in random networks. We also analyse a number of different real

networks. To better understand the meassure we investigate how the entropy

is distributed and find that it reflects the positioning of the nodes.
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Sammanfattning

Det dyker upp complexasystem med ett stort antal komponenter samman

länkade genom ett nätverk på många ställen tillexempel i biologi, sociala sam-

manhang och innom teknologin. Det finns ännu inte så många övergripande

mått som karakteriserar och möjliggör jämförelser av egenskaper hos olika

nätverk. En sådan egenskap är nätverkets entropi. I det här examensarbetet

utforskas egenskaperna hos ett entropimått som baserats på komunikation,

T för target entropy". Kommunikationen antas ske via de kortase vägarna i

nätverket, detta partitionerar nätverket runnt noderna och entropin baseras

på hur homogent nätverket är kring de enskillda noderna.

Genom att titta på ett medelvärdet av entropin hos alla noder i nätverket

ser vi att måttet kan särskilja olika strukturella, topologiska, egenskaper hos

slumpgenererade nätverk. Vi analyserar ett antal nätverk hämtade fran olika

verkliga samanhang. För att forstå måttet bättre tittar vi på hur entropin

är fördelad och finner att den, som väntat, avspeglar vart i nätverket en nod

befinner sig.



Contents

Contents v

1 Networks 1
1.1 How to describe a network . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Working with networks 7
2.1 Matrix representation . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Generating networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Randomizing networks, link swapping . . . . . . . . . . . . . . . . . 9

I Methods 11

3 Signaling 13
3.1 The shortest path assumption . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Betweenness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Introducing the Target Entropy 17
4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Aims and questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

II Results 21

5 〈T 〉 on Full Networks 23
5.1 Degree Distribution Dependence . . . . . . . . . . . . . . . . . . . . 24
5.2 Manipulating 〈T 〉 keeping the degree distribution fixed . . . . . . . . 25
5.3 〈T 〉 for real networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Distribution of Ti 35

7 What is a typical distance in a network? 37
7.1 Method for distance calculations . . . . . . . . . . . . . . . . . . . . 37

v



vi CONTENTS

7.2 Typical distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8 Conclutions 43

Bibliography 45



Chapter 1

Networks

The network representation of a compexsystem is a graph showing how different
components in the system interact with each other. Almost any system can be
represented in a network format and because network structures are fashionable
at the moment many systems are represented as networks. The systems that will
be considered in this work are ones where there is a flow of information between
nodes. When the flow enables the whole network to perform a function that is more
complex than the function of each node we say that we have a complex network.
ie. a system where the components communicate to perform a function.

To get a feeling for this one can look at a company where each emplyee carries out
theire individual tasks but the company could not function without a network for
communication. The same is true for living organisms. For example, if a cell is
exposed to some extreme condition such as a heat shock or starvation; when this
happens sensors detect the change and via its regulatory network the cell reacts to
the change in many different ways to maximize the chances of survival.

The aspect of networks that will be studied in this work is communication within
a network. It is known that networks found in nature are far from random, and it
is interesting to study if there is a connection between the structure of a network
and the tasks they perform.

1.1 How to describe a network

The components of a network are the nodes and the links. Some examples of
networks and what the components are, ia given in table 1.1

For many networks information can flow in both direction if there exists a link,
e.g. if two computers are connected by a cable, messages can be sent in both

1



2 CHAPTER 1. NETWORKS

Network Node Link
City Street Intersection

Social People Relation
Biological Regulatory NE Proteins Binding, Chemical reaction

Internet Computer Cable
World Wide Web Web page Hyperlink

Figure 1.1: Network representation of the E-coli regulatory network. The Nodes
are proteines and the links, which here are undirected, represent binding.

directions. In other networks the links are directed and information can only flow
in one direction, e.g. if web page A has a link to web page B, that link can be used
to go from A to B but not to go from B to A.

Connectivity

The most elementary feature of a network is how many nodes and links it has.
The number of nodes in the network is the size of the network and the links shows
how connected the network is. The proportion of links to nodes determines the
connectivity; the average connectivity is how many link ends a node has on average.
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Thus the total connectivity is twice the number of links. A node that has a high
connectivity compared to the average connectivity is called a hub. For a directed
graph one separates the connectivity into incoming connectivity, kin, and outgoing
connectivity, kout.

Degree distributions

The connectivity of each node is also called the degree of that node. Looking at
the degree of all the nodes in the network and how many of each degree there is we
get the degree distribution. This is a is a feature of the network that can bee used
to charaterize networks in to different groups.

Erdös Renyi Networks

If we are to make a network and all we know is how many nodes and links we have
then it is convenient just to connect the nodes in a random manner. The degree
distribution of the graph will then be a Poison distribution. There will be a few
nodes with high connectivity, but most nodes will have a connectivity which is close
to the average connectivity. Not even the largest hub will have a connectivity that is
very much larger than the average connectivity. The properties of these graphs were
studied in detail in the 1950’s by Erdos̈ and Renyi (ER) [1] and others. However
it turs out that many networks found in reality are not of this kind.
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Poison distribution of the ER network

P
(k
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Figure 1.2: Example of an ER graph and its degree distribution. Note that all
nodes have similar and low connectivity.
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Scale free Networks

In contrast to ER networks, many real networks have a degree distribution that is
scale free. The probability for a node to have degree k is:

P (k) =
1

kγ

Here γ is the exponent which determines how steep the degree distribution is.In scal
free networks many have low degree and a few extremely high degree compared to
the average connectivity. Figure 1.1 below shows the degree distribution for three
networks. The network with γ = 2.1 has the flatest slope and the largest hub, and
the network with γ = 3.0 has the steepest slope and the smallest largest hub.

Figure 1.3: The degree distribution of three random scalefree networks with differ-
ent values of γ and an example of what a scale free network can look like. The nodes
have a large variation in connectivity. Note especially the large hubs, characteristic
for scale free networks.

This is the part of network theory that is most studied and recently there are many
models for how these networks form in reality. Some of the most famous methods
are briefly described below:

Preferential Attachment: Is a model for a growing network, where the node
added to the network connects to existing node with a probability that is
proportional to the connectivity of that node.[2][3][4]

Merging: The basic idea is that two nodes are merged into one larger node and
a new node with random links is added. There are many variants of this
method. [5]
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Copying models: This model was designed for protein networks and mimics the
duplication of genes/proteins.[6][7]

Maximizing entropy with boundary conditions: These methods use a Shan-
non like entropy,

∑

k P (k)lnP (k) where P (k) is the probability from the de-
gree distribution. Maximizing this entropy with specific boundary conditions
gives scale free networks, while varying the boundary conditions changes the
topology of the network.[8][9][10]

Scale free networks have one property that is desirable in nature, and that could
explain why they are so common. The large hubs make them very robust against
random attack. If something happened to a random e.g. node a mutation, or a
brakedown in a computer, the probability that it will effect the rest of the network is
small since most nodes are peripheral and not essential for the flow of information.

Structure

Structure is what makes a real network different from a random network. In a
random network the nodes have been connected by pure chance, whereas in a real
network the structure is not random, and this is important for the large scale
purpose of the network. It is in the structure of real networks the most interesting
questions in this field lie. Does the structure itself provide any clues as to explain
how the organism, or other large system work? Are networks optimized for the flow
of information? How does the structure effect the robustness? It is, ingeneral hard
to pinpoint what structure is, especially at a larger scale, but I will, here introduce
some structural properties that can be enforced in random networks and studied in
real ones.

Degree Correlations

The degree of a node is the same as the connectivity, the number of links a node
has. Degree correlations tell one thing more than the connectivity: what degrees
mare at both sides of a link. The collection of all the degree correlations in a net-
work is called the correlation profile and it shows wheter there are any patterns in
how nodes of different connectivity are connected in the network.[11]

When a network is randomized all degree correlations are lost. If one wants to study
something that is very much dependent on the degree correlations there are ways
of randomizing the network while keeping the degree correlations, but depending
on the network, the subspace of networks left to work with might be too small.

Hierarchy and Anti-hierarchy

Of course, one can manipulate the degree correlations. If high connectivity nodes
are preferentially connected to high connectivity nodes we call the network hier-
archical and if the opposite is true and the high connectivity nodes are connected
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to low connectivity nodes we call the network anti-hirarcical [12]. Another name
for this structure is associative and dissociative mixing. Many biological networks
are anti-heirarcichal as where social and collaboration networks are hierarchical.
Enforcing structure in this way on random networks is done to see how structure
the influece the properties of networks.

Diameter

There is no consistent definitiuon of the diametre of a network. In this work the dia-
metre of a network is the length of the longest shortest path. An other defininition
that is frequently used is the average shortest path.[13]



Chapter 2

Working with networks

In the analysis of networks there are are many standard methods used to generate
different kinds of networks and randomize real networks. In this section a short
description of these methods will be given.

2.1 Matrix representation

It is convenient to represent a network as a matrix A where the element aij is 1 if
there exists a link between the two nodes i and j and 0 if there is not a link. This
matrix is called the adjacency matrix. In figure 2.1 an example of a network and
the corresponding adjacency matrix [14] can be seen:

As can be seen from this example the adjacency matrix is often sparse and to
make the algorithms effective the actual matrix is seldom used.
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(a) The network

A =





















0 1 0 1 0 0 0
1 0 0 1 0 0 0
0 0 0 1 0 0 0
1 1 1 0 1 0 0
0 0 0 1 0 1 1
0 0 0 0 1 0 0
0 0 0 0 1 0 0





















(b) The adjacency matrix corresponding
to the network
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2.2 Generating networks

It is often usefull to compare networks that are fully random but have different
degree distributions and it is then essential to be able to generate such networks.
The probability function for the degree distribution for a scale free network is given
by:

P (k) = A
1

kγ

Where A is a normalizing constant. Calculating A and rewriting the equation in
a form that gives the connectivity list, K , from a series of uniformly distributed
random numbers, X , we get:

K =
( 1

X

)
1

γ−1

Once the connectivity of each node is known and the nodes have been sorted in
order of connectivity the network has to be connected. This procedure is illustrated
in figure 2.2. First, the node with the highest connectivity is connected to as many
other nodes as it needs, and then the second node is connected, and so forth.
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Figure 2.1: To connect the nodes with a given connectivity start with the highest
connected node and connect it to the nodes with lower connectivity, when the
largest node is fully connected, take the next largest node takes on where the
previous stopped and connect it in the same manner, continue doing so until all
nodes are fully connected.

After the network is connected it is randomized according to the algorithm given
below.
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For networks with an exponent γ close to three it can be hard, or even impossible,
to connect the network. A trick one can use then is to introduce k0, P (k + k0) =

1
(k+k0)γ . This shifts the degree distribution slightly to the right and induces an

upper plateau, ie. , the difference in the number of nodes with degree 1 and 2 is
not as large as it would have been in the simple case.

2.3 Randomizing networks, link swapping

Randomization of a network is useful when we want to compare a real network with
some thing that has the same basic properties.

Randomizing keeping degree distribution

The basic idea behind the randomization is that you, at random, take two connected
pairs of nodes in the network and swap their links.[15]

C

B

D

A

C

B

D

A

Switch

Figure 2.2: The figure illustrate how links are switched in the randomization pro-
cess.

If we want to preserve the degree distribution, we choose connections to be changed
by picking two links. The first link is always accepted and thus the probability to
choose any link is:

P (l1) =
1

L

where L is the total number of links in the graph. The second link is chosen in the
same way as the first but only accepted if none of the nodes are the same. This
probability is:

P (l2) =
1

L

(

1 − P (NA)
)2(

1 − P (NB)
)2

Where P (NA) and P (Nb) are the probability to choose either of the first pair of
nodes. The probability of choosing any node is proportional to the number of links
in the network and the connectivity of that node.

P (Nx) =
k(Nx)

2L
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Nx is any node and the 2 comes from the fact that the connectivity is twice the
number of links.

This kind of randomization destroys any large scale structure that exists in the
real network, such as degree correlations. However it conserves the degree of each
node. So large scale structure is broken but local properties are conserved.

Randomizing and making an ER network

Randomizing in this way is more violent than the method described above. It des-
troys the original degree distribution and makes an ER-network. Thus it changes
the local degree of each node. The only features it conserves is the number of nodes
and links.

To speed up the randomization this algorithm is based on choosing nodes. The idea
is to take a random node and choose one of its links randomly. Break that link and
then choose two new random nodes and connect them. In this way links to hubs
are broken more often and since the new links are formed in a fully random way
the network gets an ER-distribution.

Adding structure to the network; Hierarchy and antihierarchy

The method to make a network hierarchical or antihierarchical is very similar to
the randomization process where the degree distribution is kept. If the network
is to become hierarchical two links are chosen according to the same principle as
above then the nodes are sorted according to connectivity and the nodes with
highest connectivity are connected to each other. If the network is to become
antihierarchical the node with the highest connectivity is instead connected to nodes
with the lowest connectivity.[12]

Maximizing/minimizing the entropy

To find a structure of the network that extremizes the entropy, I use simulated
annealing and the Metropolis algorithm. Each step is done according to the link-
swaping process described above. The step is always accepted if it takes the quantity
in the right direction and if not then it is accepted according to a probability that
is given by the function below:

P (accept) =

{

1 if move optimizes

e−∆Eβ if move not optimizing

Where ∆E is the quantity that we want to maximize/minimize, and β is an ar-
bitrary number that determines how often an unfavorable move is accepted. β

can be varied in different ways to improve the chanses to converge to a global
maximum/minimum.
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Methods
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Chapter 3

Signaling

The network representation is a picture of a system seen from an information flow
viewpoint. It is then desirable to study the network structure from a signaling per-
spective. However in most systems the actual signal paths are not known, at least
not on a larger scale. If they are known then the interactions become a complex
dynamical process. To be able to model the signaling on a large scale certain as-
sumptions have to be made. The most fundamental assumption made here is that
the structure of real networks is connected to the signaling in the network.

Broadcasting

The simplest way of modeling signaling is by assuming that the signal is broad-
casted over the network. Then all possible paths are taken. This can easily be
implemented by multiplying the adjacency matrix A by itself. Each multiplication
represents one step. after two steps we have A2 each element (A2)ij represents the
number of paths between i and j with pathlength 2. The sum over the elements in
the squared matrix |A2| is the total number of paths of length two.

The drawback with this method is that all possible paths are taken into account,
and there is no self avoidance. A signal that started in node x can after 11steps
be at distance 1 from x because it has been jumping back and forth between two
nodes five times.

A related broadcasting method that have introduced, [?] is to base the signaling on
dynamic approach and use the leading eigenvalue and eigenvector of the adjacency
matrix and multiply that to take a step. This approach leads to a high entropy
state that, from a network perspective, looks very ordered, and therefore we are
trying another method for the signaling.

13



14 CHAPTER 3. SIGNALING

3.1 The shortest path assumption

The basic assumption in this work is that the signals have a cost. This can be,
for example, the fuel for a car or the cost of producing a molecule in a reaction
network. This means that taking a step from one node to another along a link costs
one unit. In this work the cost is only based on distance so all links cost equally
much to go along.

If a second assumption is made; that there are no barriers in the network and all
nodes communicate with each other, one gets specific signaling between all nodes
along the shortest paths.

Comparing shortest path specific signaling (SPSS) to broadcasting, the later takes
all paths into account whereas SPSS only takes the subset of paths that minimize the
distance between two nodes. SPSS can be seen as the first wave in the broadcasting,
the first time the signal reaches one specific node is always through the shortest
path.

Figure 3.1: Network for which the cost of SPSS signaling is compared to the cost
of broadcasting.

To illustrate how the total cost of sending signals from all nodes to all other nodes
compares between the two models, this cost is calculated for the small network
above.
Broadcasting: The longest path in the network is 4 and the number of nodes is 12.
Assuming a unit cost and broadcasting one mesage we get:

Signaling cost =

4
∑

n=1

|An| = 968

If every node is to send different messages to all nodes this number needs to be
multiplied by the number of pairs in the the network: (N(N − 1))∗signaling cost
= (12(12− 1) ∗ 968) = 127776

The cost of sending one SPSS message between two nodes is equal to the average
signaling distance in the network which is 2.8. To calculate the cost of sending
different signals to all nodes we take the average signaling distance in the network
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and multiply it by the number of signals sent:

Signaling cost = 〈shortest path〉 × N(N − 1) = 2.8 × 12(12− 1) = 274

It is clear that broadcasting becomes very expensive compared to the SPSS. In this
example the ratio of signaling cost in SPSS to broadcasting is 2.1 × 10−3, but as
the longest shortest path gets longer for larger networks the ratio becomes much
smaller.

The way that we have chosen to model the signaling is based on distances in the
network, and since our goal is to connect structure and function, this is a good
signaling model.

3.2 Betweenness

To see how the signals are distributed on the network the Newman betweenness
is used. Thies method to compute this is described in detail later, but first an
introduction to the idea.

This measure uses the shortest path assumption for the signaling. Each node sends
one signal to every other node in the network. That signal takes one path that has
the length of the shortest distance between the nodes.

When calculating the betweeness, one takes one node at the time and lets all other
nodes send one signal to that node. The procedure is repeated for all nodes. The
number of signals sent is N(N − 1), since no node signals to itself. When taking
the whole network into account one talks about the total betweenness bi and when
the betweeness is calculated for one node i , this is called the local betweenness ci.

Newman’s betweenness algorithm

Since the betweenness is a central part of this work the algorithm as it was intro-
duced by Newman will be given in detail as described in referece[17].

1. The shortest paths to a node, j, from every other node are calculated using a
breadth first search.

2. A variable ck, taking an initial value 1, is assigned to each node, k.

3. Going through the nodes, k, in order of their distance from node j, starting
with the farthest, the value of ck is added to the corresponding variable on
the the predeces or node of k. If k has more than one predecess or, then ck is
divided equally between them. This means that if there are two shortest paths
between a pair of nodes, the nodes along those paths are given a betweenness
of 1

2 each.
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b=1 b=1 b=1 b=1

b=1

b=3 b=3

b=4.5 b=5.5

b=7

b=(N−1)=10

Figure 3.2: Illustration of the local betweeness. The size of the nodes is proportional
to the relative betweeness of signals going to the top node.

4. When we have gone through all the nodes in this fashion the resulting values
of the variables ck represent the number of geodesic paths to node j that run
through each node on the lattice, with end points of each path being counted
as part of the path. To calculate betweenness for all paths, the ck are added
to a running score bk maintained for each node an the entire calculation is
repeated for each of the N possible values of j. The final running scores are
precisely the betweenness of each of the N nodes.



Chapter 4

Introducing the Target Entropy

For a signaling network it is useful to have an entropy that measures how
ordered the signaling is around each node. Does most of the communication
go through one of the neighbors or do all neighbors contribute equally? This
is an important question since this is what determines how robust the network
is to directed attacks. If there are many equivalent paths it will be harder to
deliberately stop the communication in the network. Here we introduce an
entropy measure that is based on the signaling and measure the vulnerability
of the network.

4.1 Definition

The target entropy T for a node is defined as [18]:

Tj =
∑

i

cilog2ci

Where ci is the probability that a signal arriving at node j will come through
node i and shows how large a part of the network is signaling to node j through
node i. This is illustrated in figure 4.1.

As an entropy, T measures how the signaling is distributed around a node.
If most signals come through one or a few of the neighbors, T will have a
low value, since it will be easy to predict where the signal will come from.
However, if equally many signals are sent through each neighbor node, T will
have a high value.In figure 4.1 the left node has a low T value and the right
a high value.

The entropy T is not additive like thermodynamical entropies, since ci is based
on the structure of the network and the network is static. The structural

17
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dependence of ci is illustrated in figure 4.1. Changing the structure of the
network slightltly, by swapping one link, T changes for both the marked nodes.
In general any change in the topology will induce a change in the signaling
patterns and thus in T.

This implies that an average over T does not give an entropy, instead it is
an average which measures how the signaling is distributed around a node on
average. The average Ti over all nodes,i = 1...N will be denoted 〈T 〉.

In the coming sections the properties of this measure will be investigated.
Questions such as how this measure depends on size, degree distrbution, sig-
naling distances and structural properties need to be answered.

4.2 Aims and questions

In the following sections we want to investigate what this measure shows. The
primary goal is investigate what the average 〈T 〉 shows in terms of detecting
structure in a network. But we will also investigate where the contribution
to the average comes from and thus see if it reflects the homogeneity around
nodes of different connectivity. And finaly we will investigate what distances
are typical in the network.

Figure 4.1: The local betweenness of the nodes around node j represents how large
part of the network signals to node j through that node.
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Figure 4.2: Two examples of of different situations giving different T values. The
size of the nodes is proportional to the betweeness of the node. In the left network
most signals come from one node and thus the entropy T has a low value. In the
right example all neighbors are equivalent and the system is unpredictable and the
T value is high.

b=1

b=1

b=1 b=2 b=3

b=2

b=1

T= 1.84

b=1 b=3.5b=2.5

b=3 b=1

b=1 b=1

T=1.43

Before change

T= 1.95

After change

b=1 b=1

b=1 b=1 b=2

b=2 b=1

b=1

b=2 b=2

b=2 b=2

b=2 b=4

T=1.38

Figure 4.3: Since the all betweenness are based on the structure of the network
they are dependent. This is illustrated in this figure; swapping a link, changes the
signaling on the network and thus the T values.
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Chapter 5

〈T 〉 on Full Networks

In this Chapter we will focus on the average 〈T 〉. What does the average of
the entropies tell us about the structure of a network, what network prop-
erties give high/low average entropies? As T is defined, the average 〈T 〉 on
the full network will tell us how homogenous the network is from a signaling
perspective. We will also look at some real networks and see how they can
be compared to each other.

The size of the network

The first question we need to answer is how the number of nodes and links
affect 〈T 〉. These dependencies are shown in figure 5.1. 〈T 〉 stays constant
when the number of nodes is changed. The number of links, however, affects
〈T 〉: an increase in the number of links leads to a more connected, and thus
more homogeneous, network so 〈T 〉 increases as the average connectivity in-
creases.

The dependence on the number of links appears to be linear for the 1500 node
γ = 2.5, it has a similar behaviour for networks with exponent γ = 2.1 and 3.0
From these results we can see that if we want to do a comparative analysis
between random networks it is important to keep the average connectivity
constant. Real networks seldom have the same average connectivity and this
differences will contribute a lot to the absolute differences in 〈T 〉.

23
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Figure 5.1: Average T is independent of network size but increases as the average
degree gets larger because more links lead to a more connected and homogeneous
network.

5.1 Degree Distribution Dependence

The classical way to classify networks is in terms of degree distributions. This
is natural since many network properties depend on the degree distribution.
The question we address in this section is: how does the degree distribution
Affect 〈T 〉. We have looked at scale free networks with an exponent γ between
two and three since this range capture many real networks, we have also
studied ER-networks since thire lack of structure should be reflected in 〈T 〉.
In our simulations we constructed networks with different degree distributions,
but constant size and average degree. The results can be seen in figure 5.2

In figure 5.2 the most striking thing is that the ER-networks have consider-
ably higher average 〈T 〉 compared to the scale free networks, one can also note
that there is hardly any variation in 〈T 〉 for ER. The high average means that
all the neighbors to all nodes are very similar, there are no prefered directions
and thus no structure in the network. The comparitively small standard de-
viation indicates that different ER networks are structurally very similar.

This is an important result since an entropy should show the difference between
order and disorder. ER networks are random without any restrictions and are
the result of connecting nodes and links by chance and there is no order in
the structure. It is therefore very nice that average 〈T 〉 has its highest value
for these networks.

To understand the difference between the ER and scale free networks we go
back to the degree distribution 1.1. The power law distributions have a lar-
ger diversity in the connectivity and thus on average a node has neighbors
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Figure 5.2: From this fugure it can be seen that 〈T 〉 for the ER network is signific-
antly higher than for the scale free networks. This reflects the homogeneity of the
ER-networks compared to the scale free. Amongst the scale free networks 〈T 〉 de-
creases with the exponent, showing that as the difference in connectivity increases
the signaling becomes more predictable.

that are more different compared to the ER nodes where the diversity in the
connectivity is comparatively small and thus the neighbors to a node are on
average similar.

Comparing the different scale free networks, average 〈T 〉 gets higher the as
γ gets higher. From the degree distributions we know that the higher value
γ has the steeper is the slope of the curve and thus the largest hub becomes
smaller ie. the nodes are on average more similar which explains why 〈T 〉
increases with γ.

One can also note that the range in 〈T 〉 in which the different exponents
average is not big and the error bars have large overlaps. this implies that
the degree distribution has not got a large impact on the over all 〈T 〉.

5.2 Manipulating 〈T 〉 keeping the degree distribution

fixed

A question that was adressed in previous work [18] was: If everything is kept
constant (the number of nodes, links and the degree distribution) how much
can 〈T 〉 vary? If you have one network how much can the 〈T 〉 be changed by
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rewiering links. In the article a part of the Canadian Internet was studied,
the results can be seen in figure??.

The span of 〈T 〉 values is big, thus structure in the network is captured well
by 〈T 〉. The network structure can be studied in figure 5.2 and from that we
see that the structure that minimizes 〈T 〉 is one where the hubs are connected
to the largest hub. The maximizing structure repels the hubs.

Taking this one step further we investigate what kind of structural properties
could increase or decrease 〈T 〉. The known way to enforce structure in net-
works is to manipulate the degree correlations. One way to structuralize the
network is to connect nodes that are either as alike as possible or connect the
nodes that are as different as possible. If we base this on the connectivity of
the nod it corresponds to making the network hierarchical or antihierarchical.
Since we are here investigating structure it is necessary to have a structure-
less null model that has the same degree distribution as the original network,
that is the degree distribution conserving randomized version of the original
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network.

From the values of 〈T 〉 we can see that hierarchy and antihierarchy do not
fully explain the structure of the maximized and minimized networks. Adding
hierarchy/antihierarchy does raise/lower the 〈T 〉 but the minimal and max-
imal structures are more complex.
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Comparing the networks visually it can be seen that the hierarchical network
and the minimum 〈T 〉 network are very different. In the hierarchical network
all the hubs are connected and the diameter is larger; the network appears to
have a more stringy structure. I the maximum 〈T 〉 and the antihierarchical
structure the hubs are at approximately the same average shortest distance
from each other however in the maximum network all the intermediate nodes
are placed between the hubs whereas in the antiheirarchical network they
are not. The real Canada network has a higher 〈T 〉 an average than the
randomized versions which means that the real network is more homogeneous
than the random, but it is hard to see any clear features that would explain
this by looking at the network.

We can see that structure does influence the average entropies in networks,
which was the aim of this investigation. However this simple manipulation
of degree correlations is not enough to structurize networks to give extreme
values of 〈T 〉.

Combining degree distribution and degree correlations

We have seen that we have two controllable structural properties that af-
fect 〈T 〉: the degree distribution and the degree correlations. From this two
questions arise:

- How is the γ dependence influenced by degree correlations?

- How are the degree correlations affected by the degree distribution?

To investigate this we work with random networks with specified degree dis-
tributions and a fixed number of nodes and links. In figure 5.2 networks
with different degree distributions have been manipulated to give hierarchical
structure or antihierarchical structure. From the results we can see that a
hierarchical structure always decrease the average 〈T 〉, whereas antihierarchy
always increases 〈T 〉.

In the top figure we can see that making the network anti-hierarchical changes
〈T 〉 much less than making it more hierarchical. This is because γ = 2.1 net-
works are naturally hierarchical [ref hirarcypaper ] with a few large hubs that
are connected to each other and most of the network. It will be hard to find
structures where the hubs are not connected and the network will never truly
become antihirarcical. Thus the structure does not change much from the
random and this can be seen in 〈T 〉.
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Figure 5.3: Adding structure to the network by adding a hierarchy, i,e., highly
connected nodes being linked to highly connected nodes, lowers the average value
of T.

The trends in the behavior of 〈T 〉 described above is true also for the γ =
2.5 network. In the γ = 3.0 network these trends have disappeared and
degree correlation manipulation influences 〈T 〉 equally in positive and negative
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directions. The γ = 3.0 network is naturally antihierarchical but the signaling
structure can still be made more homogeneous by rearranging the degree
correlations.
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Figure 5.4:
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Figure 5.5: Degree distribution and average T for real and random networks.

Figure 5.2 shows how 〈T 〉 depends on the exponent γ if structure is added.
The first thing we once again can conclude is that structure affects 〈T 〉. In the
top figure we can see that the degree distribution influences 〈T 〉 in a notice-
able way. The γ = 2.1 networks have higher 〈T 〉 than the γ = 2.5 networks.
This is an effect of the rigidness of the γ = 2.1 networks; the big hubs limit
what structures are possible.

5.3 〈T 〉 for real networks

To get some perspective of what the 〈T 〉 measure captures we have also stud-
ied some real networks. These were chosen to give a fairly wide spectrum of
networks. From the averages in figure 5.5 we see that the US airport network
has a 〈T 〉 value that is significantly higher than other values. This is the
network that the by far the highest connectivity. From 5.1 we know that the
average degree strongly influence the value of 〈T 〉 and that is what we are
seeing.
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Network Nodes 〈k〉 γ 〈T 〉 〈Trand〉
US airport 332 12.8 - 1.76 2.2
Stockholm 3325 3.1 - 0.31 0.73

WWW 10000 4.2 2.4 0.46 0.55
Internet 6474 3.8 2.2 0.60 0.51
Yeast 848 4.2 - 0.97 0.92
E-coli 1522 4.6 2.4 0.64 0.71
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Figure 5.6: Z score for the real networks. The darker area mark two standard
deviations and shows that the networks studied are significantly different from
random networks.

The value of 〈T 〉 tells how homogeneous the network is, but to determine how
well 〈T 〉 captures the structure in the network and to compare how structured
these networks are we need to use the Z-score.

Z =
〈T 〉 − 〈Trand〉

σrand

The results are displayed in figure 5.6. A positive Z-score means that the
randomization makes the network more homogeneous. Likewise a negative
Z-score means that the randomization make the networks less homogeneous.
The magnitude of the Z-score reflects how different the real network is from
the random, how much structure there is in the real network, in units of
standard deviations in the random networks. The level of significance cor-
responding to two standard deviations is shaded in the figure. Using this as
the significance level all we find that the differences between real and random
are statistically significant. The real networks have structual properties that
make them either more homogeneous or less homogeneous compared to the
random.
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Only three of these networks can be said to be scalefree and their exponents
are given in table 5.3. The US-airport network has a degree distribution that
is exponential and the Stockholm and Yeast networks have not got hubs that
are large enough to categorize them as scale free. Thus from these data no
correlation between the degree distribution and 〈T 〉 or the Z-score can be
seen, any such effect is taken out by the structure and average connectivity.

From these results we can see that the 〈T 〉 measure captures structure in real
networks and enables us to compare their homogeneity and structuredness.





Chapter 6

Distribution of Ti

In the previous section we looked at how the average value 〈T 〉 for a network
captured the structure of the full network. In this part we will see how nodes of
different connectivity contribute to that average; the measure mainly captur-
ing the homogeneity around the high connectivity nodes or low connectivity
nodes. In this section we will only look at random generated networks since
we are not here trying to capture structure in the network, but rather trying
to understand how the degree distribution affects the contribution to 〈T 〉.

In figure 6.1 we have plotted the T values of each node in a 900 node γ = 2.5
network. Also plotted is the theoretical upper bound of T log2(k). This
figure illustrates the T values of all different nodes in some different random
networks of size 900. For reference the theoretical upper limit is plotted with
circles.
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Figure 6.1: Contribution to 〈T 〉 as a function of degree on normal and semi log
scale.
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These plots show the strong dependce of Ti on connectivity; the upper bound
for low connectivity nodes is lower than that of high connectivity nodes. The
nodes with intermediate connectivity in this random network( nodes of con-
nectivity ≈ 11 − 200) are further from the maximum values than the low
connectivity nodes and the largest hubs.

In the log-log plot in figure 6.2a we can see that the main contribution to 〈T 〉
comes from low connectivity nodes. This becomes even clearer in figure 6.2b
which shows the cumulative contribution to 〈T 〉. It can be seen that half of
the contribution to 〈T 〉 comes from nodes of connectivity 9 or lower.
In this investigation we have looked at networks with different γ(2.1, 2.5, 3.0)
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Figure 6.2: Half of the contribution to 〈T 〉 comes from nodes that have connectivity
9 or lower

where the average degree has been held constant. As seen in figure 6.2 show
have similar behavior.

This investigation concludes that the connectivity of a node is a primary com-
ponent in T for a node. In scale free networks the large number of low con-
nectivity nodes make their contribution to the average 〈T 〉 significant. This
makes 〈T 〉 a rather democratic measure that captures both the homogeneity
around high and low connectivity nodes.



Chapter 7

What is a typical distance in a

network?

How much of the network is it necessary to take into account to get a good
picture of the network? Or, at what distance from a node can the rest of the
network be assumed to be mean-field or silent? And how large a fraction of
the network does that correspond to? Do different networks have different
typical distances and what sets theis distance.

7.1 Method for distance calculations

To investigate this we have taken all the nodes at distance one and let them
signal, this obviously gives a maximum log2k for each node thus a on the full
networks scale maximum 〈T 〉. In the next step the nodes at distance one and
two signal, the procedure is continued until all nodes have been reached. At
each step the 〈T 〉 for that part of the network is calculated. This is calculated
for all nodes in the network. To see how nodes of different degree behave the
connectivities were divided into bins having roughly the same number of nodes
in each bin.

7.2 Typical distance

The average over the generated random networks show that these networks
have the expected maximum 〈T 〉 at signaling distance one. There is a min-
imum at adistance two and at distance three the networks stabilize at their
final level. This behavior indicates that diversity in the networks occurs at

37
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Figure 7.1: The figure illustrates the method for distance calculations. In the first
step only the nearest neighbors signal, giving T = log2k, and taking the full network
into account a maximum 〈T 〉 for the network. In the following steps the signaling
distance is increased by one until the full network is signaling.
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Figure 7.2: The random network has 1500 nodes an average connectivity of 5 and
γ = 2.5

distance smaller than three and that distances larger than three do not in-
fluence the value of 〈T 〉. Three is not a particularly large distance in these
networks where the (diameter is around 10) and it could be argued that Ti

values at larger distances than three could be considered to be independent,
and thus additive. However, looking at 7.2 we can see that at distance 3 most
of the network has been reached, and thus the fraction of the nodes that have
independent T values is very small.

Comparing the behavior of nodes of different degree we can see that the lower
the degree of the nodes the closer is the final value to the maximum. This is
something that could alrady be seen in figure 6.1.

The E-coli network is in many respects similar to the generated random net-
works: the number of nodes is 1522, average connectivity is 4.6 and γ = 2.4.
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Figure 7.3: Real and random average T and number of nodes reached for the E-coli
network

Therefor there is a big similarity between the generated networks and the ran-
domized is therefor big. Other randomized networks such as the internet and
the us-airport network also have this behavior in their randomized versions
so this seems to be a general result. It probably reflects the fact that most
nodes in a random network are connected to a hub and at signaling distance
two the effect of the hub sets in since all other nodes that are connected to
that hub start to signal.

The real networks are somewhat different. There is in general not a clear
minimum at distance two. It is logical that there is a minimum at distance
since at that distance the connectivity of the nearest neighbors of each node
influence T. In a random network the nearest neighbors are of different con-
nectivity and thus generating a minimum in the entropy. It is interesting
to see is that in the real networks this is not the case, there is no minima
thus implying that there is a homogeneity in the connectivity of the nearest
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neighbors.

In the figure displaying the number of nodes reached at a certain distance we
can see that the distance at which most of the network has been reached is,
larger than the random case, where it is five or six. Further, the intermediate
connectivity nodes are behaving more like high connectivity nodes giving a
clearly distinguished form the nodes with the lowest connectivity.
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Figure 7.4: T has been calculated for different signaling distances, the signaling
distance has been taken as how far out you go from the node. At distance one T
will be log2(k). From this analysis one gets a profile of order in the network around
the network. comparing the real network and the random we See that the in the
real network the nodes of different degree are more alike compared to the nodes in
the randomized. The longest distance in the network decreases when the network
is randomized. It can also be seen that the distance out from the node before the
final value is reached is larger in the random compared to the real.

The city networks, and to some extent the Yeast and internet networks, have
clearly different behavior, the distances are larger and the Ti values of the hubs
decrease much more resulting in that the values at which 〈T 〉 saturates are
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more similar, there is a smaller difference between hubs and low connectivity
nodes compared to the other networks. The explanation for the characteristic
behavior of the city’s can be under stood if we look at the network of Stock-
holm. Cities are special in the sense that they have have a two dimentional
lay out and are divided in to clear districts which make them modular. In
Stockholm this is made even clearer since the city is built on islands.

It is the modularity and that the modules are connected by low connevtivity
nodes that decreases the effect of the connectivity. Out side of the module of
the node its connectivity does not really matter. being highly connected only
matters until the signal reaches the next module, then it is the connectiv-
ity of the node connecting the modules that matters, and in that respect all
nodes within the module are similar. Looking at the distance at which 〈T 〉
saturates and at the average size of the modules we can see that this correlates.

Figure 7.5: Stockholm in a network representation where the streets are nodes and
the intersections links. From this figure one can clearly see the modular nature of
city networks. In Stockholm this is effect is magnified by the fact that the city
consists of islands.

From this investigation we have seen that the typical distance in a random
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network is small, around two or three. If, however, the network is modular this
distance increases to the mean distance within the modules. The distance at
which T saturates correlates with when most of the network has been reached.
We have also seen that in real networks the nodes seem to have a neighbors
that have similar connectivity.



Chapter 8

Conclutions

This entropy mesuare is indirecty based on the topology of the network. We
have shown that it is sensitive to structural properties of networks such as
hirarcy and antihierachy. We have seen that the connectivity of the node is
very important for the T value at one node and that when the fullnetwork
is wieved nodes of both high and low degree contribute and we can say that
the mesuare is democratic. From the distance study we have seen that 〈T 〉
saturates when most of the network has been reached.

The next step in the investigation whould be to see how it correlates with
robustness and if it can be used to make predictions about the rubustness.

43





Bibliography

[1] P. Erdős and A. Rï¿½yi, Publ. Math. Debrecen, 6, 290 (1959).

[2] G. Youle. Philosophical Transaction of the Royal Society of London,
(Series B), 213:21-87 (1925)

[3] H.A. Simon Biometrika, 42(3/4):425-440 (1955)

[4] A.-L. Barabasi and R. Albert, Science, 286, 509 (1999)

[5] P. Minnhagen M. Rosvall, K. Sneppen and A. Trusina cond-mat/0406752
Physica A 340 (4)pp. 725-732 (2004)

[6] A. Vazquez, A. Flammini, A. Maritan, A. Vespignani cond-mat/0108043

[7] R.V. Sol’e, R. Pastor-satorras, E.Smith and T. Kepler Adv. Complex.
Syst 5, 43-54 (2002)

[8] G.Wilk, Z.Wlodarczyk cond-mat/0212056

[9] Michel Bauer and Denis Bernard cond-mat/0206150 ‘

[10] Ramon Ferrer and Ricard V. Solï¿½Statistical Physics of Complex Net-
works, Lecture Notes in Physics, Springer (Berlin), 114-125

[11] S. Maslov and K. Sneppen, Science 296, 910 (2002).

[12] A. Trusina, S. Maslov, P. Minnhagen, and K. Sneppen. Phys. Rev. Lett.
92, 178702, (2004).

[13] Mark E.J. Newman ”Random graphs as models of networks”, Handbook
of Graphs and Networks: From the Genome to the Internet, Editors
Stefan Bornholdt, Heinz Georg Schuster, wiley-vch, pp.35-68

[14] Sanjay Jain and Sandeep Krishna ”Graph theory and the evolution of
autocatalytic networks”, Handbook of Graphs and Networks: From the
Genome to the Internet, Editors Stefan Bornholdt, Heinz Georg Schuster,
wiley-vch, pp.355-395

45



46 BIBLIOGRAPHY

[15] Sergei Maslov, Kim Sneppen ”Correlation profiles and mortifs in complex
networks”, Handbook of Graphs and Networks: From the Genome to
the Internet, Editors Stefan Bornholdt, Heinz Georg Schuster, wiley-vch,
pp.169-198

[16] Lloyd Demetrius and Thomas Manke Physica A 346 (2005) 682-696

[17] M.E.J Newman Phys. Rev. E64,016132.

[18] K. Sneppen, A. Trusina and M. Rosvall, Europhys. Lett. 69 (5), 853
(2005)

[19] N. E. Friedkin, The UNC Press (1983).

[20] S. Valverde and R. V. Solï¿½ Eur. Phys. J. B 38, 245 (2004).

[21] A. Trusina, K. Sneppen, and M. Rosvall, Phys. Rev. Lett. 94, 028701
(2005).

[22] D. Watts and S. Strogatz, Nature 393 (1998).

[23] R. Albert, H. Jeong, and A. Barabasi, Nature, 406, 378 2000.

[24] P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han, Phys. Rev. E 65, 056109
(2002).

[25] S. Milgram, Psychol. Today 1, 61 (1967).

[26] M. Kochen, Ed., “The Small World” (Ablex, Norwood, 1989).

[27] J. M. Kleinberg, Nature 406, 945 (2000).

[28] D. J. Watts, P. S. Dodds and M. E. J. Newman, Science 296, 1302 (2002).

[29] J. M. Kleinberg, in T. G. Dietterich, S. Becker and Z. Ghahrmani (eds.),
Proceedings of the 2001 Neural Information Processing Systems Confer-
ence, MIT Press, Cambridge, MA (2002).

[30] M.E.J Newman cond-mat/030945

[31] M.E.J Newman and M. Girvan Phys. Rev. E69, 026113.

[32] Joyong Park and M.E.J Newman cond-mat/045566

[33] Reka Albert and Albert-Laszlo Barabasi cond-mat/0106096

[34] M. Rosvall, A. Gronlund, P. Minnhagen, K. Sneppen cond-mat/0505400

[35] A. Trusina, M. Rosvall, K. Sneppen cond-mat/0412064

[36] M. Rosvall, P. Minnhagen, K. Sneppen cond-mat/0412051

[37] M. Rosvall, A. Trusina, P. Minnhagen K. Sneppen cond-mat/0407054

[38] Kasper Astrup Eriksen, Ingve Simonsen, Sergiei Maslov and Kim Snep-
pen cond-mat/0212001



47

[39] Enzo Marinari, Remi Monasson, Guilhem Semerjian cond-mat/0507525

[40] Ricard V. Solï¿½and Sergi Valverde Lect. Notes Phys. 650,189-207

[41] Stockholm: M. Rosvall, A. Trusina, P. Minnhagen and K. Sneppen. "Net-
works and Cities: An Information Perspective" Phys. Rev. Lett. 94:2,
028701 (2005).

[42] Airports: From Pajek dataset at: http://vlado.fmf.uni-
lj.si/pub/networks/data/

[43] Internet: Website maintained by the NLANR Measurement and Network
Analysis Group at: http://moat.nlanr.net/

[44] WWW: Homepage of A.-L. Barabasi: http://www.nd.edu/ net-
works/resources.htm

[45] YPD: 1: P.E. Hodges, A.H. McKee, B.P. Davis, W.E. Payne and J.I.
Garrels, "The Yeast Proteome Database (YPD):a model for the organ-
izition and presentation of genome-wide functional data" Nucleic Acids
Res., Jan 1;27(1):69-73 (1999)

2:P.E. Hodges, W.E. Payne and J.I. Garrels, "The Yeast Proteome Data-
base (YPD):a curated proteome database for Saccharomyces cerevisiae"
Nature 407, 651-654 (2000)

[46] E.coli prot.: 1:P.D. Karp, M. Riley, M. Saier, I.T. Paulsen, J. Collado-
Vides, S.M. Paley, A. Pellegrini-Tool, C. Bonavides and S. Gamma-
Castro, "The EcoCyc Database" Nucleic Acids Res., Jan 1;30(1):56-8
(2002)

2:I.M. Keseler, J. Collado-Vides, S. Gamma-Castro, J. Ingraham J, S.
Paley, I.T. Paulsen, M. Peralta-Gil and P.D. Karp, "EcoCyc:a compre-
hensive database resource for Escherichia coli" Nucleic Acids Res., Jan
1;33(Database issue):D334-7 (2005)


