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Abstract

The problem of identifying binding sites for transcription factors as such in experimentally
yet unaccessed or unaccessible sequence domains is an interesting task for both biologically
and statistically inclined research and several methods have been proposed to solve this
riddle, some of them purely information-theoretical, some others assuming a statistical
mechanism within.

We develop a novel sampling algorithm for the detection of transcription factor binding
sites, based on a multiple local alignment tool known as “Gibbs sampler” and on a descrip-
tion of regulatory sequences by a matrix of binding-free-energies, describing the interaction
between a factor protein and DNA.

Finally, we test the algorithm on artificial as well as biological data, finding the predictions
made by our sampler to be in good agreement with experiments for transcription factors
with short palindromic binding sites, as the FruR protein in E.coli.

Keywords: Transcription Factor Binding Sites, Energy Matrices, Multiple Local Sequence
Alignment, QPMEME, Gibbs Sampling, Monte Carlo, Simulated Annealing
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Chapter 1

Introduction

Nucleic acid polymers, discovered in the late 19th century, were soon interpreted as the car-
riers for the blueprint or “hereditary code-script” of life, as stated by Erwin Schrödinger
[Schrödinger, 1944]. Giving a possible mechanistic background to the Darwinistic theory
just recently accepted these days, life was also to be determined by those polymer sequences
and hope emerged, one would understand the machinery by reading the blueprint. Effort
was thus concentrated on the extraction of genetic material and with the first complete
sequencing of a DNA genome in 1978 - bacteriophage φX174’s [Sanger et al., 1978] - began
an era of biochemical decryption, which finally supplied nearly complete genomes of Sac-
charomyces cerevisiae in 1996 and of Homo sapiens in 2003 and steadily pursues its task
of mapping more and more species’ sequences. The availability of a sequence, although,
doesn’t imply its fluent readability and comprehensibility, i.e. the present task is to un-
derstand a text written in an unknown language or even a possibly encrypted document
in that language.

One knows for certain today, how a sequence of DNA codes for proteins as well as it is
possible to estimate which parts really code for genetic information and which parts have
regulatory functions, but still leaving enough regions with yet unknown role or sorely to
determinate some structural conformation; whereas the latter certainly also influences or
even co-regulates genetic mechanisms. The whole “playground”, those mechanisms act
on, is thus rather complex and participating elements - in terms of abstract information
or concrete objects - can in general be expected to show high degrees of cooperativity
and codependency. Indeed, research of the last decades showed that complex network of
chemical signals and interactions underlay the mechanisms of gene regulation. Moreover
there turned out to be a high grade of dynamism, as the products of these mechanisms can,
on their part, act as input signals and thus add some feedback to the mechanism itself.

In this present work, we concentrate on a small but nonetheless crucial part of the genetic
machinery: the transcription initiating mechanism. More specifically, we are interested in
predicting binding sites on DNA for so called transcription factor proteins (TFs), molecules
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2 CHAPTER 1. INTRODUCTION

acting as flags on DNA and regulating the transcription of genes being coded by the corre-
sponding sequence region they bind to. Bioinformatics proved in recent years to be able to
develop successful tools for the analysis of the genetic machinery ([Bussemaker et al., 2001],
[Bailey and Elkan, 1994], [Lawrence et al., 1993]). One of the keywords here is certainly
“sequence alignment”, where one attempts to identify functional parts by comparison,
assuming some level of similarity. Some of the jargon and some basic methods of bioin-
formatics will be presented, but the intention of this thesis is to describe and determine a
method inspired by statistical physics to identify TF binding sites.

Our aim naturally decomposes into two aspects. First, it is of interest to be able to find
new binding sites for already known TFs, both within the genome of a specific species,
and on its relatives’. Second, the ability to predict binding sites ex nihilio, and hence
to postulate yet unknown TFs would be an important step in the understanding of gene
regulation networks, as one could then search well directed for the potentially involved
TFs. A successful realisation of latter is probably unachievable yet, so we will develop a
method which hopefully achieves the first task well while not failing totally on the second
one.

We will illustrate the method by running on artificial genomes, i.e. random sequences
and constructed test-cases, and thereafter confirm its functionality on the experimentally
rather well explored genome of Escherichia coli. Attempts to predict new binding sites are
finally made on the more complex genomic sequence of Saccharomyces cerevisiae.

1.1 Remark

Goal of this work being to develop a novel alignment algorithm and to apply it to biolog-
ical data, it is an attempt to leap into the realms of computational biology and consists
thus. Both descriptions of the biological, information theoretical and physical contexts are
certainly not exhaustive – many details merely being touched on – but were kept to a basic
level, hopefully allowing an easy access and understanding of this combined work.

Regarding the bioinformatics part of this theses, all source codes and data sets used for
the evaluation are available from the author upon request.

1.2 Outline

Following this introduction, the biological background from the naive physicist’s point of
view is briefly described in chapter two. Thereafter, in chapter three, we present some the-
oretical requisites, necessary to construct our method and to evaluate its results. Chapter
four is dedicated to the classical information theoretical as well as to a more physically in-
spired description of sequence patterns and related similarity scores. We proceed with the
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identification of regulatory motifs in chapter five, enumerating some general aspects and
established methods, before presenting some special approaches. The chapter culminates
in the description of our contribution to the world of alignment algorithms. Chapters six
and seven deal with the acquisition of genomic data and the illustration of some represen-
tatively yielded results, followed by a short discussion in chapter eight.



Chapter 2

Molecular biology of nucleic acid

polymers

The very compact paper by [Watson and Crick, 1953] on “A structure for Deoxyribose
Nucleic Acid”, proposing a then new geometrical interpretation of DNA’s conformation
as double helix consisting of complementary strands, surely counts as one of the most
momentous publications in molecular biology and chemistry. This chapter summarises
some basic knowledge about the structure and function of DNA and enumerate the different
types of nucleic acid polymers, as well as their role in biology.

2.1 Constituents and structure

The two strands of deoxyribo nucleic acid polymers are chains of of phosphate (PO4
3−) al-

ternating with a pentose sugar ring of deoxyribose (C5OH7). On the latter can be attached
one of the bases adenine (A) or guanine (G) - purines, consisting of a six-membered and
a five-membered nitrogen-containing ring - and thymine (T) or cytosine(C) - pyrimidines,
having only a six-membered nitrogen-containing ring - respectively. Figure 2.1 gives an
overview of the primary structure with the most probable pairing between opposing bases
shown. Principally, purines bind to pyrimidines via hydrogen bonds and it is therefore pos-
sible to attach T to G and C to A, but those lead to sterical problems in a double strand
as can be deduced from the figure. We will hence only consider A-T and G-C bindings, so
that we can well define the complement of a single stranded sequence.

Looking at the ring of deoxyribose, we note that it consists of an oxygen and cycles over
four carbons. The last carbon is again attached to the oxygen as well as to a fifth carbon.
Again referring to figure 2.1, we can determine an orientation of the strands, given by
the structure of the sugar ring. As the adjacent phosphates bind to the third and fifth
carbon of the ring, we denote both directions by 5′ and 3′ respectively. Speaking of single

4



2.2. TYPES OF NUCLEIC ACID POLYMERS 5

Figure 2.1: Schematic of A-T and G-C base pairing in DNA double-strand

stranded sequences, those are conventionally given in 5′ → 3′ direction. The corresponding
complement strand then of course reads in the 3′ → 5′ direction.

2.2 Types of nucleic acid polymers

Not being a central issue in this work, we shall just shortly recall the most common types
of nucleic acid polymers involved in gene production. The main actors here are DNA
and RNA, ribose nucleic acid, differing from the former by an OH instead of an H bound
to the second carbon of the pentose. This steric hindrance makes the RNA backbone
to favour less compact conformations as the DNA’s. Moreover, RNA incorporates the
demethylated version of thymine, namely uracil, which is “cheaper” to produce in terms of
energy expense. The incorporation of precious thymine in DNA is linked to a reparation
process which shall not be discussed here. For details see [Stryer, 2000].

Two types of RNA deserve mention in the actual context, as they play a special role in
protein production. Messenger (m)RNA is transcribed from DNA and carries the genetic
code of a protein which is to be synthesised by the ribosomes. The secondary structure of
mRNA is usually not well defined. Transfer (t)RNA, on the other hand, has a rather well
defined secondary structure - the famous clover leaf. Its function is to carry specific amino
acids, which are to be processed in the ribosomes. However, since we shall not concentrate
on the protein translation mechanism, but on transcription, we refer again to [Stryer, 2000]
or equivalent textbooks for further details.
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2.3 Hardwired information

Theories about the genetic regulation in organism development have been rather dogmatic
throughout history. Religion was eventually replaced by science, which on its turn only
introduced the “Central Dogma of Life”, as stated by its critics. Figure 2.2 represents a
slightly modified version of the assumed flow, which originally includes no feedback.

Figure 2.2: Watson and Crick’s Central Dogma of Life including feedback

In a simplified picture, DNA is to be transcribed by RNA polymerase to messenger RNA,
which on its turn is translated into proteins by the ribosomes. However, both RNA and
proteins are chemically active and can thus influence the transcription process itself. The
active role of RNA as a reactant or catalyst, i.e. as an enzyme, and thus its possibility to
engage in active feedback on DNA - beyond serving as static template during reproduction -
is not yet clarified, but what is known is that the whole mechanism of transcription depends
highly on the cooperation of TF proteins, as illustrated below. The possible existence of
some sort of self-induced mutation mechanism by directed production of enzymes which
on their turn might produce mutagens should not be disallowed either, but such threads
are out of the scope of the present work and shall not be of any further concern here.

We can thus summarise the function of DNA to consist of a most obvious part: storing
static information of genes - and a more subtle part: storing processing directives, how
this information has to be interpreted in the actual context of molecule concentrations,
temperature, pressure, radiation, etc.

2.4 Transcription regulation mechanism

We assume a simple model of transcription regulation, illustrated in figure 2.3. For clarity,
only a single strand of DNA is considered and two special domains are identified: the reg-
ulatory region and the gene sequence. The latter is transcribed to mRNA by RNAP, while
the former is to bind a set of TFs which may either enhance - by facilitating RNAP-DNA
binding - or reduce - by inhibiting the binding site of RNAP - transcription. Transcribed
mRNA is then processed by ribosomes, producing signals which may give some feedback
on the regulating TFs, e.g. by altering their functionality or by being TFs themselves.
From this elementary loop, we can construct networks of arbitrary complexity to model
the control of specific transcription based functions or even a whole cell cycle.
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Figure 2.3: Snapshot of the TF specific region in a simplified regulatory network

To get an idea of corresponding binding sites, it is instructive to illustrate some structural
examples for TFs. Searching the protein data base (PDB) [Berman et al., 2000], one can
easily find representatives for both common and exotic structural classes. Figure 2.4 shows
a homo-dimer of Phosphate System Positive Regulatory Protein PHO4 (PDB ID 1A0A,
[Shimizu et al., 1997]) with a common “helix-turn-helix” (HTH) structure motif, bound
to DNA. The figure suggests a “site-gap-site” binding-site structure, dictated by the long
α-helices of the homo-dimer “clasping” the double-helix. A dimer of the Nuclear Factor-
κB p52 (PDB ID 1A3Q, [Cramer et al., 1997]) is shown beneath, which evidently binds
in a more complex and thus specific way. Looking at both structures, one can also guess
their order of occurrence in evolution. The smaller TF was extracted from budding yeast
cells and its HTH structure motifs can be found in many other organism, both “archaic”
and “modern” ones. The larger TF was identified in human cells and its obviously more
complex structure suggests a more recent development of the protein.

Budding yeast’s protein PHO4 contributes to the organism’s phosphatase system and is
hence an important part of the nutrient processing apparatus. Human’s nuclear factor
κB-p52 is a member of the large NF-κ/Rel family of TF proteins, involved in multiple
regulatory systems intrinsic to the organism, but also in some dictated by viruses as Herpes
and HIV. More details on this versatile TF can be found in biomedical literature.

2.5 Post-transcriptional regulation of gene expression

Until 1993 the mechanism of gene expression was believed to be determined only by the
transcriptional part of the central dogma of life. Any valid mRNA being transcribed was
supposed to lead to the production of a corresponding protein; no pre-translational feed-
back originating from the transcription products had been observed until [Lee et al., 1993]
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Figure 2.4: Cartoon representations of the dimeric TF proteins 1A0A and 1A3Q (PDB)
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identified small fragments of RNA with surprising properties in the worm C. elegans. Those
short fragments – named micro (mi)RNA – were excluded from mRNA of the lin-4 gene
being prepared for translation and showed reverse complementarity in their genomic se-
quence to the mRNA of the lin-14 gene. Without going into the details and functions of
the named genes, the lin-4 miRNA was shown by [Wightman et al., 1993] to be able to
bind lin-14 mRNA and thus reduced the translation of lin-14 by acting as a steric obsta-
cle during the processing of the lin-14 mRNA by ribosomes. Although more hints and
clues suggesting another kind of regulatory apparatus were found all along the way, it took
almost a decade for the miRNA research to concentrate on the capacities of those short
nucleotide sequences. Among others, [Lagos-Quintana et al., 2001] describe the beginning
of a broader understanding of the regulatory machinery.

We can summarise today’s basic knowledge on miRNA in a simplified manner: miRNA is
found in the so called UTR (untranslated region) of a corresponding mRNA sequence; the
name of this emplacement already suggests that miRNA is not related to protein synthesis;
the short miRNA is separated from the carrying mRNA and remains active, i.e. keeps the
ability to bind a complementary sequence; it may inhibit sites on cDNA or other mRNA,
thus down-regulating or altering the expression level of a corresponding gene. Three types
of down-regulation have been observed so far:

• mRNA degradation: Bound mRNA is degraded and can thus not be translated any-
more. This ability of miRNA has been mainly observed in plants, as for instance by
[Rhoades et al., 2002].

• translational inhibition: Bound mRNA remains intact but the processing by ribo-
somes is repressed. This behaviour has been observed by [Wightman et al., 1993] to
take place in animal cells.

• transcriptional inhibition: Methylation of DNA, i.e. the addition of a methyl group
(-CH3) to each nucleotide, is known to be reducing the transcription rate of any gene
situated on this so called silent DNA. miRNA is supposed to play a role in inducing
the methylation of the DNA it may bind to. This type of inhibition is assumed to
take place in animals and lower eukaryotes, while it has been directly observed in
plants [Bao et al., 2004].

This short excursion into the world of post-transcriptional regulation is to prevent the
possible thought that one is just in grasping distance of understanding the whole mechanism
underlying the Central Dogma of Life. TF proteins probably play the major role in this
game but yet unknown participants may be undisclosed any time, enlarging the necessary
set of rules – on the other hand making the application of rules possible.

Since we remain in the still vast domain of regulation by TFs, we continue with some theo-
retical formalism which will be useful when explaining our method for motif identification.



Chapter 3

Theoretical requisites

Before discussing various representations of binding site motifs, we present some general
theoretical concepts which will be of use in the following. From an information theoretical
point of view, we encounter the concept of entropy and argue how to improve the statistics
of a small sample using Bayesian inference. Passing into statistical physics, we draft shortly
the ideas behind Monte Carlo methods and present the technique of simulated annealing
as a tool for optimising also ”non-physical” systems.

3.1 Information theory

3.1.1 Entropy and Kullback-Leibler divergence

Shannon’s well-known definition of entropy [Shannon and Weaver, 1963] in the context
of information theory states for any discrete probability distribution p(x), describing the
probability for a set of messages {x} to be provided by some device, that

S[p] = −
∑

x

p(x) log p(x)

which keeps validity also for continuous distributions if one goes over to an integral for-
mulation. It is analogous to the definition of entropy in statistical mechanics of canonical
ensembles, where the probability of a configuration {x} is related to the free-energy F ({x}),
according to Boltzmann’s law

p(x) ∝ exp

(

−F (x)

kBT

)

.

10
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The probability distribution p(x) may also be related to another distribution q(x), leading
to the concept of relative entropy, defined as

H [p | q] =
∑

x

p(x) log

(

p(x)

q(x)

)

.

This functional was chosen to figure under the section of information theory, for it known
since 1951 by the name of Kullback-Leibler divergence [Kullback and Leibler, 1951] and as
such mostly found application in classical coding theory. Its physical interpretation in a
statistical mechanical context was exemplified by [Qian, 2001] as being associated to the
free-energy difference of a non-equilibrium system – with states distributed according to
p(x) – to its equilibrium – described by the distribution q(x).

In the context of motif representation and identification, we will encounter the expression
for the relative entropy as a probabilistic measure for the information content of an achieved
result, the so-called information score.

3.1.2 Pseudocount regularisers for small-sample-statistics

Fitting a predictive model to experimental data has always been an important statistical
task and the theory of Bayesian inference offers a useful framework for doing so. The very
basics of the theory can be stated as relation between the prior distribution P (ρ) of some
model parameter ρ and the posterior distribution P (ρ|S), where some observed data S is
conditioning the probability.

The definition of the conditional probability P (ρ|S) for the random variables ρ and S yields

P (ρ|S)p(S) = P (ρ; S) = P (S; ρ) = P (S|ρ)p(ρ)

⇒ P (ρ|S) =
P (ρ)P (S|ρ)

P (S)
=

P (ρ)P (S|ρ)
∫

dρ′P (ρ′)p(S|ρ′)
. (3.1)

In the present context, we are going to face the task of estimating actual occurrence
frequencies

pα = lim
L→∞

nα

L
with α = A, G, C, T ,

from finite and sometimes small genomic samples of length |S| ≪ L by counting out the
occurrences nα of the nucleotide α. The results are intrinsically flawed, the error increasing
with decreasing sample sizes. Pictorially spoken, we cannot deduce reliable occurrences nα

for the four nucleotides in the extreme case of a very short sequence, as we cannot safely
test a coin for being Laplacian by tossing it only a few times. In the above terminology,
we want to find the probability of having a certain set of occurrence frequencies

P (ρ|S) with ρ = (pA, pC, pG, pT) ,
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given the observation of a genomic sequence S. From this probability we can then compute
a better estimate for the frequencies than from merely counting occurrences in the finite
sample. Thus we evaluate

PS(α) ≡ P (α|S) =

∫

dρ ρ P (ρ|S)

by integration over the four dimensional probability space of ρ. The form of the posterior
P (ρ|S) is not clear a priori, but we can use Bayes’ rule from (3.1) to find a description in
more accessible terms.

PS(α) =

∫

dρ
pα P (ρ)P (S|ρ)
∫

dρ′P (ρ′)P (S|ρ′)
, (3.2)

where the likelihood P (S|ρ) of generating the sequence S is clearly multinomial, i.e.

P (S|ρ) =
[
∑

α nα]!
∏

α nα!
·
∏

α

pnα

α , (3.3)

if one assumes the nucleotide occurrence frequencies to be independent. It remains to
find a suitable prior P (ρ). For simplicity in the calculus, we assume it to be a Dirichlet
distribution, although this might be criticised, as in [Stephens and Donnelly, 2003], to be
an oversimplification of the problem. Nevertheless, the results obtained by assuming a
Dirichlet prior appears rather plausible from a naive point of view.

Leaving the details of this computation to appendix A, we find as final result

PS(α) =
nα + βα

∑

α′ (nα′ + βα′)

with the free set of parameters βα, mnemonically called pseudocounts, which can be chosen
to give certain desired properties to PS(α). We will not further discuss the philosophy of
adjusting pseudocounts to sample sizes but will use the widely accepted assumption that

βα = 1 ∀α

is an acceptable pseudocount for arbitrary sample sizes. Clearly, as |S| → ∞, the impact
of any finite βα vanishes and for the case in which no observation was made, a pseudocount
of one leads to the reasonable prediction of pα = 0.25 for all four nucleotides, being the
best “zero knowledge” guess.

Whenever it comes to counting out nucleotide occurrences, we will make use of the additive
pseudocount regulariser. For small samples it just slightly smooths the expected distribu-
tion of nucleotides, while it has no major effect when counting out large samples. Since
many bioinformatics methods make use of such additive regularisers, it appeared useful
to summarise its Bayesian origin here. From a biological point of view, we do not expect
the occurrence frequency for any nucleotide to be exact zero, thus motivating the use of
pseudocounts when evaluating any genomic data.



3.2. STATISTICAL PHYSICS 13

3.2 Statistical physics

3.2.1 Monte Carlo sampling on random fields

Representing multidimensional stochastic systems by a lattice of random variables leads
to the notion of random fields, where the interdependence between different lattice ele-
ments plays an important role for its macroscopic behaviour. Random fields have become
popular in physics when describing spin-systems and many-particle-systems or texture like
structures, as polymer conglomerates or convecting media. In information theory, they
find application when it comes to image treatment, satisfiability problems and in many
other fields.

The aim of Monte Carlo sampling is to simulate the realisation of a random field, which
in our context will be just a one dimensional lattice of N binding site positions ak,
k = 1, . . . , N , in a set of nucleotide sequences. Like in the application of Monte Carlo
methods – for the underlying theory we refer to [van Kampen, 1985] – on physical sys-
tems, one starts by guessing some initial configuration for the lattice elements and as-
sociate a value H({ak}) to the system, representing its energy. Then, one sequentially
updates each element, keeping the new configuration {ak}′ if yields a lower value for H .
Yielding a higher value, it is accepted only according to a certain probability distribu-
tion, which may be adapted to the very problem. We will make use of the Ansatz by
[N.Metropolis et al., 1953] and accept a new state raising H with probability

exp

(

−H({ak}′) − H({ak})
kBT

)

.

3.2.2 Simulated annealing

Lowering the temperature T , while performing a Monte Carlo sampling, is referred to
as simulated annealing – the name being motivated by the slow annealing processes in
metallurgy. This strategy has been successfully applied to optimisation problems of various
kinds, some of the more famous having been described by [Kirkpatrick et al., 1983]. The
technique reduces the likelihood of converging towards a configuration with only locally
minimal energy.



Chapter 4

Representation of regulatory motifs

Speaking of a binding-site motif is talking about diffuse patterns sharing a certain degree
of similarity. Different models of representation have hence been elaborated and we de-
scribe the most common ones as well as some quantities which are useful to classify the
descriptions. A short overview of common information theoretical terms is followed by the
description of a physically motivated one.

4.1 Information theoretical models

On the information theoretical side, we present the description via the so called consensus
sequence and via frequency matrices. From the latter, we deduce the information score of
such a matrix, thus assessing the quality of an alignment.

4.1.1 Consensus sequences

The binding site for a TF is naturally described via its nucleotide sequence. Considering a
set of binding site sequences, one will eventually observe that nucleotides at some positions
may vary, while others remain the same in all sequences. Figure 4.1 shows experimentally
reported binding sites of the FruR TF, involved in the carbon metabolism of Escherichia
coli bacteria. Capital letters in the table denote the identifies binding sites. The most

aagccaaag CTGAATCGATTTT atgatttgg

cgttgcgag CTGAATCGCTTAA cctggtgat

gttagcgtg GTGAATCGATACT ttaccggtt

tagtcgatc GTTAAGCGATTCA gcaccttac

Table 4.1: Binding sites of the FruR TF in E.coli

14
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straight forward representation would be by naming the sets of occurring nucleotides at
each position. Using the IUPAC1 symbols for nucleotides, summarised in table 4.2, we find
as consensus sequence the motif shown in table 4.3.

Symbol A C G T U R Y S W K M B D H V N -

Base

A
denine

C
ytosine

G
uanine

T
hym

ine
U
racil

A
or

G
C

or
T

G
or

C
A

or
T

G
or

T
A

or
C

C
or

G
or

T
A

or
G

or
T

A
or

C
or

T
A

or
C

or
G

any
base

gap

Table 4.2: IUPAC symbols for nucleic acids

aagccaaag CTGAATCGATTTT atgatttgg

cgttgcgag CTGAATCGCTTAA cctggtgat

gttagcgtg GTGAATCGATACT ttaccggtt

tagtcgatc GTTAAGCGATTCA gcaccttac

nnnnnnnnn STKAAKCGMTWHW nnnnnnnnn

Table 4.3: Consensus sequence of the FruR binding sites

Obviously, this description lacks some crucial information. First, nothing is stated about
the relative occurrence frequencies of different bases at the same position. Second, no
accurate statement is made on the importance of an individual position. Although one can
assume the positional importance of a symbols to decrease with the amount of nucleotides it
stands for, this remains a rather coarse distinction. To keep information on the occurrence
frequencies, it might be more useful to refer to the motif’s sequence logo2. This kind of
motif representation was introduced by [Schneider and Stephens, 1990]. Figure 4.1 shows
the corresponding logo for the collection of FruR binding sites. The height of an entry

5′

1

G
C

2

T

3

T
G

4

A

5

A

6

G
T

7

C

8

G

9

C
A

10

T

11

A
T

12

T
A
C

13

T
A

3′

Figure 4.1: Sequence logo of FruR binding sites with relative nucleotide frequencies

corresponds to its relative occurrence frequency in the collection of sequences and we can
readily convert the logo to a consensus sequence.

1International Union of Pure and Applied Chemistry
2Created using the on-line service http://weblogo.berkeley.edu/ by Gavin E. Crooks, Gary Hon, John-

Marc Chandonia and Steven E. Brenner, Computational Genomics Research Group, Department of Plant
and Microbial Biology, University of California, Berkeley.
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4.1.2 Weight matrices and information score

The next step would then be to count the relative occurrences f i
α of each nucleotide at

each position of the motif in our collection of N = 4 sequences. Doing so, we calculate the
entries of a frequency matrix

f i
α =

ni
α + 1

N + 4

considering a pseudocount of one for each nucleotide. With ni
α we denote the occurrence

count of α at position i of the alignment, e.g. n1
G = 2 in the FruR alignment. Relating

the frequency matrix to some nucleotide occurrence probability pα, we reach the concept
of weight matrices

wi
α = log

f i
α

pα

(4.1)

which has been successfully applied by [Stormo and Hartzell, 1989] for the description of
protein binding cites. Assuming typical nucleotide occurrence probabilities for the up-
stream regions of the E.coli genome, i.e. pA ≈ pT ≈ 0.3 and pG ≈ pC ≈ 0.2, we find the
weight matrix represented in table 4.4 for the FruR alignment we used as example so far.
It is worth to note the usefulness of pseudocounts at this point. Due to the alignment

A -0.88 -0.88 -0.88 0.73 0.73 -0.88 -0.88 -0.88 0.51 -0.88 -0.18 -0.18 0.22

G 0.63 -0.47 0.92 -0.47 -0.47 0.22 -0.47 1.14 -0.47 -0.47 -0.47 -0.47 -0.47

C 0.63 -0.47 -0.47 -0.47 -0.47 -0.47 1.14 -0.47 0.22 -0.47 -0.47 0.63 -0.47

T -0.88 0.73 -0.18 -0.88 -0.88 0.51 -0.88 -0.88 -0.88 0.73 0.51 -0.18 0.22

Table 4.4: Positional weight matrix for the FruR alignment

being a rather small statistical sample, we might not observe a certain base at a certain
position. Taking the logarithm in (4.1) leads thus to entries of −∞ in the weight matrix,
making the description useless.

Related to the weight matrix is the so called information score – a measure for some
alignment not to occur by chance. We begin with the probability of observing the set
of positional occurrences {ni

α} of the alignment, given the probabilistic model defined by
the set {pα}. Considering the alignment of N sequences of length l, this is given by the
product over multinomials

P ({ni
α} | {pα}) =

l
∏

k=1

N !
∏

α

[pα]n
k
α

nk
α

.

The multinomial after the first product sign is just the generation probability for a column
in the alignment. To get the probability of generating the whole alignment, we have to
build the product over all such columns. Writing the occurrences as ni

α = N · f i
α and
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making use of Stirling’s approximation log(n!) ≈ n log n − n, we find

P ({ni
α} | {pα}) =

l
∏

k=1

exp(log N !)
∏

α

exp

(

Nfk
α log

pα

(Nfk
α)!

)

≈ exp

(

−N
∑

k,α

fk
α log

fk
α

pα

)

≡ exp(−nI) ,

where we have implicitly defined the information score – or information content, as it is
called in the derivation by [Schneider et al., 1986] – of an alignment described by f i

α as

I =
∑

k,α

fk
αwk

α .

This quantity increases at the same time as the probability for the alignment described by
{ni

α} to occur by chance from the probabilistic model decreases. The information score
gives hence the possibility to assess the quality of an alignment described by some weight
matrix. Summing only over different nucleotides, we get a positional information score

I(k) =
∑

α

fk
αwk

α .

Sequence logos in chapter 7 are scaled with this positional information score, allowing the
visual assessment of the importance of a specific position in the alignment.

4.2 Physical models

4.2.1 Energy matrices

Instead of considering the relative nucleotide frequencies in an alignment, one could use
a description of the binding behaviour of a site to its corresponding TF. Assuming the
nucleotides of a TF binding site to contribute independently of each other to a total free
energy of binding of the whole protein, we can describe the interaction by an energy matrix
with numerical entries εi

α. The free energy of binding of a specific TF-DNA interaction –
describes by the binding sequence S of length l– is then just the sum over corresponding
matrix entries times the proportionality factor kBT , i.e.

E(S) =

l
∑

i=1

εi
αS

i
, (4.2)

where we denote the nucleotide at position i in the sequence with αS
i . Speaking about a

threshold value which is to be provided by a specific binding, we will also refer to the free
energy of binding as discrimination energy.
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4.2.2 Berg & von Hippel theory

Presenting a statistical-mechanical theory for the functioning of TF driven regulatory
systems, [Berg and von Hippel, 1987] make the plausible assumption that the set Mϕ =
{Sϕ

i , Sϕ
2 , . . . } of possible binding-sites corresponding to a specific factor ϕ is defined by a

limited range around the discrimination energy Eϕ, hence

Mϕ = {S : |E(S) − Eϕ| ≤ ∆Eϕ} .

Finding the occurrence frequencies for a nucleotide at a specific position of the motif
defined by this set – not knowing the corresponding sequences a priori – is equivalent to
the problem of finding the occupation probabilities of energy-levels in a microcanonical
ensemble of non-interacting particles. We can thus write

f i
α(Eϕ) =

exp(−λεi
α)

∑

α′ exp(−λεi
α′)

with the energy matrix entries εi
α and the selection parameter λ which plays the role of

an inverse temperature although obviously not being related to the one of the biological
environment. It can rather be interpreted as coupling factor between the properties of a
TF being represented by the energy matrix and properties of a binding-site motif motif,
represented by the frequency matrix. Assuming the contribution of different sequence
positions to be additive, one can also find the discrimination energy by evaluating the
average

Eϕ =

l
∑

i=1

∑

α

εi
αf i

α .

We will recognise the fundamentals of this theory in chapter 5 when describing a method
of energy matrix estimation. Especially the ensemble interpretation will be of great use,
allowing the computation of statistical quantities from the free energy of binding.



Chapter 5

Identification of regulatory motifs

In this chapter, we discuss general schemes of motif identification, whereafter representa-
tives are described explicitly. Finally, a new alignment algorithm is introduced, which will
be evaluated in the following chapters.

5.1 General procedures

5.1.1 Pattern deduction

Given the abundance of genomic material, there has been made attempts to identifying
regulatory motifs by deducing some set of sequences directly from the genome or by fitting
a certain model to some known gene expression data. Such methods, as e.g. described in
[Bussemaker et al., 2000] where the authors try to build a dictionary of words – hence de-
duce a genomic language – by comparing the occurrence probabilities of nucleotide strings
in the genome in question, or the one developed by [Bussemaker et al., 2001] to fit a set of
regulatory motifs to the experimental data of gene expression levels, try thus to deduce a
descriptive pattern by fitting a motif model to the global model defined by the genome or
the experimental expression data.

5.1.2 Sequence alignment

Another approach is to compare sub-sequences of a genome with each other. Assuming
regulatory elements with the same function to share a similar sequence allows the attempt
of identifying those similarity motifs through a local alignment. An important requisite to
local alignment procedures is the choice of sequences where on which one wants to identify
the regulatory elements. Each sequence is supposed to share the regulatory site a priori.
Sequences not containing the motif are in general hard to identify and having too many of

19
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those makes the alignment difficult or even impossible. Known similarity search methods
via alignment were developed e.g. by [Smith and Waterman, 1981], [Altschul et al., 1990]
or [Lawrence et al., 1993]. Sequence alignment can be seen as an attempt to find the best
local or global model describing a configuration of maximal similarity between different
subsequences in the data.

5.1.3 Genome wide model matching

After building a motif model with one of the above procedures, the search for binding sites
on the whole genome can begin. Knowing the weight or energy matrix mi

α ∈ {wi
α, εi

α} of a
motif of length l, we can evaluate it on the genomic sequence G of length L by calculating
the score

E(a) =

l−1
∑

k=0

mk
Ga+k

,

where Gi is the nucleotide at position i in the genome and a ∈ [1; L − l + 1] is the first
position of an assumed regulatory motif. In the case of energy matrices, the role of E is
clearly the free energy of binding of a corresponding TF, thus we can easily decide if a
site might act as TF binding site by finding a negative score. Having a weight matrix, no
intrinsic threshold is given and one has to decide which score to take as limit for predictions.

5.2 Representative algorithms

5.2.1 Motif detection by fitting to expression data

Regulatory element detection using correlation with expression by [Bussemaker et al., 2001]
is based on an assumption of additivity. The expression level of a gene g ∈ G is to be
constituted of

Ag ≈ C +
∑

µ∈M

FµNµg = log2

(

[mRNA]obs

[mRNA]ref

)

(5.1)

where Ag is to be interpreted as the log2 of the fraction of mRNA abundance for the gene
g in the observed organism, compared to a reference, hence the experimental input. Nµg is
the integer matrix of occurrences of motif µ ∈ M in the relevant upstream region of gene
g. Fµ is the parameter to be fitted in this model and C represents a general baseline of
expression for all g.

To simplify the situation, one rescales Ag ; ag and Nµg ; nµg using the transformation

•[µ]g ;

δ•[µ]g
√

|G|〈δ•2
[µ]〉
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with δ•[µ]g = •[µ]g − 〈•[µ]〉 and 〈δ•2
[µ]〉 = var(•[µ]g), leading to a new set of parameters

Fµ ; fµ in the simplified model with normalised vectors of dimension |G| with elements
ag and nµg:

a ≈
∑

µ∈M

fµnµ

One now aims to fit the model as best as possible to experimental data, by solving

min
fµ







χ2 =

∣

∣

∣

∣

∣

a−
∑

µ∈M

fµnµ

∣

∣

∣

∣

∣

2

: fµ ∈ R







∑

µ′∈M

fµ′(nµ · nµ′) = nµ · a

The initial parameters C and Fµ can be extracted from the fit via

C = 〈A〉 −
∑

µ∈M

Fµ〈Nµ〉,

Fµ = fµ

√

〈δA2〉
〈δN2

µ〉
,

which becomes obvious by inserting those relations into equation (5.1). Assuming |M | = 1
and thus having f = nµ · a from (5.1), the error simplifies to

χ2
µ = a2 − 2(nµ · a) · (a · nµ) + (nµ · a)2 = 1 − (nµ · a)2 ≡ 1 − ∆χ2

µ

Starting with a single motif in the model M and given some experimental data, e.g. from
micro-array experiments in nµ, one can compute the error reduction ∆χ2

µ for all motifs
one wants to consider and rank those by the largest ∆χ2

µ. After adding the motif which
achieves the maximal ∆χ2

µ to the set M , one computes the residual

a′ = a−
∑

µ∈M

fµnµ

and its corresponding error reductions ∆χ′
µ
2 = (nµ · a′)2 from all remaining motifs. Again

adding the best “reducer”, the method is iterated and thus populating the model.

The significance of a motif can be measured statistically by evaluating the probability of
it’s ∆χ2

µ to be maximal. One defines therefore

Zµ ≡ |G|1/2(a · nµ),
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which describes the correlation of a and nµ in units of the variance of their product.
Accepting the variance to be |G|1/2, the mean zero and Zµ to follow the normal distribution,
the probability for it to be within the range of its maximum Zmax = (|G|∆χ2

max)
1/2 is

P (Zµ ∈ (−Zmax, +Zmax)) =
1√
2π

+Zmax
∫

−Zmax

dZ exp

(

−Z2

2

)

(5.2)

Since the computed set of motifs comprises |M | elements and since all Zµ are confined to
the above interval, the composed probability for this event considering the whole set is just
the product of all elemental probabilities, thus the |M |th power of equation (5.2).

The negated event hence describes the probability for yielding exactly the maximum Zmax:

Pc(|Zµ| = Zmax) = 1 −





2√
2π

Zmax
∫

0

dZ exp

(

−Z2

2

)





|M |

,

where the integral was slightly simplified using that exp(−Z2) is even. The significance of
a motif thus scales with the absolute decrease of Pc.

5.2.2 Gibbs sampling

Originating form a statistical mechanical model applied to the description of image data,
the algorithm known as “Gibbs sampler” was designed to allow a restoration of “defective”
image regions by Bayesian means [Geman and Geman, 1984]. The idea behind the Gibbs
sampler is to find the marginal probability density f(x) of a random variable x which
occurs in the joint density f(x, y1, . . . , yn), i.e.

f(x) =

∫

· · ·
∫

f(x, y1, . . . , yn) dy1 · · · dyn (5.3)

Of course the problem is uninteresting if the joint density is given such as the integral is
(easily) solvable. Whereas if it is hardly possible to solve (5.3) in a closed form or if the
joint density is unknown, one has to use other means. We will see in the following that, for
the latter case, Gibbs Sampling even allows to approximate the joint density with arbitrary
precision. In [Casella and George, 1992], from where we take the elementary description
in this section, a structured introduction comes along with illustrative examples.

The tools for successful sampling are the conditional probabilities relating the random
variables x, y1, . . . , yn. From those we can both sample the marginal distributions and
reconstruct the joint density, or rather approximate it by simulation draws. Here distribu-
tion and density is used in the same context, as the method holds for both. In practise,
either the conditional densities are rather easy to construct or they are given within the
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formulation of the problem, as is the case in motif sampling on DNA. From our toolbox
of distributions, we can now make draws for the variables, setting the initial conditions
Y 0

1 , . . . , Y 0
n arbitrarily. Thus one draws

X i ∼ f(x | y1 = Y i
1 , . . . , yn = Y i

n),

Y i+1
j ∼ f(yj | x = X i, y1 = Y i+1

1 , . . . , yj−1 = Y i+1
n , yj = Y i

1 , . . . , yn = Y i
n),

and by iterating this, a Markov chain is created, as each set of variables (X i, Y i
1 , . . . , Y i

n)
only depends explicitly on the previous one. With a collection S of m such sets, we can now
approximate the expectation value of of the conditional probabilities and thus approximate
the marginal distributions:

E[f(x | y1, . . . , yn)] =
1

m

m
∑

i=1

f(x | y1, . . . , yn) =
1

m

m
∑

i=1

X i,

and in the limit m → ∞ this leads to the integral
∫

dy1 · · ·
∫

dynf(x | y1, . . . , yn)f(y1) · · · f(yn) = f(x)

which is just the marginal we wanted. For long enough Markov chains, we hence reconstruct
the desired distribution. From Monte Carlo theory we know that the reliability of the
draws requires a certain burn-in period, hence we might choose to drop the first sets of our
collection S.

So far, the solution seemed rather straight forward, but one has to remember that the
convergence of the Markov chain, especially the answer to the question if it does so at
all, highly depends on the given conditional densities and has to be analysed for every
problem individually. Moreover, the burn-in-period is likely to depend on the choice of
initial conditions, which thus have to be set with care. Further details of these and related
problems shall not be discussed here, and we refer to the literature, e.g. by [Walsh, 2004].

Given a set S = {S1, S2, . . . , SN} of N DNA sequences, we want to align them to extract
motif patterns of a given length l. For simplicity, we assume all sequences of S to have
the same length L. The method described in [Lawrence et al., 1993] is tailored for amino
acid coding residual sequences and can thus be easily applied to a sequence of nucleotides.
Beside S, two structures are being used in the algorithm: the first one consists of the
occurrence probabilities qi,α for the bases at each position of the pattern – with i = 1, . . . , l,
α = A, G, C, T – and the background probabilities pα describing occurrences in the non-
pattern regions of the sequences; the second is the alignment itself in form of the starting
position ak of the pattern in each sequence, i.e. k = 1, . . . , N .

In terms of the above formalism, we can identify the second set (alignments) with the
variables, we want to reconstruct the distributions for, while the first set (probabilities)
represents the conditions. The steps are then as follows:



24 CHAPTER 5. IDENTIFICATION OF REGULATORY MOTIFS

Initialisation: Random positions ak are chosen for each sequence.

1. Predictive update step: The sequence Sz is removed from S, where z can be chosen
arbitrarily or in a specific order covering all elements of S. For the remaining set we
calculate the pα and the qi,α according to

pα =
nb

α + 1

L(N − 1) + 4
and qi,α =

nm
i,α + 1

N − 1 + 4

where occurrences in background and model are denoted with nb and nm, respec-
tively. As discussed before, we settle for a simple correction assuming a pseudocount
of one for each of the for nucleotides.

2. Sampling step: Every segment x of length l in Sz is being considered as instance of the
pattern and we calculate the probabilities Px and Qx of constructing x from the pα,
respectively from the qi,α. Those segments are then assigned the weight Ax = Qx/Px

describing the likelihood of x to be generated by the actual description and before
putting z back into S, we pick a new az randomly, but according to the weights.

Figure 5.1: Gibbs sampling on Sz with the model defined by M1 to M4

Figure 5.1 visualises those steps. The current alignment with motif length l = 15 is
represented by the coloured boxes in S1 to S4, each of length L = 100, a1 to a4 thus
being the starting positions of those boxes on the sequences. From the assumed model,
the affinity Ax is computed for each segment of length l starting at az = 1 . . . 86. The qiα
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Figure 5.2: Array of conditional probabilities for the events Xi and Yj with pij ≤ 0 and
∑

ij pij = 1 for i = 1, . . . , n and j = 1, . . . , m. The sampling on DNA can be mapped to a
similar description.

are calculated from the nucleotides comprising the model and the pα are evaluated from
all the others.

If, at some iteration, a set of “correct” alignments is chosen, i.e. some of the ak correspond
to a highly non-background-pattern, the algorithm will tend to lock the remaining align-
ments to satisfy the “correct” pattern. That way, the method converges to a (although
possibly local) optimum of alignment. A slightly more rigorous proof can be found in
[Casella and George, 1992], where convergence is shown for finite dimensional conditional
arrays, as illustrated in 5.2. To avoid getting stuck on a local optimum, we can add a step,
say every mth iteration, where all alignments are temporarily shifted some bases to both
directions, to check if this yields to better Ax.

In the former description, one has to use a given length for the pattens. Making a set of
runs with different l each is the simplest way to search for “arbitrary” pattern lengths.
Although, one has then to find arguments for one of the results.

Albeit not knowing the motif patterns, we need to feed the algorithm with coarse sequences,
associated with binding, making the method differ from zero-knowledge-approaches. The
strength of the procedure is, as stated in the literature, the usual speed of convergence
with which one gets a solution to the highly non-trivial alignment-problem.
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5.2.3 Energy matrix estimation

The recently developed Quadratic Programming Method for Energy Matrix Estimation by
[Djordjevic et al., 2003] makes a different approach to the problem of uncovering binding-
site motifs. One rather looks at the binding free energy of a transcription factor bound
to the DNA molecule, which can be expanded in interaction terms of different order, all
depending on the sequence S of length L:

E(S) =

L
∑

i

4
∑

α

εi
αSi

α +

L
∑

i,j

4
∑

α,β

Jαβ
ij Si

αSj
β +

L
∑

i,j,k

4
∑

α,β,γ

Qαβγ
ijk Si

αSj
βSk

γ + . . . (5.4)

where all subscripts are integers starting at one and the greek letters are control variables
for the four base types at arbitrary convention. Since the involved tensors gain in rank
in every sum, making computation more and more laborious, and as one assumes the
corrections by the higher order terms to be small, only the linear approximation is used for
modelling. si

α switches the interaction, being one if the ith base is α and zero otherwise. It
is convenient to think in terms of matrices, leading to

E(S) ≈ tr(εT · s) = tr















ε1
A ε1

G ε1
T ε1

C
...

...
...

...
εL

A εL
G εL

T εL
C






·









S1
A . . . SL

A

S1
G . . . SL

G

S1
T . . . SL

T

S1
C . . . SL

C

















This can equally be described by a computationally less exhaustive inner product of the
vectors

ε = (ε1
A, ε1

G, ε1
T , ε1

C ; . . . ; εL
A, εL

G, εL
T , εL

C)T

and

s = (S1
A, S1

G, S1
T , S1

C ; . . . ; SL
A, SL

G, SL
T , SL

C)T

with the approximated sequence energy

E(S) ≈ ε
T · s

since all off-diagonal elements in the above matrix computation are irrelevant due to the
tracing. In the following, only the vectorial representation will be used for s and ε, al-
though we will keep using the common term of energy matrix while speaking of a vectorial
representation.

The problem of finding the free binding energy can now be tackled using the method
suggested in [Djordjevic et al., 2003]. A corresponding thought experiment is the following:

One mixes a large number of randomly generated DNA sequences of length L to a solution
with known TF concentration, hence with fixed chemical potential µ. The probability to



5.2. REPRESENTATIVE ALGORITHMS 27

generate the sequence S be PS. The likelihood of observing exactly a set O of sequences
and no other is

P =
∏

S∈O

[γPSf(E(S) − µ)]
∏

S′ /∈O

[1 − γPS′f(E(S ′) − µ)] (5.5)

where f(E−µ) is the Fermi distribution. The factor γ describes the extraction probability
of a bound sequence. The aim of the algorithm is to maximise the likelihood P. Making
use of the expansion of log(1 − x) ≈ −x, one can simplify equation (5.5) to

P =
∏

S∈O

[γPSf(E(S) − µ)] exp

(

∑

S′ /∈O

log[1 − γPS′f(E(S ′) − µ)]

)

≈
∏

S∈O

[γPSf(E(S) − µ)] exp

(

∑

S′ /∈O

[−γPS′f(E(S ′) − µ)]

)

(5.6)

To get rid of the product and the exponential function, it is rather convenient to consider
the logarithm of this probability, referred to as the logarithmic likelihood L = logP. From
equation (5.6) we hence get

L = NS log γ +
∑

S∈O

log[PSf(E(S) − µ)] − γ
∑

S′ /∈O

[PS′f(E(S ′) − µ)]

Maximising L corresponds to maximising the probability of extracting bound sequences,
hence to identify those relevant during transcription, the general aim of all here presented
algorithms.

A short excursion shows why one assumes the binding probability to be Fermi-Dirac dis-
tributed. One considers the simple reaction equation describing the binding of a TF:

TF + DNA
Kbind

⇋

Kdiss

TF ◦ DNA

This represents a pair of coupled ordinary first-order differential equations and the system
can be interpreted as one of two states, bound and unbound, separated by the free energy
of binding E. One can now look at the steady-state of the bound complex’ concentration

∂t[TF ◦ DNA] = Kbind[TF][DNA] − Kdiss[TF ◦ DNA] ≡ 0

leading to
Kbind

Kdiss
=

[TF ◦ DNA]

[TF][DNA]
= K · exp(−βE) (5.7)

where equality to the right comes from the two-state model. β = kBT is the Boltzmann
factor and E stands for the free energy of binding, while K is a proportionality constant
with unit of an inverse concentration.
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Now the probability for the DNA sequence S to be bound to a TF is given by

Pbound(S) =
[TF ◦ DNA]

[TF ◦ DNA] + [DNA]

into which one can insert the statement of equation (5.7), thus

Pbound(S) =

(

1 +
[DNA]

[TF ◦ DNA]

)−1

=

(

1 +
exp(βE(S)

K · [TF]

)−1

=
1

1 + exp[β(E(S) − µ)]
(5.8)

with the chemical potential µ = kBT log(K · [TF]), just leading to the Fermi distribution.

To further simplify equation (5.6), one considers the border case of all TFs being bound.
The most radical requirement to satisfy this claim is T → 0 or equivalently β → ∞. In this
limit, the Fermi distribution goes over into the Heaviside distribution Θ(E − µ). Further
on, one can assume the energies E(S ′) of unobserved sequences to be distributed according
to ρε(E), allowing the notation

∑

S′ /∈O

PS′f(E(S ′) − µ) =

∞
∫

−∞

dEρε(E)f(E − µ)
T→0−−−→

µ
∫

−∞

dEρε(E). (5.9)

The continuous density function ρε can, on its part, be approximated by a Gaussian dis-
tribution as long as one is close to the mean energy. This is assumed to hold for the set of
unobserved sequences. Keeping the temperature finite, this leads to a simplified likelihood
function

L = NS log γ +
∑

S∈O

log[PSf(E(S) − µ)] − γ

∫

dEρε(E)f(E − µ), (5.10)

which is yet to be maximised in the (ε, µ, γ) space.

∂εi
α
L = −NS log γ

∑

S∈O

[1 − f(E(S) − µ)] · βSi
α + γ

∫

dEf(E − µ)∂εi
α
ρε(E) ≡ 0

∂µL = NS log γ
∑

S∈O

[−f(E(S) − µ)] · β − γβ

∫

dEρε(E)f(E − µ)[1 − f(E − µ)] ≡ 0

∂γL =
NS

γ
−
∫

dEρε(E)f(E − µ) ≡ 0 .

The extraction factor γ turns out to be independent of the other variables

γ =
Ns

∫

dEρε(E)f(E − µ)
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and inserting this result into (5.10) yields a simplified maximisation problem

max
ε,µ







NS



log NS −
µ
∫

−∞

dEρε(E)











,

which – since NS is constant – is equivalent to the evaluation of

min
ε,µ







µ
∫

−∞

dEρε(E) = erf

(

µ − Ē

σ

)

: ε ∈ R
4 × R

L, µ ∈ R : E(S) ≤ µ ∀ S ∈ O







Here we finally assumed ρε to be Gaussian with mean Ē, which can be arbitrarily chosen
by shifting the energy scale, since this doesn’t affect the minimisation problem. Setting
further

µ = max
S∈O

E(S) ,

to ensure the observed states states to be bound, the problem can be reduced to minimising
the variance of the Gauss distribution. It is hence to find

{

ε ∈ R
4 × R

L : σ2(ε) = min
ε

σ2(ε)
}

Rescaling all energies to units of the shifted chemical potential µ − Ē ≡ −1 leads to the
task







minimise
ε

σ2(ε) =
∑

i,α

εi
αP (εi

α)

subject to E(S) = ε
T · s ≤ −1 ∀ S ∈ O

(5.11)

The probabilities P (εi
α) are yielded from a statistical model in the following, where we will

see that they correspond to the probabilities P (αi) of observing the nucleotide α at position
i. The problem of estimating the energy vector ε – with entries εi

α – was thus reduced
to a quadratic optimisation problem, which can be handled by the method of quadratic
programming. Let us first summarise the system of equations (5.11) as







minimise
ε

1
2
ε

TPε

subject to ε
T · S + 1 ≤ 0

with the matrix S comprising the row vectors s(j) as entries, corresponding to the jth of
the NS extractions each, thus

S = (sT
(1), s

T
(2), . . . , s

T
(Ns)) .

1 and 0 are the NS dimensional vectors of ones and zeros, respectively. P can be interpreted
as the Hessian of the variance . Since pα ≤ 0 and

∑

pα = 1, P is at least positive semi-
definite, leading to a convex optimisation problem. Any identified optimum is hence a
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global one. Lagrange’s optimisation with constraints requires the system – introducing the
vector of multipliers λ – to be







minimise
ε,λ

1
2
ε

TPε + λ
(

ε
T · S + 1

)T

subject to P · ε + S · λ = 0 ∧ λ ≥ 0
(5.12)

Inserting ε = −P−1 · Sλ from the new constraint back into the optimisation leads to the
dual form of the problem







maximise
λ

−1
2
λ

T · ST · P−1 · S · λ + λ
T · 1

subject to λ ≥ 0
(5.13)

This dual problem is equivalent to the primal one [Nash and Sofer, 1996] and has only λ left
as free parameter. Efficient numerical methods are available for solving this problem. In
the current application, we use the solver package kindly contributed by Klaus Schittkowski
[Schittkowski, 2003].

Zero entries in the sequence matrix S lead inevitably to the loss of some information,
“flattening” the manifold to find the optimum on, so we allow some shifting operation to
act on the sequences, defining for the entries of each sequence vector s(j)

(

ŝ(j)

)i

α
≡
(

s(j)

)i

α
− pα . (5.14)

Such a transformation from S to Ŝ does not affect the optimisation problem but just
rescales the chemical potential, which was arbitrarily set to unity, as in equation (5.12),
and we solve the problem with this shifted version of the sequence vector.

To reconstruct the estimated energy matrix we have to evaluate

ε = −P−1 · ŝ · λ

and we obtain the energy matrix ε in terms of µ ≡ −1.

Solving the dual problem yields a great computational benefit when optimising via quadratic
programming. The matrix of the dual quadratic form is ST ·P−1 ·S and therewith of rank
NS instead of 4L for P in the primal problem. In general, we have NS ≪ 4L and although
one has to perform a matrix inversion and two multiplications, this has only to be done
once, while the optimisation procedure evaluates the quadratic form numerous times.

Figure 5.3 visualises the idea behind the likelihood maximisation at some finite temper-
ature. The domain of overlapping Fermi-Dirac and Gauss distributions represents the
probability of having unobserved binders. By minimising the variance of the Gaussian,
this probability diminishes, maximising the likelihood of only finding the observed set of
sequences in the thought experiment.
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Figure 5.3: Distribution of binding energies and sequence binding probability

One has now to calibrate respective to a known set of binding sequences, in order to find
an estimate for the binding-free-energies ε. With this estimate, it is possible to find other
sequences subject to the constraint set by the chemical potential by evaluating the energy
matrix on the whole genome.

Statistical model

We consider a sequences of the kind S = (α1, α2, . . . , αL) of length L with elements αi ∈ A
from the genomic alphabet A = {A, G, C, T}. From here we build a statistical model,
allowing the computation of the variance we want to minimise in order to perform the
maximisation of (5.5).

Assuming the occurrence probabilities of the bases in the genome to be independent of
position and neighbourhood (independent base statistics), we get a straight forward model
genomic background carrying a generation probability for a sequence S of

P (S) =

L
∏

i=1

∏

α

P (α)δαiα,

where P (α) denotes the probability of finding base α at an arbitrary position in the genome.
Interpreting this probability as the Boltzmann factor of the corresponding chemical poten-
tial in a grand-canonical ensemble, i.e.

P (α) = exp(βµα),
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we can identify a partition function in the space of possible sequence “states”

Z(β) =
∑

S

exp (−β[E(S) − µS]) ≡
∑

αi

. . .
∑

αL

L
∏

i=1

P (α) · exp(−βεi
α).

It was implicitly assumed that µS = µα1
+ · · · + µαL

. Further on, the partition function
factorises, when using independent base statistics, to

Z(β) =

L
∏

i=1

∑

α

P (α) · exp(−βεi
α).

We now want to use a two-point statistical model for the genomic background, since an
independent nucleotide description turns out to be too inaccurate [Djordjevic et al., 2003].
The partition function of a sequence S = (α1, α2, . . . , αL) depends hence on the conditional
probabilities

P (αi | αi−1) = P (find αi at position i given a preceding αi−1)

where subscripted α represent the base at a specific position. Note however that the
conditional probabilities are independent of the absolute position of αi in the sequence,
but only depend on the actual and preceding base. A sequence is thus regarded as the
realisation of a Markov chain, leading to

Z(β) =
∑

αi

. . .
∑

αL

L
∏

i=1

P (αi | αi−1) · exp(−βεi
αi

) with P (α1 | α0) ≡ P (α1).

The L sums over each possible sequence element αi can be summarised by the sum over
all possible sequences S and therewith differentiating log Z with respect to β leads to

∂β log Z(β) =
∂βZ(β)

Z(β)

=

∑

S

L
∑

j=1

εj
αj

L
∏

i=1

P (αi | αi−1) exp(−βεi
αi

)

∑

S

L
∏

i=1

P (αi | αi−1) exp(−βεi
αi

)

[. . . ]β=0 =
∑

S

L
∑

j=1

εj
αj

L
∏

i=1

P (αi | αi−1)

=
∑

α∈A

L
∑

j=1

εj
αj

P (αj) ≡ 〈E〉 . (5.15)
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We make use of the short-hand notation P (αj), meaning the position dependent probability
to find α at position j in the sequence. This result can be identified with the mean free
energy of binding, whose positional dependence we thus introduce as

ε̄j ≡
∑

α∈A

εj
αj

P (αj) . (5.16)

Calculating the second derivative of Z, we obtain

∂β
2 log Z(β) =

∂β
2Z(β)

Z(β)
−
(

∂βZ(β)

Z(β)

)2

=

∑

S

∑

i,j

εi
αi

εj
αj

∏

k

P (αk | αk−1) exp(−βεk
αk

)

∑

S

∏

k

P (αk | αk−1) exp(−βεk
αk

)
. . .

−





∑

S

∑

i

εi
αi

∏

k

P (αk | αk−1) exp(−βεk
αk

)

∑

S

∏

k

P (αk | αk−1) exp(−βεk
αk

)





2

(5.17)

[. . . ]β=0 =
∑

S

∑

i,j

εi
αi

εj
αj

∏

k

P (αk | αk−1) . . .

−
(

∑

S

∑

i

εi
αi

∏

k

P (αk | αk−1)

)2

=
∑

α,β

∑

i,j

(εi
αi
− ε̄i)(ε

j
βj
− ε̄j)P (αi; βj) ≡ σ2 (5.18)

with the joint probability P (αi; βj) of having a sequence with αi at position i and βj at
position j. The formula in (5.18) can be recognised as the variance of the binding energies
with respect to the probabilistic model defined by P , which we developed explicitly for the
Markovian case with nearest neighbour dependency.

Narrow binding energy window

Here, we argue how to approximate the discrete energy distribution by a Gaussian, as
mentioned after equation (5.9). Discrete binding energies can be represented by the Dirac
distribution when averaging over all (unobserved) sequences s.

ρ(E) = 〈δ(E − ε · s)〉S
This can be rewritten in integral form, using the orthogonality property of the Fourier
kernel

ρ(E) =
1

2π

∑

S

P (S)

+∞
∫

−∞

dω exp (iω[E − ε · s]) ≡ 1

2π

+∞
∫

−∞

dω exp (iωE + log Y (ω))
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where the function Y (ω) was implicitly defined as

Y (ω) ≡
∑

S

P (S) exp(−iωε · s) .

Complex analysis allows an assession of the integral representation. Therefore one allows
the integration variable to take complex values, i.e. ω = α+ iγ | α, γ ∈ R, and summarises
the exponent in F (ω) = iωE + log Y (ω). Expanding this function to second order around
the saddle point ω∗ leads to

F (ω) ≈ F (ω∗) +
1

2

∂2F

∂ω2

∣

∣

∣

∣

ω∗

(ω − ω∗)2 = iω∗E + log Y (ω∗) +
1

2

∂2 log Y (ω)

∂ω2

∣

∣

∣

∣

ω∗

(ω − ω∗)2

since the first derivative of F (ω) is to vanish in ω∗. Moreover, we can note that ω∗ has to be
purely imaginary, as we claim the energy to be purely real. Steepest descent approximation
dictates an integration path going through the extremal point ω∗, so one can write

ρ(E) ≈ 1

2π
exp(−γ∗E + log Y (iγ∗))

+∞
∫

−∞

dα exp

(

α21

2

∂2 log Y (ω)

∂ω2

∣

∣

∣

∣

iγ∗

)

and identifying

β ≡ −γ ∧ Z(β) ≡ Y (−iβ)

we get

ρ(E) ≈ 1

2π
exp(β∗E + logZ(β∗))

+∞
∫

−∞

dα exp

(

−α21

2

∂2 logZ(β)

∂β2

∣

∣

∣

∣

β∗

)

= exp(β∗E + logZ(β∗))

/√

2π
∂2 logZ(β)

∂β2

∣

∣

∣

∣

β∗

.

Importance of a second order correction

In the actual computation of the variance, we settle for a first order approximation of the
binding energy distribution, neglecting any higher order correction

ρ(E) ≈ exp(βE + logZ(β))

leading to the variance

σ2 =
∂2 logZ(β)

∂β2

∣

∣

∣

∣

0

.



5.2. REPRESENTATIVE ALGORITHMS 35

This is equivalent to neglecting the normalisation constant in the above density. Keeping
the factor, ρ(E) can be written logarithmically as

log ρ(E) ≈ βE + logZ(β) − 1

2
log

(

2π
∂2 logZ(β)

∂β2

)

.

It is instructive to analyse the error made by the above approximation. Assuming the
density to be approximately Gaussian, we can compute the mean energy by differentiating
its logarithm, thus finding the extremal value.

∂E log ρ(E) = β − 1

2
∂E log(2π∂β

2 logZ(β))

= β − 1

2

∂β
3 logZ(β)

[∂β
2 logZ(β)]2

(5.19)

Having accepted

∂β logZ(β) = −Ē,

we immediately get an extremal

β∗ =
1

2
· ∂β

3 logZ(β)

[∂β
2 logZ(β)]2

. (5.20)

Computing the inverse of the variance as the negative second derivative of the density’s
logarithm with respect to E leads to

∂E
2 log ρ(E) = ∂Eβ − 1

2
∂E

∂β
3 logZ(β)

[∂β
2 logZ(β)]2

= ∂Eβ

(

1 +
1

2
∂β

∂β
3 logZ(β)

[∂β
2 logZ(β)]2

)

.

Hence, we can write the variance as

σ2 = −∂βE

(

1 +
1

2
∂β

∂β
3 logZ(β)

[∂β
2 logZ(β)]2

)−1

(5.21)

= −∂βE

(

1 − 1

2
∂β

∂β
3 logZ(β)

[∂β
2 logZ(β)]2

)

= ∂β
2 logZ

(

1 − 1

2

{

∂β
4 logZ

[∂β
2 logZ]2

− 2
[∂β

3 logZ]2

[∂β
2 logZ]3

})

= ∂β
2 logZ − 1

2

∂β
4 logZ

∂β
2 logZ

+

[

∂β
3 logZ

∂β
2 logZ

]2

(5.22)
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where one assumed the second term of the parenthesis in (5.21) to be small compared to
unity. The differentials are all evaluated at β∗ which optimises (5.19) and assuming further
that this value is close to zero, we can linearise as follows

∂β
j logZ

∣

∣

β∗
≈ ∂β

j logZ
∣

∣

0
+ β∗ · ∂β

j+1 logZ
∣

∣

0
.

Inserting this approximation into the expression for the standard deviation (5.22) leads to

σ2 = ∂β
2 logZ

∣

∣

0
+ β∗ · ∂β

3 logZ
∣

∣

0
+ . . .

− 1

2

∂β
4 logZ

∣

∣

0
+ β∗ · ∂β

5 logZ
∣

∣

0

∂β
2 logZ

∣

∣

0
+ β∗ · ∂β

3 logZ
∣

∣

0

+

[

∂β
3 logZ

∣

∣

0
+ β∗ · ∂β

4 logZ
∣

∣

0

∂β
2 logZ

∣

∣

0
+ β∗ · ∂β

3 logZ
∣

∣

0

]2

The fractions can be expected to have only negligible influence for a nearly Gaussian ρ(E),
while one might want to consider the correction in first order. Computing the extremal β∗

numerically from (5.20) makes this consideration possible and lead to a slight improvement
of QPMEME.

5.3 Quadratic Programming Sampler – QPS

As anchor serves the above discussed iterative Gibbs sampling algorithm. Conveniently,
the method by which the quality of the alignment in a specific sequence is judged in
the sampling steps can be easily replaced by another. While the implementation by
[Lawrence et al., 1993] makes implicit use of a weight matrix description, as previously
presented in [Berg and von Hippel, 1987], we implement a sampler with a decision making
step based on the energy matrix description of [Djordjevic et al., 2003]. The general struc-
ture of the technique is, starting from some initial configuration – the alignment – of a
system – the input sequences – of components (whose states might be chosen arbitrarily),
to sequentially change the state of each component. The new state is chosen according to
the probability of transition from the former state. Under certain circumstances1 such a
method leads to a stationary or cyclic configuration, compare e.g. [Honerkamp, 2000].

Let us translate this general scheme to a method for finding TF binding sites. Therefore,
some assumptions have to be made to formulate a model on which a physical formalism
can be applied. We consider several sequences, i.e. whole gene upstreams or sub-streams
of such, sharing a common motif of given length – the binding site – which we want to
align, revealing the pattern corresponding to that motif. Not knowing any better, we can
start by merely guessing alignment positions in each sequence. Now this configuration is
to be updated, so we exclude a sequence for which we try to find a better alignment. The
remaining ones give us a model of assumed motifs, defining a corresponding “imaginary”

1A stationary solution is always found if the transition rates of the underlying Markov process satisfy
the detailed balance condition. In other words, if it corresponds to a reversible system.
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TF protein. Screening all possible binding sites of this factor on the excluded sequence, we
get an “affinity landscape” and drawing a new alignment from the probability distribution
defined by the latter, we can build up an algorithm in analogy to the mentioned Gibbs
sampler.

The following describes the method in some more detail before we illuminate its function-
ality on a set of simple constructed examples and apply it on real genomic data.

5.3.1 Structure

First, we need to count out the nucleotide pair occurrences in the genome on which we will
perform the alignment, to be able to build our probabilistic model. If we know the positions
of all gene coding sequences, called open reading frames (ORF), we can exclude those from
the counting, since we expect TF binding sites to be mainly situated in non-coding regions.

Then, a set of upstream sequences has to be prepared which are supposed to share
a regulatory element. This is conveniently done in the FASTA format described by
[Pearson and Lipman, 1988]. Input files thus consist of a comment line, identified by a
“>” as first character and followed by the nucleotide sequence in the following lines. Table
5.1 gives an example input file. There is no further requirement to the comment line than
the first character, so we chose to keep information about the TF whose binding site is
embedded in the sequence, its length and absolute position on the genome, as well as the
strand it is found on and the function (activator, repressor, dual, unknown) of the factor
abbreviated by its initial letter. The upstreams are read in and each is provided with a

>BetI 21 (328605:328625) + R

GTGGCGTCGATCAGTTGTCTGCGCCGGATCGACTGCATCCCCAATTTGGGCATTTTCGCCACTCCATTCATCAGCG

GTGTTTATCTATTAAAGCGGTTATTGATTGGACGTTCAATATAAAATGTGTCTTAATTGTTACGAATTTGATTTTA

AATAGTAACAATAACAGTGGGGATACTGGATGACAGACCTTTCACACAGCAGGGAAAAGGACAAAATCA

>BetI 21 (328605:328625) - R

TGATTTTGTCCTTTTCCCTGCTGTGTGAAAGGTCTGTCATCCAGTATCCCCACTGTTATTGTTACTATTTAAAATC

AAATTCGTAACAATTAAGACACATTTTATATTGAACGTCCAATCAATAACCGCTTTAATAGATAAACACCGCTGAT

GAATGGAGTGGCGAAAATGCCCAAATTGGGGATGCAGTCGATCCGGCGCAGACAACTGATCGACGCCAC

Table 5.1: FASTA input of two sequences containing a BetI binding site

randomly chosen position for the assumed binding site motif. If the base occurrences in the
given upstreams are not expected to differ much from those in all non-ORFs, one can of
course build the statistics from those upstreams. When available, however, we rely rather
on the whole non-ORF region of a genome.

An iteration begins with the definition of the order in which the sequences are updated
to avoid caveats or the possible – though improbable – case of never updating some data
sets. One of the sequences is then excluded and from the remaining alignments, one can
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Figure 5.4: Simplified implementation flowchart of the Quadratic Programming Sampler

calculate an energy matrix, describing the imaginary transcription factor. The new align-
ment in the excluded sequence is then drawn from the distribution of binding probabilities.
Upon convergence to some stationary alignment configuration or after a given number of
iterations, a final alignment, respective a table of alignment occurrences is produced. The
latter makes then sense, when no stationary configuration was reached or where one may
assume some cycle to occur. The most common alignments can then be processed further,
e.g. tested for actual similarity with experimental data or used to predict new binding
sites on the genome. A program was written in C++ to carry out the computations. Both
independent nucleotide statistic and a nearest neighbour model of sequence generation
were implemented, and we makes use of the QL package by [Schittkowski, 2003] to solve
the quadratic optimisation problem. Figure 5.4 shows a flowchart of the implementation.
After invoking readUpstreams andreadNonORF, the alignment function alignEM is called.
Here the quadratic program is prepared and solved, whereafter the computed energy matrix
is used to draw a new alignment.

5.3.2 Drawing new alignments

Why the new alignment in the excluded sequence can be drawn from Fermi-Dirac dis-
tributed values can easily be seen, considering our simple model of binding between a TF
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and its binding site on DNA, controlled by the binding and dissociation constants Kbind

and Kdiss. This has already been explained in (5.8), i.e for a motif sequence M and a TF
described by ε we get

P (M)bound = f(β[E(M) + 1]) ,

where the chemical potential has been set to unity. Recalling that “zero temperature” is a
crucial assumption made by [Djordjevic et al., 2003], leading to a Heaviside step function
instead of a Fermi-Dirac distribution for the binding probabilities

P (M)T=0
bound =

{

1 E < µ
0 E > µ

.

Evaluating all possible binding sites on the excluded sequence, we would get either for-
bidden or equally probable positions. Building a distribution from which we draw a new
alignment which is proportional to P (M)bound instead of E(M) seems plausible from a
physical point of view and turns out to lead to both better results and faster convergence
in numerical experiments. However, we do not make the “zero temperature” assumption
when evaluating P (M)bound, since it has a major drawback. When it comes to sequences
sharing the actually expected motif – described by the energy matrix computed in the
iteration – only partially and thus possibly not show a free energy of binding which is less
than the chemical potential at the relevant position, we will assign a zero probability to
that position. A slightly different energy matrix might show the position as a valid bind-
ing site, whereas immediately rejecting it might lead away from the “correct” alignment.
Therefore, we smooth out the Heaviside distribution by reintroducing a finite temperature
and thus evaluate via

ft(E(M) + 1) =
1

1 + exp(t−1[E(M) + 1])

with the numerical parameter t which turns out to lead to useful results when set to
t ≈ 0.05.

This of course leads to the question how far the evaluated energy matrix is valid for finite
temperatures, as the method was developed in the T → 0 limit. We expect the error due
to the reintroduction of a temperature to be negligible when ensuring t ≪ 1.

5.3.3 Accepting new alignments

Having drawn a new possible alignment on the excluded sequence, we have to decide upon
keeping or rejecting it. There again, the variance of the free energy of binding plays a major
role. Minimising it meant to make the energy matrix more specific, allowing less sequences
different to those of the present alignment to be recognised as binder. Thus, sampling for
the alignment with minimal variance leads to an alignment of maximal similarity, with
respect to our probabilistic model. We perform hence the simulated annealing procedure
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on the level of the variance σ2(ak) corresponding to an alignment ak, accepting a draw on
sequence Sk – following [N.Metropolis et al., 1953] – with probability

P (ak → a′
k) =

{

exp(−γ∆σ2)
1

if
σ2(a′

k) > σ2(ak)
otherwise

with ∆σ2 = σ2(ak) − σ2(a′
k) in the role of a configuration energy and γ in the role of an

inverse temperature which is reduced as we iterate the sampling. The schedule for γ is
kept inverse-logarithmically to ensure a slow cooling after a short exposure of the system
to “high temperature”. Specifically, we apply in the ith iteration the temperature

γ(i) =
γ0

log(i)
,

where γ0 is initially given as parameter to the program. The right choice of γ0 is crucial
for the convergence behaviour of the algorithm. A too high initial value will lead to very
long execution times, since we did not implement an adaptive temperature schedule in the
present version. A too low choice might result in the system getting stuck in a configuration
being far from optimal. A good choice would be to set γ0 just above the standard deviation
of the variance’s development. Since this information is not available when starting the
sampler, we have to estimate it from several initial observations. This, of course, could be
readily added to the implementation.

5.3.4 Convergence detection

We need to decide when to stop iterating and assume the current alignment to have con-
verged to an acceptable solution. Again applying a simple heuristic, we keep a history of
the alignments yielded in the last complete2 iterations. If no change occurred for a certain
number – which is also given as parameter to the program – of complete iterations, the
current alignment is assumed to be final.

Details on calling the program as well as some sample in- and output is left to appendix
B.

5.3.5 Identification of non-contributing sequences

The current implementation does not identify sequences non-contributing sequences in the
data set yet. This is problematic when applying the program to “real world” problems
where one would like to find TF binding sites in a set containing possibly totally uncor-
related sequences concerning a common motif. We report this discussion to chapter 8,
nevertheless one should keep in mind this missing feature when examining the results of a
sampling run. We show a realistic case in chapter 7, where such an identification procedure
would be needed.

2By a complete iteration we mean a round of updating every sequence in the data set.



Chapter 6

Material acquisition

More and more genome sequences are being made available due to the persistent sequenc-
ing efforts of the last decades. At the same time – although at a much slower rate – the
information is being understood, annotations are made on the sequences and interactions
are being discovered. We can thus enjoy a great abundance of data, both to make predic-
tions on unknown grounds and to test methods under development by reproducing known
results.

6.1 Sequenced genomes

The world’s largest database of genomic sequences containing more than 100 giganu-
cleotides of raw data and representatives of most yet sequences genomes is publicly available
from NCBI1 via

http://www.ncbi.nlm.nih.gov/Genbank

Applying our algorithm on genomic data of the common K-12 MG1655 strain of the Es-
cherichia coli bacterium known from every day life and of the not less familiar budding
yeast Saccharomyces cerevisiae S228C, we also made use of specialised databases.

6.1.1 Escherichia coli K-12 MG1655

The genome has been published by [Blattner et al., 1997] and is available from NCBI. For
comprehensible annotations on known TF binding site emplacements, we use the public
database RegulonDB by [Salgado et al., 2004]. To illustrate the difference in nucleotide

1National Center for Biotechnology Information, U.S. National Library of Medicine, 8600 Rockville
Pike, Bethesda, MD 20894, USA. Part of the U.S. National Institute of Health.

41
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A G C T
0.2462 0.2537 0.2542 0.2459
0.0728 0.0513 0.0553 0.0668 A
0.0576 0.0582 0.0827 0.0551 G
0.0701 0.0747 0.0586 0.0509 C
0.0457 0.0694 0.0576 0.0731 T

Table 6.1: Independent base and pair occurrences in the whole E. coli genome

statistics between the whole genome and non-ORF regions only, the tables 6.1 and 6.2 show
the explicitly counted frequencies for single nucleotides (first row) and nearest neighbour
pairs (first position in column, second position in row). The difference between the statistics

A G C T
0.2852 0.2071 0.2091 0.2985
0.0970 0.0541 0.0636 0.0705 A
0.0475 0.0415 0.0498 0.0682 G
0.0542 0.0566 0.0430 0.0553 C
0.0864 0.0545 0.0527 0.1050 T

Table 6.2: Independent base and pair occurrences in the non-ORF regions of E. coli

of both samples is due to the overlaying triplet statistics of the amino acid coding codons
in ORF regions which is not present in the non-ORF domains.

6.1.2 Saccharomyces cerevisiae S288C

Both genome and comprehensible annotations are available from the Saccharomyces Genome
Database (SDB) by [Balakrishnan et al., 2005], where the information on yeast is usually
more up to date than on other public databases. The statistics evaluated from the non-
ORF domain are shown in table 6.3.

A G C T
0.3293 0.1709 0.1709 0.3289
0.1238 0.0543 0.0565 0.0946 A
0.0554 0.0313 0.0279 0.0564 G
0.0505 0.0349 0.0315 0.0543 C
0.0993 0.0508 0.0550 0.1235 T

Table 6.3: Independent base and pair occurrences in the non-ORF regions of S. cerevisiae
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6.2 Known TF binding sites

A more generic information source on gene expression regulation is TRANSFAC – a
database by [Wingender et al., 2001], containing annotations on many higher organisms’
genomes. When applying our method to other data than bacteria and fungi, considering
the use of this database is highly recommended. For our purposes, the information from
RegulonDB and SDB is largely sufficient.

To test the algorithm, we prepared – for different TFs – collections of sequences containing
an experimentally reported binding site each. The sites were then flanked on both sides
with their next 100 neighbour nucleotides, resulting in sequences of length 200 + l for
a binding site of length l. For the bacterial genome, this might easily lead to overlaps
with gene coding regions, which we did not take into account, as the typical intergenic
non-ORF is of some hundred nucleotides and binding sites are typically found within
tens of nucleotides before the transcription start. On the other hand, we expect other
problems to be dominating the causes for alignment failures, as we discuss in chapter 8.
In yeast, the typical distance is of several hundred up to a few thousand and TF binding
sites are typically situated within a few hundred nucleotides before the transcription start.
One might argue the sampling being too unrealistic as a test for “real” yeast sequence
alignment tasks. However, looking for a confirmation of general functionality, realism
remains secondary in the beginning.



Chapter 7

Results

A short description of alignment successes with constructed samples is followed by a more
complex benchmark, where we reconstruct “known” alignments by dissimulating small
binding sites in larger sequences. Finally we succeed in “predicting” binding sites of an
“unknown” TF in a more realistic yeast sample. The reason for all quotation marks will
become clear shortly.

7.1 Artificial data

We tested the principal functionality of our sampling algorithm on simple constructed
sequence sets. As a first test bench, one can take the input presented in table 7.1. Each
line of characters represents one of the input sequences, denoted by Si with i = 1, 2, 3.
The first line just visualises the starting positions for the assumed or guessed motif - here
of length three. Bold characters define the actual alignment - here AAT, TCG, GAA -

ai: 1 2 3 4 5 - -

S1 A A A T C G A
S2 A A A A T C G

S3 T C G A A A A

Table 7.1: Simple test bench for assumed motif of length 3

corresponding to a list of numbers - here (2, 5, 3)3, to implicitly introduce the alignment
notation (a1, a2, . . . , aN)l for the alignment of a motif of length l in N sequences. The
“non-ORF” input for the statistics was taken to be the same as the sequence data.

Simulating with annealing and an initial numerical “temperature” of γ0 = 1.0, we find the
expected alignment (4, 5, 1)3 in more than 95% of the runs when accepting convergence if

44
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we find no changes in the last 5 complete iterations. Lowering γ0 leads to alignments like
(1, 1, 5)3 or “frustrated” results as (5, 5, 2)3 and we observe in fact a minimal variance for
(4, 5, 1)3.

Another example input is presented in table 7.2, which is just the former one with the
adenines replaced by less alignable data. The non-ORF is again taken to be identical to
the sequence input. Again finding the expected alignment (4, 5, 1)3, the algorithm proves

ai: 1 2 3 4 5 - -

S1 G A T T C G A
S2 A C C A T C G
S3 T C G G G C A

Table 7.2: Alternative test bench for assumed motif of length 3

to work principally at least on simple collections.

7.2 Co-regulated genes

The following results come from aligned upstream regions of co-regulated genes, i.e. sets
of genes being activated and/or repressed by the same TF. Known binding sites are iden-
tified and placed as described before. The expected alignment from experiments is thus
(100, 100, . . . , 100)l if nothing else is mentioned.

7.2.1 Escherichia coli

FruR - fructose repressor protein

FruR TFs are involved in the carbon metabolism of E. coli and is known to act as regulator
for a dozen of genes. The structure of the protein’s DNA binding domain is illustrated in
figure 7.1. QPS was applied on the set of the twelve upstream regions of co-regulated genes
with a convergence parameter of five and an initial annealing temperature of γ0 = 0.05.
Running the sampler 100 times on the data set leads to the results summarised in table
7.3, where the first column denotes the amount by which the corresponding alignment
was found. The first two alignment sets in the list show the best correspondence to the
experimentally reported alignment in the first seven sequences. One could think of playing
with the initial temperature to try to reconstruct the experimental result, but comparing
the actual sequences of both sampled and experimental alignment from tables 7.4 and 7.7
suggests that the achieved alignment might not be worse than the reported one, in terms
of the variance of a corresponding energy matrix. Indeed we find the variance for the
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Figure 7.1: DNA binding region of the FruR TF protein

# variance a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

2 0.0490531 99 101 98 100 100 100 98 156 189 127 173 116
4 0.0493923 100 102 99 101 101 101 99 157 190 128 174 117
1 0.0510720 96 182 146 97 183 183 95 159 138 124 20 185
1 0.0513208 99 101 98 100 74 100 98 156 189 127 173 116
1 0.0518154 100 102 99 101 87 87 99 157 190 128 174 117
1 0.0520743 47 177 148 68 27 27 1 151 182 122 158 124
1 0.0522605 65 107 104 136 80 80 104 124 111 133 179 23
1 0.0524654 187 95 73 122 171 171 0 150 181 49 155 121
2 0.0526585 41 129 100 132 15 115 100 33 107 129 175 118
1 0.0528457 183 2 78 131 75 75 99 157 190 56 174 117

Table 7.3: Top ten occurrences of different variances and alignments on the FruR data set

experimental alignment to be 0.0714964, when applying QPS to just compute the energy
matrix of the experimental motif. On the other hand, excluding the last sequences from
the FruR set, keeping only S1 to S7, leads to better alignability. Table 7.5 shows the top
ten variances for the reduced data set and one observes immediately the occurrence of
38 alignments compatible1 with (100, 102, 99, 101, 101, 101, 99)15. Figures 7.2, 7.3 and 7.4
show the sequence logos corresponding to all three FruR alignments discussed here. Here
one can directly see the similarity between the results. The “misalignment” of S8 till S12

in the original data set does not seem to distort the result and all three logos appear to

1only differing by small shifts or gaps
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tgcga GCTGAATCGCTTAAC ctggt

gcgat GCTGAAAGGTGTCAG ctttg

tgact CTTGAATGGTTTCAG cactt

cactg ACTGAAACGTTTTTG cccta

ccaaa GCTGAATCGATTTTA tgatt

ccaaa GCTGAATCGATTTTA tgatt

tccta GCTGAAGCGTTTCAG tcgat

gcggt CCGCAGGCGGCACTG cttac

catcc CCAAAGGCGCTTCTG tttaa

ggcag CCAGAAGGGAGTCAG gctga

tggga TATGAGGCGGTACAG tcatt

tccat CCTCATGCGCTTCTG acgcg

Table 7.4: Alignment with minimal variance on the FruR data set
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Figure 7.2: FruR sequence logo of the sampled alignment

# variance a1 a2 a3 a4 a5 a6 a7

16 0.0375483 100 102 99 101 101 101 99
13 0.0380083 99 101 98 100 100 100 98
9 0.0395157 98 100 97 99 99 99 97
3 0.0399036 99 101 98 100 74 74 98
1 0.0408882 96 98 95 97 97 97 95
4 0.0435589 96 184 88 97 71 71 95
4 0.044195 162 185 89 67 125 125 129
1 0.0451398 37 99 96 98 111 111 96
1 0.046401 195 82 8 93 150 150 189
4 0.0471001 100 102 99 101 54 54 99

Table 7.5: Top ten occurrences of different variances and alignments on the FruR 1-7 data
set

be quite compatible. FruR is thus a first example where the identification of a useful
alignment with QPS on real data ist principally possible.
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gcgag CTGAATCGCTTAACC tggtg

cgatg CTGAAAGGTGTCAGC tttgc

gactc TTGAATGGTTTCAGC acttt

actga CTGAAACGTTTTTGC cctat

caaag CTGAATCGATTTTAT gattt

caaag CTGAATCGATTTTAT gattt

cctag CTGAAGCGTTTCAGT cgatt

Table 7.6: Alignment with minimal variance on the FruR 1-7 data set
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Figure 7.3: FruR sequence logo from the reduced data set

cga GCTGAATCGCTTAAC ctg

gat GCTGAAAGGTGTCAG ctt

ctc TTGAATGGTTTCAGC act

tga CTGAAACGTTTTTGC cct

aag CTGAATCGATTTTAT gat

aag CTGAATCGATTTTAT gat

tag CTGAAGCGTTTCAGT cga

gtt GCTGAATCGTTAAGG tag

gtg GTGAATCGATACTTT acc

aca GTTAACCGATTCAGT gcc

gac CTGAATCAATTCAGC agg

atc GTTAAGCGATTCAGC acc

Table 7.7: Experimentally reported binding sites for the FruR TF
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Figure 7.4: FruR sequence logo of the experimentally reported motif

LexA - part of the SOS response system

An important mechanism in bacterial cells is the SOS response system, recognising un-
paired DNA segments – which is often due to some damage on the complementary strand
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– and repairing possible faults. Among other TFs, LexA is involved in the initiation of
SOS responses. It binds as homo-dimer to DNA sites, which should give some degree of
symmetry to the corresponding sequence. The DNA binding region of a LexA monomer
is illustrated in figure 7.5. Again running QPS 100 times on the collection containing

Figure 7.5: DNA binding region of the LexA TF protein

experimentally reported binding sites, we find the alignment corresponding to minimal
variance to be (7, 18, 151, 29, 158, 29, 26, 7, 63, 139)20, which is far from being compatible
to the experimental result. In fact, no alignment of our results showed compatibility to the
alignment from the database. Inspecting the tables 7.8 and 7.9, one might tend to criticise
the experimental results which possibly are not accurate. The sampled alignment is justi-

agcag CTGGCTGCGCTTATCGACAG ttatc

taagg CCGGAGTTTTATCTCGCCAC agagt

cactt CAGGCTATGCACATCGTTCT tcgtc

cgacc GTGATGCGGTGCGTCGTCAG gctac

gaggc CAGTTCAGGCACGACGCCGC cgtag

ttgaa CAAGCGATGCTCGACGCCGG gctga

ccgct CATGTTTCGCGCGGCGCTAC gcaaa

ccgct CATGTTTCGCGCGGCGCTAC gcaaa

tctgg CTGACGGTTTGCGCCGCCAG cggga

tcccg CTGGCGGCGCAAACCGTCAG ccaga

Table 7.8: Alignment with minimal variance on the LexA data set
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fyable by the amassment of – in E. coli non-ORFs rather less probable – C/G occurrences.
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Figure 7.6: LexA sequence logo of the sampled alignment

We can compare both sequence logos in the figures 7.6 and 7.7, where a low positional
information might point to a case of cooperative binding, non contribution or misalignment.

gac GCCTGGCTTTCAGGGCAGCG tta

gat GAACTGTTTTTTTATCCAGT ata

tac TGTACATCCATACAGTAACT cac

tga TACTGTATGAGCATACAGTA taa

aat AAGCTGGCGTTGATGCCAGC ggc

caa ATCTGTATATATACCCAGCT ttt

ctt TTGCTGTATATACTCACAGC ata

cag CATAACTGTATATACACCCA ggg

ttg ACCTGAATGAATATACAGTA ttg

caa TACTGTATATTCATTCAGGT caa

Table 7.9: Experimentally reported binding sites for the LexA TF
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Figure 7.7: FruR sequence logo of the experimentally reported sites

LexA is therewith a factor where we cannot be sure of the results from QPS.

Crp - a bacterium’s favourite

To round up the results on E. coli, we attempt to align binding sites for the Crp TF.
RegulonDB lists 149 interactions between the factor and DNA with a binding site length
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of 22 nucleotides and another 47 interactions with a binding site length of 19 nucleotides.
With 157 documented distinct2 binding sites it is the most varied TF of the bacterium.
It’s beautiful DNA binding domain structure is illustrated in figure 7.8. The sequence logo

Figure 7.8: DNA binding region of the Crp TF protein

from experimentally reported binding site of length 22 is shown in figure 7.9. Trying to
sample for the binding sites turned out to be rather hopeless. Even on smaller collections,
comprehending not more than five sequences were we able to identify the observed binding
sites, pointing to a binding behaviour which is not sufficiently described by our models,
i.e. cooperativity or some conformal adaptivity3 of the TF protein.

weblogo.berkeley.edu
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Figure 7.9: Crp sequence logo of the experimentally reported sites

2Sites situated on the complementary strand of another one are not counted.
3This assumption is motivated by the appearance of of the DNA binding domain and is highly specu-

lative.
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7.2.2 Saccharomyces cerevisiae

Gal4 - compatible for alignment

Moving on to a higher organism, we find again good evidence for the applicability of our
sampler. Yeast’s Gal4 data set disclosed a a fairly compatible alignment of a palindromic
binding site motif with (141, 54, 141, 122, 123, 59, 101, 103, 102, 100, 102, 100, 100)21. The
palindrome is easily recognised in table 7.10. The binding sites from the database, shown

gatca CGGTCAACAGTTGTCCG agcgc

gatca CGGTCAACAGTTGTCCG agcgc

aagta CGGATTAGAAGCCGCCG agcgg

aagta CGGATTAGAAGCCGCCG agcgg

ccgag CGGGCGACAGCCCTCCG acgga

ccgag CGGGCGACAGCCCTCCG acgga

acgtt CGGTCCACTGTGTGCCG aacat

tcgca CGGACTCCATTTCCCCG gacct

aagct CGGAGTATATTGCACCG atccg

tttac CGGCGCACTCTCGCCCG aacga

cgccg CGGAGTGCTCTTCGCCG agata

acaat CGGGGCAGACTATTCCG gggaa

tcgcc CGGACATCACCCGCCCG gcaca

Table 7.10: Most common alignment on the Gal4 data set

in table 7.11 show each a comparable palindrome motif, although most sequences are
slightly shifted against each other.

cagct TGGCTATTTTGTGAACA ctgta

atttt TGGGTTAAGGAAAATGA cagaa

ggaac TTTCAGTAATACGCTTA actgc

ttaac TGCTCATTGCTATATTG aagta

attga AGTACGGATTAGAAGCC gccga

gcgtc CTCGTCTTCACCGGTCG cgttc

cacgt TCGGTCCACTGTGTGCC gaaca

aactc GCACGGACTCCATTTCC ccgga

ggaag CTCGGAGTATATTGCAC cgatc

tttac CGGCGCACTCTCGCCCG aacga

ggcgc CGCGGAGTGCTCTTCGC cgaga

acaat CGGGGCAGACTATTCCG gggaa

tcgcc CGGACATCACCCGCCCG gcaca

Table 7.11: Experimentally reported binding sites for the Gal4 TF
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Rtg3 - retrograde regulation protein

The next TF binding site sampling showed again – with the alignment (18, 150, 41, 64, 76)6 –
no compatibility to the experimental data. Considering the length of six and the amount of
known binding sequences of five, this result is certainly not very surprising. The binding site
is “lost” in the data set and too small for our sampler to be of statistical significance. Taking

ataaa GGTGTC ttaca

gtacc GGTTTC ctttt

aaaga GCTTTC acaaa

agact GCTGTC gcgat

aagaa GGTTTC tgcaa

Table 7.12: Most common alignment on the Rtg3 data set

advantage of the small size of the expected binding site, we illustrate the evaluation of the
final energy matrix computed by QPS and corresponding to the alignment on genomic
data. Our alignment of Rtg3 yields

tac GGGTCA cgc

ctt GTGACC tga

aca CAGATA caa

ctt GGTCAC cta

tga TGAGTG acc

Table 7.13: Experimentally reported binding sites for the Rtg3 TF

(εi
α) =

















+0.0964 −0.2497 +0.1008 +0.0992
+0.0577 −0.1099 −0.1099 +0.0679
+0.0174 +0.0190 +0.0275 −0.1634
−0.0166 −0.1178 −0.0081 −0.1178
+0.0508 +0.0754 +0.0689 −0.1228
+0.1156 +0.1231 −0.2365 +0.1321

















,

which we can evaluate, e.g., evaluate on the collection of input sequences, finding the
position dependent free energies of the binding of the TF being represented by the energy
matrix. Computing (4.2), we find the results shown in figure 7.10.

Yst02r - a realistic sample

Closing this result section, we show the identification of binding sites on a more realistic
data set. A large scale assessment of bioinformatics tools for regulatory element detection
has been initiated by [Tompa et al., 2005]. Providing data sets of human, mouse, fruit-fly
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Figure 7.10: Evaluation of the assumed RTG3 TF’s energy matrix with clearly identifiable
binding sites from the sampling on experimentally reported binding regions
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Figure 7.11: Assessment result for the Yst02r data set

and yeast containing TF binding sites, participants are required to make predictions on
lengths and locations.

In a short run of QPS, we were successfully predicting binding site motifs in a small
collection of four sequences, each 500 nucleotides long, by assuming a length of 15 for the
sites, which is rather typical for yeast factors. Great euphoria was nevertheless shorty
damped, when making totally wrong predictions for other collections of yeast data. The
results of three prediction attempts can be looked at on the assessment homepage4. Figure
7.11 shows the results of our successful “prediction”.

4http://bio.cs.washington.edu/assessment/

Confirmation ID: qps.25CB4EB40D330A8D6D1BD13CD20CDFA0



Chapter 8

Discussion

8.1 Possible improvements

As already observed by [Berg and von Hippel, 1987] and [Schneider et al., 1986], sequence
positions in an experimentally reported set of binding sites leading to a lower information
score often coincide with cooperative binding of two neighbouring sites with the correspond-
ing TF. A high positional information score – on the other hand – is mostly associated to
independent binding. High occurrences of cooperativity in a binding-site motif lead hence
necessarily to difficulties when trying to identify such a binding site with our alignment
method with its assumption of independent energy contributions. However, the formalism
of QPMEME could be extended to consider nearest neighbour dependencies, leading to a
second order expansion of (5.4) to

E(S) =

L
∑

i

4
∑

α

εi
αSi

α +

L
∑

i,j

4
∑

α,β

Jαβ
ij Si

αSj
β

with the coupling constants satisfying

Jij ≡ Jijδi,j+1 .

Another crucial improvement which remains to be implemented is the ability to detect
sequences which probably do not contribute to the expected motif. We have seen in
the results section that the hard constraint of assuming exactly one binding site per input
sequence may make the final alignment less specific. Also we need to consider the possibility
of multiple binding sites per sequence.

The possible existence of conformationally flexible TFs, i.e. the consideration of variably
gapped binding sites in the theory might also be a useful improvement, however this may be
solved by abandoning the one-site-per-sequence constraint and allowing, allowing gapped
palindromes as a next consequence.
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8.2 Conclusion

We have developed a method of sequence alignment which proved being applicable for the
identification of regulatory motifs on DNA. Extensive benchmarking has to be performed
on the algorithm and improvements have to be implemented, before it can be used to
solve realistic problems. As a further step, the classes of motifs regulatory motifs being
identifyable by aligning with QPS should be characterised.

The present implementation may be a first step towards the development of an independent
classifier of regulatory elements, decoding a genome for its regulatory networks.



Appendix A

Bayesian inference of pseudocount

regularisers

Here we show how to compute the probability from (3.2) of observing a nucleotide α,
having observed a sample sequence S

PS(α) =

∫

dρ
pα P (ρ)P (S|ρ)
∫

dρ′P (ρ′)P (S|ρ′)
.

We start by writing the probability from (3.3) of observing a sequence S given the nu-
cleotide occurrence probabilities ρ = (pA, pC, pG, pT), replacing the factorial by the more
general Γ-function.

P (S|ρ) = Γ

(

1 +
∑

α

nα

)

∏

α

pα
nα

Γ(1 + nα)

with

Γ(x) =

∫ ∞

0

dt tz−1e−t .

Assuming a Dirichlet prior for the distribution of occurrence probabilities

P (ρ) = Γ

(

∑

α

βα

)

∏

α

pα
βα−1

Γ(βα)

with the set of parameters βα, we are able to evaluate the denominator of (3.2) as

∫

dρ P (ρ)P (S|ρ) =
Γ (
∑

α βα) Γ (1 +
∑

α nα)
∏

α Γ(βα)Γ(1 + nα)

∫

dρ
∏

α

pα
βα+nα−1

=
Γ (
∑

α βα) Γ (1 +
∑

α nα)

Γ (
∑

α βα + nα)

∏

α

Γ (βα + nα)

Γ(βα)Γ(1 + nα)
.
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Knowing this, we can readily evaluate (3.2) as

PS(α) =
Γ (
∑

α′ βα′ + nα′)
∏

α′ Γ (βα′ + nα′)

∫

dρ pα

∏

α′

pα′

βα′+nα′−1

=
Γ (
∑

α′ βα′ + nα′)
∏

α′ Γ (βα′ + nα′)

∏

α′ Γ (δα,α′ + βα′ + nα′)

Γ (1 +
∑

α′ βα′ + nα′)

which is found using the definition of the Γ-function. Further, by the fact that Γ(x + 1) =
xΓ(x), we can simplify the result to the form

PS(α) =
βα + nα

∑

α′ βα′ + nα′

,

which we already stated in chapter 3.1.2. The choice of a suitable set of pseudocount
parameters βα may depend on the genome or genomic region in question. It might thus
be more appropriate to choose higher pseudocounts for nucleotides where one expects a
higher occurrence probability from large sample countings, while reducing the pseudocount
for other nucleotides. A similar calculation as the one presented here was performed by
[Karplus, 1995] in the context of protein sequence statistics.



Appendix B

Implementation details

The implementation is separated in two programs: statistics, which is a small helper
counting out the nucleotide and -pair occurrences and qps, which is the sampler itself. We
show here the syntax of calling the programs. This information is also given when invoking
the programs with the wrong number of parameters.

Syntax: statistics <input> <statistics>

input (file) input regions in FASTA format

statistics (file) output for occurrence statistics

Syntax: qps <input> <statistics> <width> <iterations> <seed> <temperature> <anneal> <verbose>

input (file) input regions in FASTA format

statistics (file) base and base pair occurrence statistics

width (integer) assumed motif width

iterations (integer) parameter for the convergence test

seed (integer) random seed

temperature (real) numerical starting temperature

anneal (boolean) simulated annealing on/off

verbose (boolean) verbose output on/off

The output of qps should look as follows, here invoked with the BetI sequence file from
table 5.1 as input:

QPSampler

*********

Random seed: 1129159545

final EM evaluated as:

-0.027786 +0.044369 +0.043419 +0.050666

+0.026009 +0.014694 +0.016337 -0.046650

-0.005485 +0.003757 +0.003175 -0.063951
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+0.052269 -0.046608 +0.055651 +0.059185

-0.103433 -0.128215 -0.062832 -0.076861

-0.039632 +0.041423 +0.039001 +0.033312

-0.003069 -0.008002 -0.104217 -0.000222

+0.055430 -0.049521 +0.049524 +0.053865

+0.014458 +0.017890 +0.021711 -0.057002

-0.013354 +0.000961 -0.058313 -0.044789

+0.032146 +0.030079 -0.073166 +0.026383

-0.074303 -0.002648 -0.003386 -0.011222

-0.053172 +0.011437 +0.012500 +0.022103

+0.036263 +0.028660 +0.029529 -0.044255

-0.001634 +0.040298 -0.011254 +0.044469

+0.011827 +0.037633 +0.040277 -0.003455

-0.039990 +0.030562 +0.030074 +0.035285

-0.011248 +0.014858 +0.020153 -0.016337

-0.045510 +0.022681 +0.024497 +0.023752

-0.047632 +0.022315 +0.020489 +0.025796

+0.044633 +0.036216 -0.009067 +0.002763

best binder : -1.04004

worst binder : 0.584765

variance : 0.0212085

convergence after 106 steps

final alignment: 0.17 s

sequence 0 - position 102 tattg ATTGGACGTTCAATATAAAAT gtgtc

sequence 1 - position 105 tttat ATTGAACGTCCAATCAATAAC cgctt

final temperature: 1.07e-02

It is to consider that the base ordering of the energy matrix is given by A, G, C & T
and not in the widely used alphabetical order. A sequence positions from left to right
corresponds to a matrix entry from top to bottom.
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