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Abstract 

Epstein-Barr virus (EBV) is a widely spread human lymphoma virus that conducts its 

persistent infection when we are in childhood or adolescence. Each year there is a huge 

number of tumors associated with this virus. In the present work, I am investigating the 

gene regulation on a multiple binding sites region of its genome FR, where an encoded 

protein and a human protein compete to bind and determine the behavior of the genetic 

switch of the C promoter. Attention is given to the influence of the cooperative and 

competitive binding effects of the two proteins on the sensitivity of the genetic switch 

and how cooperativity and competition affect each other. 

 

Keywords: Epstein-Barr virus, genetic switch, switch sensitivity, cooperative binding. 
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Glossary 

Lymphoma   Cancer of the lymph nodes and spleen that causes excessive 
production of lymphocytes 

Lymphoblasts Dividing lymphocytes 

Chloroplast  The organelle that carries out photosynthesis and starch grain 
formation. 

Mitochondrion A eukaryotic organelle that is the site of ATP synthesis and of the 
citric acid cycle. The eukaryotic cellular organelle in which the Krebs cycle and 
electron transport reactions take place. 

Nucleoid  A DNA mass within a chloroplast or mitochondrion. 

Herpes virus One of a group of DNA containing viruses causing latent infections 
in man and animals 
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1 Introduction 

Epstein-Barr virus, discovered from examining electron micro-graphs of cells cultured 

from a common childhood tumor in sub-Saharan Afirca--Burkitt's lymphoma in 1964, 

is now known to correlate with this and other types of cancer. Being latent after its 

infection into a child or a teenager, this virus disturbs the cell cycle and forces the 

normal human B-cells (a species of white blood cells) to proliferate, which is possibly 

linked to formation of tumors. 

Compared with higher living systems, viruses are relatively simple to study. With help 

of tools from molecular biology, genes and proteins involved in the maintenance and 

mechanism of virus' transition between different latency states are gradually being 

classified. 

1.1 Goals 

Transition between the latency and lytic state, and among different latency states are 

critical behaviors of Epstein-Barr virus. Previous work by the group has provided a 

good framework of statistical model [18]. The core part of this effort is considering of 

competitive binding to the FR region of the viral DNA between two proteins Oct-2 and 

EBNA-1. While Oct-2 is a human protein, EBNA-1 is self-contained in the viral 

genome and essential for maintenance of the viral genome, and the transition of viral 

survival strategy. 

The present work is based on the previous statistical model, aiming at adding 

cooperative effects of EBNA-1 and Oct-2 to the model so that cooperativity and 

competition can both be considered. Focus is given to their influence on the sensitivity 

of the genetic switch of C promoter and their influence on each other. 

1.2 Outline 

Following the introduction, necessary background of molecular biology is described 
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from a physicist's point of view. Thereafter, some statistical mechanics as base of the 

model is introduced and attention is paid mainly to describing genetic regulation. 

Chapter 4 gives a short description of the study of genetic networks and serves to 

provide broader background for this work. Biological knowledge of Epstein-Barr virus 

is described in Chapter 5, with focus on working mechanism of C promoter. Chapter 6 

is devoted to basic concepts of combinatorics and several paradigm problems used in 

the core part of algorithm in this work. Chapter 7 describes how algorithms are 

developed for different cases of problems. Major results of the present work are given 

as Chapter 8 while discussion forms the final chapter. 
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2 Molecular biology 

This section introduces basic knowledge of molecular biology necessary for this thesis. 

Central dogma is introduced first, followed by more detailed description of general 

molecular mechanisms of gene transcription both in prokaryotes and eukaryotic cells.

2.1 Central dogma of life 

Most activities of the cell, the minimum unit of any life form, are controlled by two 

main classes of molecules namely proteins and nucleic acids. Among them 

deoxyribonucleic acid (DNA) is the most basic and the term “gene” is usually defined 

as a piece of DNA molecules with active inheritance meaning. One hypothesis is that 

the only goal of life is to preserve the “selfish” genes under the pressure of natural 

selection including competition among the genes themselves [29]. Though in some life 

forms, the genetic information is coded on RNA molecules, we here grant for 

convenience that all activities of an organism, unicellular or multi-cellular, are 

ultimately controlled by genes defined on DNA only. 

 

Figure 2.1 Central dogma [30] 
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DNA preserves the ultimate living information via self-replication and plays as 

information source of living processes by passing the information to messenger-RNA 

(mRNA) through transcription. And these mRNA molecules, of relatively smaller size, 

travel in cytoplasm and reach their destination a type of organelle called ribosome, 

where translation happens. Coded information is finally transferred from mRNA to 

ribosomes, which read the codes and use it for protein synthesis. All these processes are 

involved in almost all biological activities, structural or enzymatic and are summarized 

as Central Dogma of molecular biology. The central inheritance role of nucleic acids is 

explained not only by the procedure of the central dogma but also by the fact that 

proteins contain no information for production of proteins, DNAs or RNAs. 

Except in inheritance, proteins rather than nucleic acids are the dominant living 

polymers in both number and variety in the cell. Structurally, proteins constitute an 

integral part of the cell membranes, pigments, ion channels, etc. Functionally, in the 

form of enzymes, proteins play vital roles in metabolism processes, catalyzing various 

reactions in the cell. It might be appropriate to compare the relationship between the 

nucleic acids and the proteins to the one between the commander and the soldiers, 

where DNA gives order to RNA and RNA transfers the order further to functional 

proteins for actions, while DNA’s replication and other survival activities are reversely 

served by the proteins. Thus, uncovering secrets of life processes seems to be searching 

for the mapping from the space of the inheritance material (genotype) towards the 

function space (phenotype). 

2.2 Transcription mechanism & genetic regulation 

Expression of genes is regulated by some proteins—themselves products of genes. The 

control mechanism ensures that the cell is not unnecessarily flooded by the proteins, 

enzymes for enormous number of reaction, required only at particular times and only in 

a particular quantity. In this section, we will consider the general molecular 

mechanisms of the first step of protein synthesis in the Central Dogma—transcription, 

as it is our major research object later for the Epstein-Barr virus. 
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Transcription is a process where mRNA is formed on basis of the DNA molecule with 

help of specific enzymes called RNA polymerases (RNAp). Forms of such enzymes 

differ between prokaryotic cells and eukaryotic cells. 

In prokaryotes 

RNAp of prokaryotes consists of two parts- a core enzyme and a sigma factor. The 

sigma factor initiates transcription of mRNA by recognizing and binding to some 

pieces of DNA (promoter) with characteristic genetic codes. The core enzyme then 

travels along the DNA template, reads the following codes and synthesizes mRNA 

continuing transcription. But sometimes RNAp will neither bind to the promoter nor 

continue transcription easily. At some promoters, RNAp can be blocked by proteins or 

other types of living polymers bound to some sites of DNA on the way (operator) when 

trying to travel along the template. These proteins inducing blocking of RNAp are 

named repressors. In bacteria, RNAp’s binding to DNA can be enhanced by some other 

proteins—inducers. But the enhancement is not always necessary-transcription at many 

promoters can be activated without help from inducers as RNAp binds directly to the 

gene. Thus, expression of genes in prokaryotes is often at high rate unless turned off by 

a repressor [25]. 

In eukaryotes 

In eukaryotes, however, the enhancement becomes a pre-condition. Eukaryotes contain 

three types of RNA polymerase. Among them, RNAp II, which contains approximately 

ten subunits and transcribes a wide array of genes, can not correctly initiate 

transcription alone. In fact, it binds not directly to the genes, but rather to one or more 

types of proteins called transcription factors. Some these factors are site-specific, 

recognizing characteristic sites on DNA and decide where for RNAp to bind, while 

some others are general transcriptional factors that do not have the site-specific feature. 

Existence of these factors explains well the observation that eukaryotic genes are often 

expressed only at very low levels or not at all—transcription can not happen unless 

turned on by one or more transcriptional activators. The mechanism also complicates 
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the transcriptional patterns, as expression one gene is then controlled by multiple types 

of factors, which are products of other genes. 
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3 Statistical physics in genetic regulation 

Statistical physics is one of the fundamental theories of physics, and uses methods of 

statistics to solve physical problems. It can describe a wide variety of fields with an 

inherently stochastic nature. Also it plays a role of bridge between the microscopic and 

macroscopic world, defining properties of a system as an assembly of many similar 

small entities. 

3.1 Key concepts & equations 

The most key elementary quantity in statistical mechanics is the entropy S. Here we 

start with Boltzmann’s microscopic definition of entropy. Suppose the number of 

possible microstates corresponding to the macroscopic state of a system of an isolated 

system is given by Ω. Entropy is then defined as: 

ln( )BS k= Ω  

,where kB stands for the Boltzmann Constant (8.617342�10-23eV/K). Thus the 

probability of finding this system in some macroscopic state with entropy S is 

proportional to / BS ke . 

Now we consider conceptually a simple system Θ isolated from its surroundings. It 

contains two subsystems. We concentrate on one of the subsystems, the small System A 

and consider the other one, System B as surrounding reservoir. We characterize the 

system here by only two extensive state variables, the energy E and the entropy S. Thus 

we have the following equations: 

.
( ) ( ) ( )

A B

A A B B

E E E const
S E S E S E

Θ

Θ Θ

= + =
= +

 

Following the first law of thermodynamics, the total energy of Θ is fixed. Recall the 

Fundamental Equation of thermodynamics: 
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 1dS
dE T

=  

where T is temperature. When in thermal equilibrium, System A and B approach the 

same temperature T0. Assume that A and B are in equilibrium and that the reservoir B is 

large enough so that the overall temperature is fixed at 0 B

B

dET
dS

= . We give a slight 

perturbation to energy of the whole system, say 0
A A AE E EΔ = − , and this generates a 

change in energy of B, . B AE EΔ = −Δ

Entropy of Θ when A has the energy of  is then, AE

0

0 0

0
0

0
0

( ) ( ) ( )

( ) ( )

1( ) ( )

1( ) ( )

A A A B B B

B
A A B B B

B

A A B B B

B B A A A

S E S E S E E
dSS E S E E
dE

S E S E E
T

S E S E E
T

Θ = + + Δ

= + + Δ

= + + Δ

= + − Δ

 

Thus,  denoting the thermodynamic probability of system A in energy  

becomes 

( )AP E AE

 
0

0

0
0 0

0

( )

1 1( ( ) ( ) )

1 1 1( ( ) )

( )

( )
A

B

B B A A A
B

A A A A
B

AA A

B B

S E
k

A

S E S E E
kT

S E E E
kT T

ES E
k k T

P E e

e

e

e e

Θ

+ − Δ

− +

−

∝

∝

∝

∝

 

While the first term counts the degeneracy of states of A with energy , the second 

term counts the probability that one state at energy  is selected. Consider two energy 

states of A,

AE

AE

1
AE and 2

AE . We can get the famous Boltzmann weight factor: 
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1 2

0 0
( )1

2

( )
( )

A A A

B B

E E E
k T k TA

A

P E e e
P E

− − − Δ

= =  

It states that the ratio of the probability of a system with two energy levels is given by 

0
B

E
k Te
−Δ

. We will use Boltzmann weight heavily in our model. 

3.2 Representing genetic regulation 

The complex process of transcription can be explained as binding among various types 

of molecules, especially those between the regulatory proteins and the DNA molecule. 

Here we find statistical physics efficient describing whether a molecule P(protein) is 

bound or not bound to another molecule D (DNA). Bound or not bound are two states 

of the system Θ, made up by molecule A and B. Thus we can measure the energy of 

each of these two states E(A bound), E(A free) and then use the Boltzmann weights to 

get the relationship of the thermodynamic probability of them: 

( )

( ) (

( )

[ ]

bound free

B

B

B

E E
k T

bound free
E

k T
free

E
k T

free

P E e P E

e P E

e A

− −

− Δ

− Δ

=

=

∝

)

 

By measuring concentration of the free molecule A in a cell, we can then know how 

many As have bound to a single site. Summing over all energy levels we can get the 

canonical partition function [ ]
i
A

B

E
k Ti

canon freei
Z A e

−Δ

= ∑ . The probability of A bound is then 

1 [ ]
free

B

E
k T

free
canon

P A e
Z

−

= . 

Applying this to all regulatory proteins generates then a series of complex patterns, 

each in accordance with a certain level of the gene expression [5]. Using grand 

canonical ensemble, we can treat a DNA sequence consisting of many binding sites. 

Grand canonical partition function is obtained by summing over all possible numbers 

of binding sites: 
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0

( )
N

grand canon
n

Z Z n
=

= ∑  

Then, the probability of n As occupying the region is 

1 [ ]
A

B

En
k Tn

grand

P A e
Z

−

=  
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4 Gene regulatory networks 

On the way of understanding life processes, an influential argument is the analogy 

between the cells and a complex machine. This might recall us of what we know about 

the artificial electrical machines, which have been studied for decades, primarily thanks 

to development of control theory. In designing an electrical system, one of the most 

essential works is to build functional building blocks, with help of our knowledge of the 

electrical loops. Are these concepts from control theory applicable to living systems? 

Intuition drives us to believe it, but it is just within recent decades can we be confident 

at its usefulness. 

Confidence then comes from two directions. On one hand, molecular biology enables 

us to look at molecular details on relatively simple organisms, e.g. virus, bacteria. Take 

viruses for example, interactions and functions of the core inheritance material DNA 

and the proteins that regulate the expression of some of them, have been investigated 

almost thoroughly via molecular biology techniques. On the other hand, physicists have 

proved modeling of genetic networks to be efficient tools for explanation of 

biochemical experimental data. Such study of large scale genetic networks finds good 

opportunity of applying what we know already in control theory. This fact popularizes 

“systems biology” as a joint name of the study of genetic or protein networks. 

4.1 Genetic networks 

From the informatic perspective, we can describe working mechanism of life as a flow 

of information. Due to our better understanding of the specificity of information 

processing in living systems, compared with chemical or physical systems, such way of 

thinking has become increasingly essential in life science. Figure 4.1 gives a broader 

illustration concerning information flows among all living molecules.  
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Figure 4.1 Biomolecular information flow and feedback regulation 

As mentioned previously, genetic control on protein synthesis is regulated by some of 

its own products. This means the information flow is never in one direction but forms 

very complex networks, including feedback. Despite the primary information flow –the 

central dogma, information can also spread through other interactions among living 

molecules. For example, certain RNA can be enzymes catalyzing its own replication 

reaction; RNA interference to expression of DNA has also been proved [21]. 

4.2 Less is more 

Theoreticians have built many interesting models of complex networks trying to 

explain life process on larger scale, taking into account enormous varied interactions to 

see “emergence” of new properties not shown in parts of the systems. This field is 

usually referred to as complex systems. 

Practically, biochemical data is explained by different scales of models. Major 

procedure of such attempt can be abstracted as two steps: 1) Investigate properties and 

functions of conceptual networks and categorize them 2) Analyze biological data and 

try to decide to which group of networks the genetic network belongs.  

However, data is never easy to acquire, especially for higher organisms with large scale 

complex genetic networks. Take our modeling on Epstein-Barr virus (EBV) for 
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example, it is based on over 40 years’ investigation by molecular biologists. It is then 

not unimaginable that living systems of a bit more complexity can be far more 

time-consuming than the virus via current experimental techniques. Compared with 

ambitions of physicists and chemists longing for quantifying complex biology, such 

slowness is like “a mountain too high to climb”, blocking efficient acquisition of data. 

As a result, we should still try to find efficient way to reduce the gross of data as much 

as possible. One candidate method lies in reducing the number of transcription levels. 

Expression level of genes is usually described by biochemical kinetics, series of 

differential equations, where it is changing continuously. If we can discretely describe 

the expression levels, each in accordance with one or several biological meanings, 

many biochemical details can be then neglected and the model can be simplified, telling 

more stories.  

Is this simplification possible? Proofs exist in eukaryote, but mainly in bacteria. Our 

work can be one of the examples in eukaryote, where two states are enough to describe 

one of the critical behaviors of Epstein-Barr virus. This is usually referred to as genetic 

switch. Validity of such simplification will also be given in later chapters by the 

sharpness of the probability of the switch to be “ON”. Genetic networks in which each 

gene holding only two states are referred to as boolean networks. They have been 

proved useful in systems biology, since switch-like dynamics is found in other viruses 

and many other organisms [3]. 

4.3 The parts or the whole? 

Progress in physics and chemistry last century was dominated mainly by reductionism, 

so was that of biology. Breaking life down to physical or chemical problems proves to 

be effective and has made great contributions to the development of many applications, 

such as pharmacy and clinic science. The role of efforts in conventional fashion can not 

be replaced, though it is now an age of systems biology. It is encouraging that we can 

study large scale biological networks, but detailed chemical and physical investigation 

of the molecular mechanism is still of great importance. 
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5 Epstein-Barr virus

Nature creates and cultures enormous categories of living components in an incredibly 

efficient way, i.e. as expressed in informatics terms, nature holds ''unlimited amount of 

information''. However, our life is finite. In greater detail we want to know about them 

through experiments, the more difficult it is to carry these experiments, including 

studies of Epstein-Barr virus. This piece of work is based on over 40 years’ biological 

research of EBV. 

5.1 Glimpse into virology 

Virology witnessed its beginning back in the end of 19th century, when a young 

Russian scientist, Dimitri Ivanovsky presented his famous work on "filterable agent" 

that causes tobacco mosaic disease. Ivanovsky's age was a time in which spontaneous 

generation of variation of organism ruled the understanding of diseases. The new 

definition of causality of disease from a ''filterable agent'' opened up a window to 

scientists to build up outline for today's research of infectious disease.

5.2 History of EBV 

The study of Epstein-Barr virus can be traced back to the electron microscopy 

examination of Burkitt's malignant lymphoma, done by Epstein M.A., Barr Y.M. and 

colleagues over 40 years ago. The original purpose of the investigation was to suggest 

a causation of a transmissible vector-borne agent by considering the climatic and 

geographical factors of this lymphoma. 

Cells were first cultured stationarily in two separate environments for 75 and 82 days 

respectively and then collected in suspension by drawing the culture fluid so that they 

could grow free-floating. After a series of chemical treatment and operation of slicing, 

cells were examined under Philips EM 200 electron microscope. The general 

structural organization of the lymphoblasts was remarkably uniform and not difficult 

to recognize. However, among a small number of the cells, unusual structure, the 
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morphology of which indicated a virus, was observed both in the cytoplasm and the 

nucleus. These observed virus particles were at different stages of their maturing. 

While the immature particles, some with a nucleoid -inheritance part of the virus- and 

some without, were found across the cells, the mature ones were only found in the 

cytoplasm, indicating that assembly of these particles happened between the cellular 

membrane and of the nucleus. 

 

Figure 5.1 First discovery of EBV [22] 

Not surprisingly, this virus was named after their finders as EBV, as it is called now. 

Interest was then directed towards the mechanism of the maturation process of the 

virus in the lymphoblasts and its relation to other herpes virus in the tissue culture. 

One of the most important features of the virus known from this first discovery is that 

''a 'passenger' role can be assumed since the agent has persisted in vitro in the dividing 

cells for many weeks.'' That is the constant latency this virus show after the original 

infection of the host cells. 

Later it was found that distribution of such gamma-herpesvirus was far from restricted 

but widely spread in all human populations and the latent infection as described 

"several weeks" in the original discovery report is actually life-long in the vast 

majority of individuals[23].  
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5.3 Genetic switch in EBV 

Infection of EBV happens usually at our childhood or adolescent time. This virus 

spreads widely over 90% of population of the world. Each year, there are 170,000 

tumors associated with it. 

Everything begins with a kiss 

Through kissing from an infected adult to a child, this virus penetrates successfully 

the kid’s epithelial cell and enters its immune systems following circulation of its 

blood and lymph. Though detailed mechanism of this primary infection in vivo is not 

fully established yet, we here try to present a rough description. 

 

Figure 5.2 Infection of EBV 

In the blood and lymph, B-cell is one of the major types of lymphocyte performing the 

role of immune surveillance. Each B cell has a unique receptor protein on its surface 

that will bind to one particular antigen. Using this receptor, each B cell is able 

recognize a specific type of antigen, the threat to the organism. Before exposed to 

various antigens (receptor not taken for once), a B cell is called Naive B cell. After 

binding of the antigen to the receptor of the Naive B cell, it may be differentiated into 

different types of cell with respect to different function it serves thereafter. 

Naive B cell is believed to be the primary target of the EBV able to invade the 

lymphoid tissues. Caught by the receptor of B cells, EBV injects its genome and 

begins its own life cycle in the host cell. 
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Figure 5.3 Survival strategy of EBV [Courtesy of Maria Werner] 

Figure 5.3 shows the important cell programs of B cells directed by EBV. After 

infection, some host B cells are driven by the viral genes to proliferate. This program 

of proliferating is referred to as Latency III, the latent growth-transforming infection. 

Many of these proliferating cells are recognized and removed by the immune system. 

But some of them manage to escape by suppressing expression of the viral genes and 

establishing a stable reservoir of resting viral-genome-positive memory B cells 

(Latency I), which later can infect the epithelium again and function as a source of 

persistent infection. Some resting memory B cells can be reactivated and switch back 

to Latency III under immune suppression. It has been suggested the rapid proliferation 

of some of these reactivated B cells is strongly associated with tumor formation. 

Molecular Basis 

Within latently infected B cells, the viral genome is maintained as a circular plasmid 

of approximately 165,000 base pairs, as shown schematically in Figure 5.4. In resting 

B cells, this plasmid replicates semi-conservatively once each cell cycle and is then 

partitioned faithfully as the host cell genome to daughter cells. OriP denotes the 

region where replication of the viral genome happens. 
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Figure 5.4 Genome of EBV [23] 

ENBA-1 

Replication of the viral genome is auto-regulated by EBNA-1, a protein both encoded 

in the viral genome and regulating expressions of the viral genes [24]. This can also be 

noticed from Table 5.1, as EBNA-1 is the only encoded protein expressed in all 

latency programs of the virus. EBNA-1 behaves as the only bridge among all 

programs (Latency I, II, III) after primary infection; the concentration of EBNA-1 in 

the host cell determines which program the cell shall be directed to. 

 

Program Genes Expressed 

Latency 0 EBER-1&2, LMP-2a 

Latency I EBER-1&2, LMP-2a&b, EBNA-1 

Latency II EBER-1&2, LMP-1,LMP-2a&b, EBNA-1 

Latency III EBER-1&2, LMP-1,LMP-2a&b, EBNA-1~6 

Table 5.1 Proteins produced from the EBV genome. 
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C promoter & Oct-2 

 

Figure 5.5 Latency I & III associated with Cp and Qp [Courtesy of Maria Werner] 

Latency I and III are associated with two promoters Cp and Qp, respectively. At 

molecular level, Latency I equals Cp OFF but Qp ON, while Latency III means Cp 

ON but Qp OFF. 

 

Figure 5.6 Cp & Qp regulation [Courtesy of Maria Werner] 

Qp is regulated by a region on its right, which consists of two binding sites of 

EBNA-1. If any of these two sites are bound with EBNA-1, RNAp will be blocked so 

that, all genes on the right of Qp can not be expressed, i.e. Qp will be OFF. 

 27



 

Activity of Cp is determined by a 40-site region, Family of Repeats (FR) on its left. 

Throughout FR, 20 binding sites of EBNA-1 and the rest 20 of Oct-2, a human protein, 

lie side by side. 

Family of Repeats 

 

Figure 5.7 Regulation on FR: EBNA-1 & Oct-2 [Courtesy of Maria Werner] 

Thus, it is the binding pattern of these two proteins on the FR region that regulate C 

promoter. While EBNA-1 acts as enhancer of Cp, Oct-2 behaves as inhibitor through 

blocking neighboring binding sites of EBNA-1. It is believed that Cp can only be ON 

when at least 8 ENBA-1 have bound to FR [15, 16]. 

5.4 Presentation of the model 

We use statistical mechanics to deal with concentration of molecules inside the cell, a 

method widely-accepted in chemical simulation, to construct a model able to describe 

the significant phenomena after primary infection of EBV. Here we look at the general 

framework of the previous model. Major concern is given to mathematical description 

of FR region and the C promoter, which provides basis for this thesis work. 

Single-side blocking scenario 

In principle, the 20 binding sites of EBNA-1 and 20 of Oct-2 molecule in the FR 

region of the viral genome together gives a total possibility space of 240. Pure statistics 

in this problem, i.e. making directionless counting, would be far too time-consuming. 

In previous work, a reasonable approach of simplification has been made under 
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assumption that no cooperative binding (molecular cluster is easier to bind than a 

single molecule) or Double-side blocking (Once Oct-2 is bound to its site, it will stop 

ENBA-1 from binding at its two neighbouring sites) is involved during the binding of 

the two molecules. 

All cases were classified by n, the number of EBNA-1 and k, number of Oct-2 bound 

to the region. Oct-2 was assumed to block only the left neighbour site for EBNA-1 to 

bind and EBNA-1 was accordingly assigned competition for blocking only the right 

neighbour site of Oct-2. Moreover, to simplify the problem to a deeper level, the 

competitive binding of the two molecules was performed by combining the 

neighbouring sites of EBNA-1 and Oct-2, i.e. the total 40 binding sites were treated as 

20, where EBNA-1 and Oct-2 are exclusive to each other to bind. 

Statistical mechanics applied 

We now use statistical mechanics to describe the probability of the system’s residence 

in one binding pattern. 

   ([ ][ ]) [ ] [ ]n n Ee k k Eo
nkw E O E e O eβζ − −= i β

Here n, k are the number of EBNA-1 and Oct-2 molecules bound to FR, repectivesly; 

[E] and [O] denote the concentration of free E and O; Ee and Eo stand for the binding 

energy relative to the unbound state. ( , )n kζ ζ= gives the number of cases under one 

particular set of binding pattern. In this simplest scenario, ( , )n kζ  can be obtained 

through simple combinatorics: 

( , )
N n k

n k
n k n

ζ
+⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
, 

where N means the total number of sites. 

As the ON/OFF activity of the C promoter is believed to depend only on the number 

of bound ENBA-1: on when , i.e. 8n ≥
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we need to sum on wnk over k, 
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So we have total weight as 

        
0
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=
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Then wn divided by the total weight gives the probability of ON over number of bound 

EBNA-1: 

n
n

tot

wP
w

=  
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6 Mathematical requisites: combinatorics 

Combinatorics is the area in mathematics dealing with counting under certain 

constraints. We will build up some paradigm problem together with their solutions so 

that explanation of the combinatorial problem in our concern becomes clearer. 

6.1 Ball-basket: a paradigm problem, Paradigm 0 

Before we concern the real challenge in our study, a conceptual paradigm from 

combinatorics shall be introduced first. It will be used several times when endeavour 

of solving the problem is made. 

Paradigm 0 

Suppose we have x balls of the same colour, for example red, and y baskets each 

signed by a different number, indicating that the baskets are distinguishable while the 

balls are not. For simplicity x y≥ is assumed here. The task is to distribute these x 

balls into the y baskets and find all the possible cases with the limitation that any 

basket shall contain at least one ball and that all balls must be in the baskets. 

To solve such problem gracefully is an interesting process with a significant 

conceptual transformation. Attention shall be paid to the key words 'at least one'. It is 

based on this fact that we can introduce the approach of inserting a 'separator'. As any 

basket contains at least one ball, putting balls into y baskets is the same process with 

inserting 1y −  separators into the in total 1x − blank intervals between each pair of 

neighbouring balls. 
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x balls,   y baskets

x-1 in-between positions
y-1 separators  

Figure 6.1 Ball-baskets problem using separators 

From Figure 6.1, it is not difficult to notice that the number of all possible 

distributions even needs no algorithm but a closed formula, 
1
1

x
y
−⎛

⎜
⎞
⎟−⎝ ⎠

, denoting that we 

are choosing 1y − out of 1x − possible locations for putting separators.  

6.2 Generalizing Ball-basket: Paradigm I-III 

Paradigm I 

Paradigm 0 can be slightly modified to perform tasks of more complexity. One 

example is to remove the limitation of 'at least one', so that there might be empty 

basket existing and the problem changes its appearance as distributing x balls 

into y baskets. However, x y≥ is still assumed. 

Although 'at least one' is omitted here, we still try to 'create' such terms by 

transforming the question, so that the original benefit of using separators become 

applicable again. We do so by splitting this problem into smaller ones and designing a 

simple algorithm:  

1) Assume a fixed number of empty baskets, , count all possible cases under 

this limitation  

q
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2) Go through all possible values of (q 0 q y≤ ≤ ). 

For step 1), focus is addressed on the rest baskets where distribution of the x balls 

takes place. First, positions of the q empty baskets must be assured, which 

includes
y
q
⎛ ⎞
⎜ ⎟
⎝ ⎠

 possibilities. Within the remaining y-q baskets, each must contain “at 

least one” ball. Utilizing result from Paradigm I, we get 
1

1
x

y q
−⎛

⎜
⎞
⎟− −⎝ ⎠

 kinds of 

distribution. Therefore total number of possible cases for each value set of (x, y, q) 

is . 
1

1
y x
q y q

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

     ME                 CE                MF

 

Figure 6.2 Paradigm I, classification of baskets 

a) must-be-empty (ME) b) can-be-empty (CE) c) must-be-filled (MF) 

ME contains no balls; MF owns at least one ball;  

CE can be realized by further classification into ME and MF. 

 

Paradigm II 

Furthermore, Paradigm I can be expanded again. What happens if we erase the 

condition x y≥ ? The answer lies effortlessly in the solution process of paradigm II. 

When x is smaller than y , for example 1x y= − , there must be at least one empty 

basket and the case of no empty baskets we considered no longer exists in step 2) of 
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this new version of question. Thus we can perform the counting by excluding the 

cases of x y q< − , i.e. setting minq , the smallest value of , to , while 

obviously . 

q y x−

max 1q y= −

Paradigm III 

This section treats the most general version of Ball-basket problem in our concern. In 

Paradigm II, we have solved a problem stated below: 

 Put x undistinguished balls into y distinguishable baskets. Count all possibilities. 

It indeed looks general enough. However, what happens if we know already how 

many baskets out the total y can be empty? One might optimistically turn to 

quantity introduced in Paradigm I, claiming that solution lies in setting toq maxq p , the 

number of can-be-empty baskets and the result is accumulation of  

over the interval [ ,

1
1

y x
q y q

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

minq p ]. This is of course right but only under the following 

assumptions that every basket can be a candidate of empty baskets. If we already 

know which p baskets can be empty, we need only choose q out of p, thus the result 

shall be accumulation of 
1

1
p x
q y q

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

 instead.  

-CE

-MF

a) specific position

b) nonspecific position

 

Figure 6.3 Illustration of Paradigm III: only a few baskets can be empty 
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An algorithm named “ballBasket” is designed according to the discussion above and a 

logic input quantity is used to determine whether it is the case of 

or . 
1

1
y x
q y q

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

1
1

p x
q y q

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠
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7 Modeling EBV system 

This chapter describes the major algorithm of counting statistical weights of different 

binding patternζ . First we state the necessity of generalizing the previous model and 

the expectation of result before the work. Then algorithms for different combination 

of effects are described in detail, including brief presentation of the result of weak 

cooperativity. Major results are given in the next chapter. 

In all cases investigated in the present work, the binding affinity of the proteins bound 

to FR is set to be -15.45 kcal/mol for EBNA-1 and -12.28 kcal/mol for Oct-2 

respectively. The average volume of the host eukaryote cell is approximated as 

2×10-13 liter. Concentration of proteins presented in the plots is all in M (mol/liter). 

These are equivalent with parameters used in [17]. 

7.1 More than single blocking 

Assumptions in previous model were made for limiting computational costs. However, 

the more phenomena a model includes, the better prediction it can potentially make. 

We want to build a more exact model. Though requiring more complex numerical 

calculations ofζ than the simple combinatorics in section 5.4, this is rewarding for 

both theoretical research and designing experiments. 

It is possible that one bound molecule/complex to the DNA blocks both its 

neighbouring sites, on each side, since the separation between the binding sites are 

small. Thus, we shall give a model able to simulate O’s blocking on both 

neighbouring E sites. Moreover, EBNA-1 is known to be able to bind cooperatively to 

other binding sites on the EBV genome [18,19,20]. Though the cooperative effect at 

the FR region has not been tested directly, we assume this could happen. All cases that 

need to be simulated are concluded in Table 7.1. 

Cases Cooperativity Single blocking Double blocking 
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1 No Yes No 

2 No No Yes 

3 Yes Yes No 

4 Yes No Yes 

Table 7.1 Combinations of effects for investigation 

For studying cooperativity and its relationship with competition, we want to vary the 

cooperative energy see the consequences. In particular, we want to compare our result, 

an example of multi-site system with previous study on simpler systems with just 

several binding sites, where blocking is less likely to happen. 

7.2 Competitive binding of EBNA and Oct 

It has been pointed out in previous sections how important competitive binding might 

be involved in the viral survival strategy. Here we begin to describe this molecular 

mechanism quantitatively using results of the established combinatorial paradigm. 

7.2.1 Double blocking 

Oct-2 is now assumed to be able to block not only left but also its right neighbouring 

site of ENBA-1. As the left neighbour competition is already included, shrinking total 

sites from 40 to 20, we need merely focus on the competitive binding of Oct-2 on the 

right neighbouring ENBA-1. Based on the mechanism that will be discussed later for 

describing blocking, a natural expansion of this method can be applied to cooperative 

binding. 

Same for any O excluding E as right neighbour, any E must not have an O on the left. 

In other words, there shall be “at least one” empty binding site Φ between any “OE” 

segments when efforts to specify a whole sequence of E, O, Φ are made. This binding 

feature can easily recall us of Paradigm III in the balls-baskets problem. There is an 

obvious analogy of the intermediate position of every two molecules in S1 being 
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baskets, while the empty binding sites play the role of balls. However a slight extra 

considerance shall be pointed out for this analogy that there must be two more 

“baskets”. In a 20 sites sequence, the first several sites or the last ones could be either 

taken up by molecules or empty, giving birth to two more can-be-filled baskets. 

-Can be empty/filled

-Must be filled

E   O   E   E   E   O   O   E   O   O   

 

Figure 7.1 Front, end, in-between positions as baskets, Φ as balls 

 

S1 Element Basket Type 

front can be filled/empty 

end can be filled/empty 

OE must be filled 

EO can be filled/empty 

EE can be filled/empty 

OO can be filled/empty 

Table 7.2 Basket rule for “single blocking” 

Thus, we can use such procedure to “produce” a complete FR region with molecules 

bound: 

1)  Construct a “pure molecule sequence” (S1) made up only by E and O. 

2)  Find all “OE” segments in this sequence 

 38



 

3)  Treat the positions between O and E in such segments as must-be-filled 

baskets; put Φ as balls into them. Other spaces between molecules in any “EE”, 

“EO” and “OO” segments are treated as can-be-empty baskets. 

Denote the total number of must-be-filled baskets by z, we have in total x balls, n+k+1 

baskets. Then we can set the largest possible number of empty baskets to n+k+1-z and 

replace the term of 
y
q
⎛ ⎞
⎜ ⎟
⎝ ⎠

 by saying there are only n+k+1-z positions to 

fill for empty baskets. 

1n k z
q

+ + −⎛ ⎞
⎜
⎝ ⎠

⎟

The remaining work then is to count the number of all possible cases of pure E-O 

sequence (S1) for each fixed value of z. Partly due to the “inclusive nature” of our 

expectation of the model, and partly because of practical need, we choose to 

distinguish between the OE and EO segments, denoted by zOE and zEO respectively. A 

helpful thing is that soon we will see such classification yields a surprisingly regular 

counting method. 

Two important natural characteristics can be drawn out of case studies of specifying 

sequences with zOE and zEO. Firstly, zOE and zEO can not be independently arranged. 

As seen the fig below, for each fixed zOE there exist only three possible values zEO at 

most, zOE -1, zOE and zOE +1. And this provides an advantage of shrinking the 

searching space that we always strive to find. Secondly, for each (zOE , zEO) value pair,  

emergence of at most 4 balls-baskets problem is found, whose solution has already 

been established in former statements. 

7.2.2 Ball-basket revisited 

A fixed number of zOE and zEO means also specified backbones of the pure n+k long 

E-O sequence. Taking typically the case of zOE=1 for illustration, we can at first put 

solely one OE segment in centre. If zEO=0, only once backbone exists: OE, the rest O 

must all be on the left and the remaining E on the right. Otherwise any E on the left or 

O on the right would introduce an unwanted EO segment. For zEO=1, the backbone 

might be EOE or OEO while zEO=2 holds only EOEO. 
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 Number of neighborhood 

Backbone OE EO 

bE bO 0 1 

bO bE 1 0 

bE bO bE 1 1 

bO bE bO 1 1 

bE bO bE bO 1 2 

… … … 

Table 7.3 Illustration of Backbones 

With foundation of a framework, referred as backbone above, the last step of 

establishing the pure E-O sequence is to insert the remainder of E and O into allowed 

positions. As stated before, this is again the balls-basket problem. Take the symbol E 

in the backbone as baskets (bE) for E to fill and backbone O (bO) for O. This time, it is 

Paradigm 0 that shall be applied, as all bE, bO must be filled with at least one 

corresponding molecule. 

As this method will be used and modified for later sections, we name this method 

‘backbone description’ and summarize it as blows: 

 1)  Go over all possible backbones (S0) and complete 2) to 6) for each backbone. 

 2)  Use paradigm 0: E, O molecules as balls; bE as baskets for E, bO for O. 

 3)  'Pure molecule sequence' (S1) made up only by E and O generated. 

4)  Find and record the number of all 'OE' segments in S1. 

5)  Use paradigm III: Φ as balls; intermediate positions in ‘OE’ segments as 

must-be-filled baskets; other spaces in 'EE', 'EO', 'OO', front and end as 

can-be-empty baskets. 
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6)  Final complete sequence of FR (S2) obtained. 

bEbOb

EEEEEOOOEEEE

ΦΦΦ E ΦEEEEΦOOΦOEEEEΦΦ

EEEEEOOOEEEE

ΦΦΦ E ΦEEEEΦOOΦOEEEEΦΦ

b b bbEbObE

 

Figure 7.2 Backbone description: from backbone to FR. 

7.3 Cooperative binding 

Cooperativity includes many cases to consider. To simplify the treatment so that 

algorithm of executive efficiency is possible to make, we consider only two extreme 

case of cooperativity: weakest and strongest cooperative binding. Here cooperativity 

is tested for both EBNA-1 and Oct-2. 

7.3.1 Weak cooperativity 

The weak cooperativity is defined as follows: 

1. Cooperative binding happens only between neighboring molecules of the same 
type. 

2. Once an EBNA or Oct cooperatively binds to one side of neighboring counterpart, 
it won’t be able to cooperatively bind to the other side. 

E E E E
E E E E
E E E E

E E E E
E E E E
E E E E  

Figure 7.3 Schematic of weak cooperativity 
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Though this description might not be realistic due to introduction of Requirement 2, it 

is the easiest to implement computationally and it indicates some useful information 

about the cooperative effects. The computational idea is simply treating cooperative 

binding EE and OO as new elements when we try to construct the whole binding 

patterns of FR region. Thus, we need to introduce another two quantities n1, k1, each 

representing number of cooperative bound elements of EBNA and Oct. For simplicity, 

we refer cooperative bound elements to C for EBNA and D for Oct. 

The remaining task is then to put all elements into the empty FR region. We need to  

1. Sort all possibilities of non-cooperative binding elements with the cooperative 

ones, which gives, . 1 12 2n n k k
n k
+ +⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

2. Sort EBNA with Oct,  1 1

1

n n k k
n n

+ + +⎛ ⎞
⎜ ⎟+⎝ ⎠

3. fix positions of all taken binding sites, choosing n+n1+k+k1 out of N-n1-k1, 

 1 1

1 1

N n n k k
n n k k
− − − −⎛ ⎞

⎜ ⎟+ + +⎝ ⎠

To note that this method uses no ‘backbone description’ of the sequence structure, 

which will be inevitable to be applied when cooperativity and double blocking are 

both involved. Here cooperative energy of the molecules is expressed relative to 

binding energy of respective molecule. 
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Figure 7.4 Weak cooperativity + single blocking 

From the picture above, we can observe what cooperative binding, even just in its 

weakest manner, will bring. When EBNAs can help each other to bind to FR, the 

curve becomes sharper than in single blocking scenario, making the whole system 

behave more like a switch. Conversely, cooperative binding affinity of Oct will add to 

influence of blocking; rising of probability from zero will be postponed. 

Except the information provided by the weak cooperative scenario, there is still a 

critical problem. As we have treated the cooperative binding EBNA-1s and Oct-2s as 

different elements with the non-cooperative binding molecules, the algorithm will fail 

due to repetitive counting if we want to bring this model back to the single blocking 

scenario by simply setting the relative cooperative binding energy to zero. 

Unfortunately one of our major interests is to understand quantitatively how the 

'reactivity velocity ' of this complex genetic switch is affected by cooperative binding 

of molecules. This demands consistency of the model at transition from 

non-cooperative scenario to cooperative ones. Our model needs reconstruction. 
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7.3.2 Strong cooperativity 

By strong cooperativity, we mean the following consideration: 

1. Cooperative binding happens only between neighboring molecules of the same 
type. 

2. Any single molecule is able to cooperatively bind to DNA with both its left and 
right neighbors. 

3. Any molecules of the same type bound to the DNA neighboring each other are 
definitely cooperatively bound as a whole. 

Here the term of 'cooperative binding molecules' equals 'neighboring molecules'. 

E E E E E E E E=
 

Figure 7.5 Schematics of strong cooperativity 

Unlike the weak cooperativity scenario, we can't treat cooperative binding molecules 

as different elements constructing the FR region for reasons given in previous section. 

It is somewhat cumbersome to develop a method that provides the number of cases 

specified by the n, k, n1, k1, as we must know not only n and k, but also the 

neighboring relationship inside such settings of n and k, which is highly dependent on 

the structure of sequences. Essence of this problem lies in the nature of the core 

method applied--combinatorics. To count is a process of gathering information about 

something, the counting object, under certain conditions. These conditions, after the 

counting, become representatives characterizing the object while other characteristics 

of the object are hidden in the number and no longer visible. So it is fair to conclude 

more precisely that combinatorics is a process that gathers and meanwhile loses 

information of the counting object. The more information we need about the object, 

the closer we must be to the object. Some may then suggest such straightforward 

alternative: 

 Go over all possible sequences and record 

1) n, number of ENBA-1 bound to the FR 
2) k, number of Oct-2 bound to the FR 
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3) n1, number of neighborhood of all EBNA-1 on FR 
4) k1, number of neighborhood of all Oct-2 on FR 

and make statistics of all sequences counting the number of cases under each 

settings of n,k,n1,k1. 

However, this violates our initial purpose to avoid such time-consuming statistics of a 

size of order 320. Therefore we must find some way that combines advantages of both 

the detailed sequence description and the efficiency provided by combinatorics. This 

method of description should be not only detailed enough to so that necessary 

information of the sequence can be acquired but also sufficient enough so that going 

over all possible sequences can be faster. 

Fortunately such approach exists for this simple system concerning only two types of 

molecules. We can choose to count the number of neighboring molecules of the same 

type rather than to assign values of n1 and k1 on the first place, with help from the 

backbone description. 

As backbone description involves two steps of constructing the sequence made up of 

E, O and Φ, the first step of creating a pure E-O sequence (S1) provides some 

information of the neighboring structure. Though it is only neighboring structure of 

the pure E-O sequence, we can modify the process of inserting Φ to provide 

information we need. 

When generating S1 from a backbone, we know precisely how many E, O and how 

many backbone-baskets are there for Es and Os, which are potential candidates for 

neighboring relationship. And the only possibility to split these potential neighbors up 

is to insert a number of empty binding sites Φ when producing S2. 

For example, in a backbone of “bObEbObEbO”, where number of backbone-baskets for 

E and O are respectively 2 and 3, n Es must be put into 2 baskets. In each of the 2 

E-backbone-basket, all molecules contained must be neighboring each other, giving 

number of such neighborhood as n-3 for E and k-4 for O. 
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Number of backbone baskets Number of neighborhoods 

bE bO EE OO 

1 1 n-2 k-2 

2 1 n-3 k-2 

2 3 n-3 k-4 

a b n-1-a k-1-b 

Table 7.4 Number of potential neighborhood in backbones 

We shall record these two numbers and then decide how to reduce them by inserting 

empty binding sites. Inspiration then comes again from the procedure of ball-basket 

algorithm. When solving Paradigm I, we created room for algorithm of Paradigm 0. 

That is, split the problem by q, and use results from Paradigm 0. This idea of 

introducing a fixed number of can-be-empty baskets can lead us to more strict 

description—a fixed number of must-be-empty baskets, m. This can be easily done by 

ball-basket algorithm, setting the total number of baskets to y-m. By doing so, we are 

able to divide the n1 E neighborhoods and k1 for O into two non-superpositional 

categories of baskets for Φ: 1) must-be-filled and 2) must-be-empty. The algorithm 

then becomes: 

1) Choose v out of n1, w out of k1, setting them as well as must-be-filled baskets. At 
the same time, remaining n1-v and k1-w are considered as must-be-empty baskets.  

2) Insert Φ as balls according to the ''basket rule''. 
3) Go over all possible values of v (0~n1), w (0~k1). 

This basket rule is summarized in Table 7.5 below. 

Sequence Element Basket Type Number 

OE can be filled/empty zOE

EO can be filled/empty zEO
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EE must be filled v 

EE must be empty n1-v 

OO must be filled w 

OO must be empty k1-w 

Table 7.5 Basket rule for “strong cooperativity” 

7.4 Cooperative binding + double blocking 

Discussions until now enable us to test the combined effects of both Double-side 

blocking and cooperativity. Weak and strong cooperativity are both considered. 

7.4.1 Weak cooperativity + double blocking 

Weak cooperativity is not as straight-forward to implement as strong cooperativity 

when blocking must be taken into account. The reason is apparent: it must be fit into 

the framework of 'backbone description' so that current algorithm from the 

Double-side blocking can be partly useful. Recalling the 3 steps of treating weak 

cooperativity, we are able to notice that some of the tasks of these steps are already 

finished in the 'backbone description', namely Step 2 and 3. This finding necessitates 

the introduction of a similar step 1 into the 'backbone description', which is not 

difficult to implement. 

The idea is almost the same as the way we consider double blocking. The core and 

only difference is that we sort the non-cooperative binding elements with the 

cooperative ones, count number of all the possibilities and then consider them as 

unified elements so that developed double blocking algorithm can be used without 

any more modifications. 
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Figure 7.6 Weak cooperativity + double blocking 

Comparing the blue and yellow curves in Figure 7.6, it is obvious that double 

blocking has drawn the switch to happen at higher concentration of EBNA-1 just like 

the case when cooperativity of Oct-2 is considered. 

7.4.2 Strong cooperativity + double blocking 

The way to carry out combination of strong cooperativity and double blocking is 

effortless. The only thing we need to do is to change the “basket type” of OE segments 

to must-be-filled, compared with treating strong cooperativity only. A detailed 

description of basket rule for this case is again given in a table. 

Sequence Element Basket Type Number of baskets 

OE must be filled zOE

EO can be filled/empty zEO

EE must be filled v 

EE must be empty n1-v 
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OO must be filled w 

OO must be empty k1-w 

Table 7.6 Basket rule for “strong cooperativity + double blocking” 
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8 Results 

As the model of weak cooperativity is not consistent at the transition point from the 

non-cooperative case to cooperative one, and as cooperativity of EBNA-1 but none of 

Oct-2 is already suggested, we discuss here only results of strong cooperativity of 

EBNA-1. 

8.1 Sensitivity of the switch 

Figure 8.1 gives a 3D plot of the probability of C promoter for 4 different 

combinations of strong cooperativity and blocking effect over concentration of 

EBNA-1 and Oct-2. It is not difficult to notice that the consequence of adding strong 

cooperativity of EBNA-1 is generally consistent with that of adding weak 

cooperativity. The only obvious difference is that the probability of the strong 

cooperativity scenario rises from zero earlier than that in the case of weak 

cooperativity (in Figure 7.5 the curve with weak cooperativity crosses the one of 

single blocking rather than being drawn to lower concentration of EBNA-1), which 

verifies our definitive difference between weak and strong cooperativity. 
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Figure 8.1 Probability of C promoter, 3D plot 
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The switch of Cp becomes more sensitive when strong cooperativity or blocking 

effect or both of them are taken into consideration. However, when looking into more 

details of the strong cooperative effects in next chapter, we will see this consistent 

general trend can be differentiated into complex reasons. 

8.2 Cooperativity V.S. competition

Results of Section 8.1 interest us to consider more about the system. This section 

deals with the interrelation between the competitive and cooperative effects. We 

develop another model concerning pure cooperativity to differentiate phenomena 

caused by the two effects and use Hill coefficient as measure of the degree of 

cooperativity of EBNA-1. Again we limit discussion of cooperativity to strong 

scenario only. 

Pure cooperativity 

Pure cooperativity is first discussed here to define Hill coefficient in our case and to 

confirm whether our result is consistent with those of previous studies where only 

several binding sites are involved in the genetic switch. 

Hill coefficient is defined as the derivative of the logarithm of the ratio of occupied 

promoter over the free operator versus logarithm of the concentration of the free 

transcriptional factor. Suppose we have the following reaction. 

nnA O A O+ U  

where A stands for the transcriptional factor, O for the operator on the DNA. In 

equilibrium, the reaction constant K is defined as 

[ ] [
[ ]

n
free

n

A O
K

A O
=

]

O

 

Considering , the fractional occupancy, also here known as the 

probability of the operator to be ON is 

[ ] [ ] [ ]total nO O A= +
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[ ]
[ ]

n

total

A OP
O

=  

We then have 

[ ]lg( ) lg( ) lg([ ]) lg( )
[ ] 1

n
free

A O P n A K
O P

= = ⋅ −
−

 

And Hill coefficient is expressed as 

lg( )
1 ( 0.5

lg([ ])free

P
P P

A

∂
− =

∂
)  

Apply above results to our EBNA-FR system, the following result is obtained. 
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Figure 8.2 Pure strong cooperativity of EBNA-1 

From Figure 8.2, we can see that Hill coefficient is usually defined at half saturation 

(P=0.5, dashed line in plot). It is close to this point that the minimal value of the 

quantity 
lg( )

1
lg([ ])free

P
P

E

∂
−

∂
 is obtained. With growth of the relative cooperative energy of 

EBNA-1 (relative to the binding energy of a single EBNA-1 molecule), an increase of 
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the Hill coefficient is clearly shown. This result is in consistence with previous study 

on viral systems consisting of only several binding sites. 

Strong cooperativity + single blocking 
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Figure 8.3 Strong cooperativity of EBNA-1 + single blocking 

When single blocking is involved, the increase of Hill coefficient with the growth of 

cooperative energy of EBNA-1 vanishes. This can be explained by a relatively simple 

notion of “effective binding sites”. After introduction of blocking, effectively 

speaking, the actual binding sites to which EBNA-1 can bind are reduced. The result 

of this decrease in effective binding sites of EBNA-1 can be revealed by analogy 

between the number of effective binding sites of EBNA-1 in the single blocking 

scenario and the total number of binding sites in the case of pure cooperativity. 
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Figure 8.4 Effective binding sites of EBNA-1 

Shown in Figure 8.3, in pure cooperativity scenario, decreasing total number of 

binding sites gives smaller Hill coefficient. High [O] means many of the 20 binding 

sites are taken by Oct-2, inhibiting neighboring sites and split the whole sequence into 

pieces to bind EBNA-1. The course of cooperative binding can be understood as 

combination of two steps. EBNA-1 molecules try to bind first, and those bound as 

neighbors find ways to cooperate, forming a state of lower free energy. When number 

of neighborhoods for EBNA-1 is reduced much by existence of Oct-2, the degree of 

cooperativity will not be as large as in the pure cooperative scenario. In high [O], there 

can be little neighboring EBNA-1 bound to FR, which makes the raise of cooperative 

energy in vane. Moreover, the fact that strong cooperative binding at neighboring sites 

is defined equivalent to the neighborhood itself drives such influence from blocking 

to the maximum. 

Strong cooperativity + Double blocking 
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Figure 8.5 Strong cooperativity of ENBA-1 + double blocking 

Double blocking introduces more complex result than what single blocking has 

brought. Minimum of the quantity 
lg( )

1
lg([ ])free

P
P

E

∂
−

∂
 is no longer obtained at half 

saturation. But the rise of switch sensitivity with growth of cooperative energy of 

ENBA-1 is still observed. 
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9 Discussion

It can be concluded from the results that in this specific example of multi-binding-site 

genetic switch, competitive effects are more important than cooperative effects. 

Qualitative properties of the Hill curve are dominantly determined by the type of 

competitive bindings but will not change much under a relatively large alteration of 

cooperative binding energy. 

To fit ourselves in a more general context, say the field of systems biology as a whole, 

it is not difficult to observe from methodology of this work that this field of research is 

accordingly initiated by biology rather a systematic description manner. It is already a 

time in which biologists call mathematicians and physicists for explaining the 

enormous amount of experimental data. When we are pleased at the serviceability of 

modeling in living systems, we must also notice that what we call system virology 

seems only able to model viral behaviors that are critical for infected cells and already 

recognized in the biology community. That is the task to identify whether a protein or 

mechanism is essential for a specific problem will almost always turn to the 

biologists. 

A feasible way of making modeling tools more powerful at predicting behavior of 

living systems may be one of the engineering methodologies—to integrate. By 

making libraries of useful modeling so that previous successful physical or pure 

mathematical models can be remembered, shared, improved and integrated for 

problems at larger scale. Thus, statistical physicists that are ambitious to make more 

contribution in systems biology shall not only be skillful at what is required for a 

traditional physicist but also open to absorb artifice of chemical engineering and 

software engineering. 
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