Information Visualization

Matt Cooper

Visualization?

- New Oxford Dictionary of English, 1999
- visualize verb [with obj.]
 - 1. form a mental image of; imagine: it is not easy to visualize the future.
 - 2. make (something) visible to the eye: the DNA as visualized by staining with ethidium bromide.

Ceci n'est pas une visualization!

- This is not a visualization!
- This is a picture!
 A very useful picture!
- The visualization is all in your mind.

Information Visualization?

- Techniques to enable the visualization of Information
- So what is Scientific Visualization?
 Scientific data doesn't contain information?!?!?!
- What's the difference?
 - The application areas are different?
 - The data is different?
 - The needs of the users are different?

 Information Visualization exists as a discipline due to a superiority complex.
 "My pictures are nicer than your pictures"

So why two disciplines?

 Information Visualization exists as a discipline due to a superiority complex.
 "My pictures are nicer than your pictures"

Two disciplines

- So, we end up with two "distinct" disciplines in the same area.
 - Doing the same thing
 - Focussing in different ways
- · How are they really separated?
 - The application areas are usually different
 - The needs of the users are usually different
 - The data is different

The Viz pipeline: Mapping

- · This is the most complex phase
- Involves the definition of relationship representations
- Driven by models of human perception...

The (re-)merging of the disciplines

- SciViz is rapidly heading into InfoViz territory:
 Sophisticated data analysis and pattern identification
 - Complex data representations
 - Sophisticated interaction
- · Infoviz taking up methods from SciViz:
 - Volumetric rendering (translucent blocks of data)
 - Surfacing of data structures (clusters)
 - Tensor representations (high-dimensional data)

Why the different approaches?

- · SciViz data is:
 - Small
 - Well understood
 - The data values are low dimensional
 - The geometry is often regular and always known
 - Clean (or at least predictably dirty)
 - Filled with well understood relationships
 - Simulated or measured data
 - Created or gathered for a purpose

Why the different approaches?

- InfoViz data is:
 - Big (hundreds of gigabytes is common)
 - May not be well understood
 - Data items have tens or hundreds of dimensions
 The 'geometry' is usually next to non-existant.
 - Often very dirty (and unpredictably so)
 - Filled with (apparent) relationships
 - Correlations and anticorrelations
 - · Patterns which exist only in certain regions in the data

A Comparative example: Heart disease

- SciViz problem: Is this patient sick?
 - Examine (scan) hearts of sick and well patients
 - Examine their hearts by visualizing features of the data:
 - muscle, fluid, blood flow, fatty tissue...
 - Determine what features correlate with heart disease
- · Test new patient for those features

A Comparative example: Heart disease

- InfoViz problem: Who's going to get sick?
 - Collect detailed multi-generation histories of similar-seeming patients who are/aren't sick
 Think of the endless possible measurements!
 - Explore that data looking for patterns of factors which correlate with sickness and not wellness
 - Create a model of behaviour(s) which produce a relatively high risk
- Tell media who then terrify the public

So The InfoVis problem is...

- Finding (very) complex relationships...
- · Which may not be present everywhere
- Within very large...
- High-dimensional...
- Data sets...
- That you may not have known you were looking for in the first place

A 'haystack' problem:

"See that haystack? Go and see if there's anything interesting about it."

• Simplistic – as simple a picture as possible

- Minimalist as little UI as possible
- · Highly interactive
 - Complex selection mechanisms
- Filtering
- Highly coordinated (multiple views)

Volume rendering in IV

- Jimmy Johansson PhD student
- Using techniques of volume rendering to examine large, time-varying data sets.
- Used fragment shaders and graphics hardware to render data sets and then manipulate them in real time
- Very large data sets in real time.

Time-varying data

- Time-varying data is a big challenge in visualization
 - Expands data sizes
 - Often hard to represent
 - People are bad at remembering features
- Volumetric representation allows multiple time steps to simultaneously displayed

PC through volume graphics

· Lets us:

- Visualize actual data values at each time step
- Visualize changes between time steps
- Allows Interactive analysis of large multivariate data sets over thousands of time steps
- Permits us to reduce the data with less loss of information

Data Mining

- Approach to find relationships in data

 That you don't know are there
 - That the data was not collected for
- 'Post-Analysis'
- Very interesting from the point of view of many sciences, businesses and other fields.

Visual Data Mining

- The process of data mining can be

 Done by InfoViz Visual Data Exploration
 Not really practical though small data only
 - Vastly aided by visualization
 - Patterns extracted are the representations to show
 - InfoViz helps you interpret and analyse the patterns
 - Valid/Invalid
 - Interesting/Uninteresting

Everyday Life Discoveries: Mining and Visualizing Activity Patterns in Social Science Diary Data

Katerina Vrotsou, NVIS, Linköping University, Sweden Kajsa Ellegård, Tema-T, Linköping University, Sweden Matt Cooper, NVIS, Linköping University, Sweden

- To combine:
 - Sequential data mining
 - Visualization and
 - Interaction
- to enable the user to study the everyday lives of populations and analyse their activity patterns.

Filtering

- · Time of Day Limit
- Pattern Duration Limit
- Minimum maximum intervening activities
- Occurrences Limit
- Active People Limit

(a, a, b)	(b, a, a)	(c, a, a)	(d, a, a)	
(a, a, c)	(b, a, b)	(c, a, b)	(d, a, b)	
(a, a, d)	(b, a, c)	(c, a, c)	(d, a, c)	
(a, b, a)	(b, a, d)	(c, a, d)	(d, a, d)	
(a, b, b)	(b, b, a)	(c, b, a)	(d, b, a)	
(a, b, c)	(b, b_c)	(a, b, b)	(d, b, b)	
(a, b, d)	(b, d)	(, b, c)	(d, b, c)	
(a, c, a)	(b, c, a	, b, d)	(d, b, d)	
(a, c, b)	(b, c, b)	(t, d, a)	(d, c, b)	
(a, c, d)	(b, c, d)	(c, d, b)	(d, c, d)	
(a, d, a)	(b, d, a)	(c, d, d)	(d, d, a)	
(a, d, b)	(b, d, b)		(d, d, b)	
(a, d, c)	(b, d, c)			
(a, d, d)	(b, d, d)			

Conclusions

- Large number of candidate patterns – Large datasets → time consuming
- Filtering
 - Trivial patterns
 - "sleep" "wake up"
- Alternative search algorithms
- Alternative representations

Conclusions to this talk

- InfoViz is far less focussed on computer graphics than SciViz
- More focussed on:
 - (combinations of) simple representations
 - Sophisticated representations
 - Sophisticated interaction
- It's often more mathematical and deals with even larger problems than SciViz
- The two are merging once again, however.