Visualisation within School of Engineering Sciences SCI

Philipp Schlatter
Linné Flow Centre
KTH Mechanics, Stockholm, Sweden
VIC Workshop, March 21, 2007
School of Engineering Sciences, SCI

Research groups with interest for visualisations

- **Mechanics**
 Fluids: Dan Henningson
 Solids: Anders Eriksson

- **Physics**
 Bengt Lund-Jensen
 Theoretical Physics: Mats Wallin

- **Vehicle Engineering**
 Gunilla Efraimsson
 Art Rizzi

- **Mathematics/Optimisation**
 Anders Lindquist

- **KCSE**: KTH Computational Science & Engineering Centre, Director: Olof Runborg
Vision/Needs for SCI

- **Applications:**
 - Computational Mechanics (incl. CFD)
 - 4D insight into motion/interaction of structures

- **Status:**
 - Very localised solutions (areas, persons)
 - “unsophisticated” software (Matlab, homegrown, ...)

- **Needs:**
 - more centralised knowledge on visualisation techniques, capabilities, tools etc.
 - dedicated machines, i.e. with large memory, scratch disks, graphic cards
 - software availability, specialised tools e.g. for CFD
 - steep learning curve → specialists? (area-specific)
 - huge amounts of data (1 velocity field ~5GB)

- **Vision:**
 - Introduce Visualisation as a daily tool for students and researchers
 - focus on time-dependent 3D visualisations
Workflow of Visualisation in CFD

1. Theory/Experiments

2. Simulation → Statistics

3. 2D-Visualisation

4. 3D-Visualisation
Detailed Insight through Visualisation: laminar-turbulent Transition

LES Data, ca. 20 Mio. Grid Points, done with OpenDX
Views not obtainable from Experiments...

DNS Data, ca. 40 Mio. Grid Points, done with OpenDX
Thank you!
Comparison: Simulation and Experiment

Experiment
KTH Windtunnel
Matsubara & Alfredsson (2001)

Simulation
LES (ADM-RT)
Schlatter, Brandt & Henningson (2006)
Transition Mechanism: Classical Transition

Low levels of background noise (<1%) → exponential modal growth

2D primary instability (TS waves)

Secondary instability (K- & H-modes)

Turbulent spots

Turbulence

Schlichting (1977)
Transition Mechanism: Bypass Transition

High levels of free-stream turbulence (>1%) → exponential growth of TS waves is “bypassed”

Non-modal growth of 3D streaks

Secondary instability of streaks

Turbulent spots

Turbulence

Matsubara & Alfredsson (2001)
Bypass Transition

High levels of free-stream turbulence (>1%)
→ exponential growth of TS waves is “bypassed”

(high velocity)
(low velocity)
contours of λ_2

Flow direction x

turbulent boundary layer
	n turbulent spots

(outflow)

Decaying freestream turbulence

Flat plate
DNS Results: Streak Breakdown

Low-speed streak High-speed streak

Vortical structures (negative λ_2)

✓ horseshoe pattern (symmetric instability)

Visualisation of Bypass Transition

- Streamwise velocity component u obtained from LES with ADM-RT in a wall-parallel (x, z) plane at $y=2\delta^*_0$
 - Red: high velocity, blue: low velocity,
 - Black: spot detection criterion
 - Threshold for spanwise velocity variance
 - Median filters to smoothen boundaries