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Abstract—In this paper we characterize the bounds on lo-
calization accuracy in signal strength based localization. In
particular, we provide a novel and rigorous analysis of the relative
receiver-transmitter geometry and the effect of this geometry on
the potential localization performance. We show that uniformly
spacing sensors around the target is not optimal if the sensor-
target ranges are not identical and is not necessary in any
case. Indeed, we show that in general the optimal sensor-target
geometry for signal strength based localization is not unique.

I. INTRODUCTION

The characteristics of the radio channel between a trans-
mitter and a number of fixed location base stations are
dependent on the location of the transmitter [1]. As such,
we can exploit certain known characteristics of the channel
in order to estimate the transmitter’s location [2], [3]. In
particular, the received signal strength (RSS) at a number
of receivers (or sensors) permits passive localization of an
emitter/target (or transmitter) whose transmission power is
known1. As such, RSS-based localization has been considered
as a promising technology for providing location information
in sensor networks [4], mobile/wireless computing [5] and
cellular phone networks [6] etc.

Given any localization technology (i.e. bearing, time-of-
arrival, RSS etc [3]), it is well known that the relative
sensor-target geometry can significantly affect the potential
performance of any particular localization algorithm [7]–[11].
Noting that the Cramer-Rao lower bound is a function of the
relative sensor-target geometry [12], a number of authors have
attempted to identify those geometric sensor configurations
which minimize some measure of this variance lower bound;
see [7]–[9], [13]. The idea is that such geometric configu-
rations are likely to result in accurate localization (at least
for efficient estimation algorithms). In [7]–[9], the optimal
localization geometry is characterized for range-only, bearing-
only and time-of-arrival localization respectively.

In this paper, the fundamental limits on the accuracy of
received signal strength (RSS) based localization [1], [4] are
examined. The Fisher information matrix (and consequently
the Cramer-Rao bound) is derived in terms of the relative
receiver-transmitter angular geometry. Then a rigorous (and
novel) characterization of the geometry is given with arbitrary
receiver-transmitter ranges and arbitrary path loss exponents

1It is even possible to relax the assumption of a known transmission power,
albeit we do not discuss this point further in this paper.

and shadowing statistics for each receiver channel. In this
paper we prove that placing sensors with a uniform angular
separation around the target is suboptimal in general. More-
over, we provide a practically important result stating that the
optimal sensor configuration is generally not unique and can
always be constructed with all sensors on a single half-plane
with respect to the target.

The Cramer-Rao bound for RSS-based localization is also
derived in [4], [14]–[17] (albeit not in terms of the angular
receiver-transmitter relationships). However, in [4], [14]–[17]
the connection between the variance lower-bound and the
transmitter-receiver geometry is not explicitly examined and
no attempt is made to optimize this relationship. Indeed, no
existing work in the literature explicitly considers the problem
of optimal sensor placement for RSS-based localization.

This paper is organized as follows. In the next section, the
notation and RSS-based localization problem is introduced
along with the Cramer-Rao inequality and the Fisher infor-
mation matrix for RSS-based localization. In Section III the
localization geometry is briefly examined with two sensors.
Then in Section IV the localization geometry for RSS-based
localization is analyzed for an arbitrary number of sensors
with a number of important results presented. In Section V we
return to the important case of three sensors and completely
characterize the localization geometry given arbitrary system
parameters and sensor-target ranges. We then examine an
illustrative example with three sensors. In Section VI and VII
we provide a short discussion and conclusion.

II. THE CRAMER-RAO INEQUALITY, FISHER
INFORMATION AND RECEIVED SIGNAL STRENGTH

Consider a target emitter with an unknown position x =
[x1 x2]T ∈ R

2. Consider n receivers (called sensors) in known
positions given by si = [si1 si2]T ∈ R

2, ∀i ∈ {1, . . . , n}.
Let φi(x) ∈ [0, 2π) denote the bearing of the emitter taken
counter-clockwise from the positive si1-direction. The angle
subtended at the emitter by two sensors i and j is denoted by
ϑij = ϑji ∈ [0, π]. The geometry of RSS-based localization is
illustrated in Fig. 1 with n = 2 sensors2.

The RSS (in dBm) measured at the ith sensor obeys

p̂i = pi + vi = p0 − 10αi log10 (‖x− si‖) + vi (1)

2Note that although we consider 2D scenarios for theoretical reasons, the
results provided in this paper can be interpreted heuristically in 3D as good
rules-of-thumb when the the sensor-target range (in an arbitrary plane) is large.
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Fig. 1. A typical RSS-based localization scenario with two sensors.

where p̂i is the measured RSS and p0 is the RSS calculated at
a 1 unit reference distance using the free-space Friis model.
Here, the assumed known αi is the relevant path loss exponent.
Finally, vi is a Gaussian random variable with known variance
σ2

i used to model shadowing and fading effects. For generality
we allow αi �= αj and σ2

i �= σ2
j when i �= j. For n sensors

we get,

p̂ = p + v = [p1 . . . pn]T + [v1 . . . vn]T (2)

which obeys p̂ ∼ N (p,Rp) with covariance matrix Rp =
diag

(
σ2

1 , . . . , σ2
n

)
. If I(x) is the Fisher information matrix

then the Cramer-Rao bound for an unbiased estimate x̂ of x
states that E

[
(x̂− x)(x̂− x)�

] ≥ I(x)−1. If I(x) is singular
then (in general) no unbiased estimator for x exists with a
finite variance [12]. The (i, j)th element of I(x) is given by

(I (x))i,j = E

[
∂

∂xi
ln
(
fp̂(p̂;x)

) ∂

∂xj
ln
(
fp̂(p̂;x)

)]
(3)

where x = [x1 x2]T and fp̂(p̂;x) is the Gaussian likelihood
function. We then easily find I(x) = ∇xp(x)TR−1

p ∇xp(x).
After some algebra, the Fisher information matrix for n
sensors can be given by

I (x) = κ
n∑

i=1

[
βi cos2(φi(x))
‖x−si‖2

βi sin(2φi(x))
2‖x−si‖2

βi sin(2φi(x))
2‖x−si‖2

βi sin2(φi(x))
‖x−si‖2

]
(4)

where βi = α2
i

σ2
i

, κ = 100
ln2(10)

and i indexes over the sensors.
The particular form of the Fisher information matrix given in
this paper (4) is a novel contribution in RSS-based localization.
This form is designed to aid in finding the optimal sensor an-
gular positions. Note that det (I(x)) is inversely proportional
to the uncertainty area of an unbiased estimate of x [12]. We
use det (I(x)) to analyze the sensor-emitter geometry and
establish which sensor configurations minimize the variance
achievable by an efficient estimator. The mean-squared-error
(MSE) of an unbiased estimator is lower bounded by the trace
of the Cramer-Rao given by

MSE ≥ (I (x))1,1 + (I (x))2,2

det(I(x))

≥ κ

det(I(x))

n∑
i=1

βi

‖x− si‖2 (5)

In this paper we are not constructing estimators but rather
characterizing the effect of the localization geometry on the
performance of a generic efficient estimator. In practice, this
analysis can serve as a guide for sensor placement with biased
estimators, or given estimates x̂ of the true target location x.

Theorem 1: Let ‖x − si‖ and βi = α2
i

σ2
i

be arbitrarily fixed
∀i. The following optimization problems are equivalent:

(i) argmaxφ1,...,φn
det (I(x));

(ii) argminφ1,...,φn

(∑n
1

βi sin(2φi)
‖x−si‖2

)2

+
(∑n

1
βi cos(2φi)
‖x−si‖2

)2

;

(iii) argminφ1,...,φn

∣∣∣∑n
i=1

βi

‖x−si‖2 e2jφi(x)
∣∣∣2, j =

√−1;

(iv) argmaxφ1,...,φn

∑
S

βiβj sin2(φi−φj)
‖x−si‖2‖x−sj‖2 ,S = {{i, j}};

where βi = α2
i

σ2
i

and S = {{i, j}} is the set of all combinations
of i and j with i, j ∈ {1, . . . , n} and i > j and |S| = (

n
2

)
.

Proof: Note that (iii) follows from (ii) by Euler’s formula.
Hence, we need to show the equivalence of (ii) and (i), and
(iv) and (i). We find that (4) can be rewritten as

I (x) = κ

[ ∑n
1

βi(1+cos(2φi(x)))
2‖x−si‖2

∑n
i=1

βi sin(2φi(x))
2‖x−si‖2∑n

i=1
βi sin(2φi(x))

2‖x−si‖2
∑n

1
βi(1−cos(2φi(x)))

2‖x−si‖2

]
(6)

where βi = α2
i

σ2
i

, κ = 100
ln2(10)

and such that

det (I (x)) =
κ2

4

⎡⎣( n∑
i=1

βi

‖x− si‖2
)2

−

(
n∑

i=1

βi cos (2φi(x))
‖x− si‖2

)2

−
(

n∑
i=1

βi sin (2φi(x))
‖x− si‖2

)2
⎤⎦ (7)

which directly implies the equivalence of (ii) and (i). Now let
R−1/2

p = diag
(
σ−1

1 , . . . , σ−1
n

)
and G = R−1/2

p ∇xp(x) such
that I(x) = GTG. We then also have

det (I (x)) = κ2 det
(
GTG

)
= κ2

∑
k={1,...,(n

2)}
det (Gk)2

(8)
from the Cauchy-Binet formula [18] and Gk is a 2× 2 minor
of G taken from the set of minors indexed by S = {{i, j}}.
All 2× 2 minors of G can be given as

GS =

[
αi

σi‖x−si‖ cos(φi(x)) αi

σi‖x−si‖ sin(φi(x))
αj

σj‖x−sj‖ cos(φj(x)) αj

σj‖x−sj‖ sin(φj(x))

]
(9)

where S = {{i, j}} with |S| = (
n
2

)
can be considered the set

of all combinations of i and j with i > j. Now the equivalence
of (iv) and (i) follows with βi = α2

i

σ2
i

.
Any sensor-emitter configuration that solves the problems

in Theorem 1 is called an optimal sensor configuration and we
will phrase such configurations in terms of the angles ϑij =
ϑji ∈ [0, π]. The optimal configuration is not generally unique
given arbitrary sensor-emitter ranges.

Corollary 1: Reflecting a sensor about the emitter position,
i.e. moving a sensor from si to 2x−si, does not affect the value
of the Fisher information determinant.



Proof: Substituting 2x − si for si in (7) does not affect
‖x− si‖2 or the value of cos (2φi(x)) or sin (2φi(x)).

Importantly, Corollary 1 indicates that an optimal sensor-
target configuration can be formed with all sensors located
on a single half-plane with respect to the true target location.
Naturally, this result simplifies the design problem of optimal
sensor placement considerably in many cases, e.g. where
‘surrounding’ the transmitter with sensors is not feasible.

The optimization problems in Theorem 1 can be solved on-
the-fly in practice and they can be used to derive control laws
for mobile sensors (which typically use an estimated value x̂
of x). Given only an estimate x̂ of x, the subsequent results
on optimal sensor configurations can be used to (re-)arrange
sensors in a manner which can considerably improve recursive
localization performance. The given results can also indicate
how much performance gain will be obtained by moving
sensors along a specific trajectory (relative to x or x̂). A fun-
damental characterization can be used by an external observer
(or user/designer) to ascertain fundamental reasons for poor
localization performance in a straightforward and intuitive
manner. Subsequently, our focus is on explicitly analyzing
the relative geometry in order to analytically characterize the
actual optimal geometrical relationships.

III. THE OPTIMAL GEOMETRY WITH TWO SENSORS

When n = 2, the determinant (7) does not generally vanish.
However, a binary ambiguity generally exists in an estimate of
x. The next result completely characterizes the optimal sensor
configuration with n = 2 sensors3.

Proposition 1: Suppose that ‖x − si‖ and βi = α2
i

σ2
i

are
arbitrarily fixed ∀i ∈ {1, 2}. The determinant det (I(x)) is
maximized when ϑ12 = ϑ21 = π

2 and the maximum is
independent of ‖x− si‖ and βi.

Proof: Let γi = βi/‖x − si‖2 and with no loss of
generality let γ2 = cγ1 for some constant c > 0. Then from
Theorem 1 (ii) we want to find the minimum of

γ2
1

[
(sin(2φ1) + c sin(2φ2))

2 + (cos(2φ1) + c cos(2φ2))
2
]

= γ2
1 [1 + c + c cos (2φ1(x)− 2φ2(x))]

which occurs when cos (2φ1 − 2φ2) = −1. Thus, φ2 − φ1 =
kπ − π

2 for k ∈ N and the angle subtended at the emitter by
the sensors is ϑ12 = ϑ21 = (φ2 − φ1)mod(π) = π

2 .
In the remainder of this paper we assume n ≥ 3 since the

special case of n = 2 does not follow straightforwardly.

3Although the optimal configuration with n = 2 sensors is intuitively
expected, there does not appear to be a general proof in the literature for RSS-
based localization. For completeness, we use the framework given in Theorem
1 to derive the optimal angular configuration for localization with n = 2
sensors. We then move to the case where n ≥ 3 and analyze the optimal
angular configurations for localization. The case n ≥ 3 does not follow
directly, and cannot be easily intuited, from any existing literature on RSS-
based localization. As we will show, the idea that uniformly spacing sensors
around the target is optimal is generically incorrect and never necessary.

IV. RESULTS ON THE OPTIMAL RSS LOCALIZATION
GEOMETRY WITH N SENSORS

Firstly, we consider the special case where ‖x−si‖ = ‖x−
sj‖ and βi = βj are arbitrary ∀i, j ∈ {1, . . . , n ≥ 3}.

Theorem 2: Suppose that ‖x − si‖ = ‖x − sj‖ = r and
βi = βj = β are fixed (but arbitrary) ∀i, j ∈ {1, . . . , n ≥
3} and where βi = α2

i

σ2
i

. Then the determinant det (I(x)) has
an upper-bound of (κ2n2β2)/(4r4) and the determinant upper-
bound can be achieved for this special case if and only if

n∑
i=1

sin(2φi(x)) = 0 and
n∑

i=1

cos(2φi(x)) = 0 (10)

which gives the optimal solution to the problems in Theorem 1.
Proof: If ‖x − si‖ = ‖x − sj‖ = r and βi = βj = β is

fixed (but arbitrary) for all i, j ∈ {1, . . . , n} then clearly β2

r4

can be factored out of the determinant (7) which leads to the
upper-bound and the required condition.

Let us examine what the conditions given in Theorem 2
mean from a geometrical point of view. It is straightforward
to verify that ϑij = ϑji = 2π

n , ∀i, j with i − j = 1 is an
optimal configuration when ‖x − si‖ = ‖x − sj‖ = r and
βi = βj = β. This is not the only optimal sensor configuration.
From Corollary 1 we know that reflecting any sensor about
the emitter position does not effect the optimality. A notable
optimal special case is ϑij = ϑji = π

n , ∀i, j with j − i = 1.
Corollary 2: If ‖x− si‖ = ‖x− sj‖ = r and βi = βj = β

are fixed (but arbitrary) ∀i, j ∈ {1, . . . , n ≥ 3} then the mean-
squared-error is lower bounded with MSE ≥ (4r2)/(nκβ) and
this lower bound is achieved if and only if (10) is satisfied.

When ‖x − si‖ �= ‖x − sj‖ and βi �= βj are arbitrarily
fixed, the analysis is more involved; see [8], [9]. The next
two theorems provide a general basis for finding the optimal
localization geometries with n ≥ 3 sensors and arbitrary range,
path loss and noise variance values.

Theorem 3: Let φi, ∀i ∈ {1, . . . , n > 2} denote the angular
positions of the sensors. Let ri = ‖x−si‖ be arbitrary but fixed
for all i ∈ {1, . . . , n > 2}. The Fisher information determinant
given in Theorem 1 is upper-bounded by

κ2

4

(
n∑

i=1

βi

r2
i

)2

(11)

The upper-bound is achieved if and only if the conditions

n∑
i=1

βi cos (2φi)
r2
i

= 0 and
N∑

i=1

βi sin (2φi)
r2
i

= 0 (12)

are satisfied by some φi, ∀i ∈ {1, . . . , n > 2}. Furthermore,
values of φi, ∀i ∈ {1, 2, . . . , n > 2}, solving (12) can be found
if and only if the following condition

βj

r2
j

≤
n∑

i=1,i �=j

βi

r2
i

(13)

holds for all j ∈ {1, . . . , n > 2}.



Proof: Clearly, by equation (7), the upper bound is as
stated and satisfaction of (12) is necessary and sufficient for
the attainment of the upper bound. It remains to consider when
there exist φi, ∀i ∈ {1, 2, . . . , n}, allowing satisfaction of (12).
Equation (12) can be rewritten as

N∑
i=1

βi

r2
i

[
cos (2φi)
sin (2φi)

]
=
[

0
0

]
(14)

and suppose that the inequality condition (13) does not hold.
Then clearly, (14) has no solution since one term on the
left hand side will have a norm greater than the summed
norms of all the other vectors. Hence, the necessity of (13)
is established. The sufficiency of (13) is trivial to check.

The following corollary establishes the minimum MSE of
an unbiased estimator given that the optimal geometry is
characterized by the angular solutions to (12).

Corollary 3: If (13) holds and (12) is satisfied then the
mean-square-error of an unbiased estimator obeys MSE ≥
4/(κ

∑n
i=1(βi/r2

i )).
A question remains as to how the optimal geometry is

determined when (13) cannot be satisfied. The following
result characterizes the optimal geometry for bearing-only
localization when the key inequality condition (13) of Theorem
3 does not hold.

Theorem 4: Let φi, ∀i ∈ {1, . . . , n} denote the angular
positions of the sensors. Let ri = ‖x − si‖ be arbitrary but
fixed for all i ∈ {1, . . . , n > 2}. If

βj

r2
j

>

n∑
i=1

βi

r2
i

, i �= j (15)

holds for some j ∈ {1, . . . , n > 2}, then the determinant given
in Theorem 1 is upper-bounded by

κ2 βj

r2
j

n∑
i=1

βi

r2
i

, i �= j (16)

and the upper-bound is achieved under (15) if and only if

φj(p) = φi(p)± π

2
(17)

for all i ∈ {1, . . . , n}/{j}. This implies ϑji = ϑij = π
2 , for all

i ∈ {1, . . . , n}/{j} and ϑik = ϑki = cπ, where c ∈ {0, 1} for
all i, k ∈ {1, . . . , n}/{j}.

Proof: Firstly, the upper-bound will be derived via con-
struction for range values satisfying (15). Refer back to equa-
tion (14) and note that under the assumption that (15) holds,
the vector on the left hand side necessarily has a minimum
norm equal to the difference

βj

r2
j

−
n∑

i=1

βi

r2
i

, i �= j (18)

Putting this value (18) into the determinant (7) leads to

det (I (x)) =
κ2

4

⎡⎢⎣( n∑
i=1

βi

r2
i

)2

−
⎛⎝βj

r2
j

−
n∑

i=1, i �=j

βi

r2
i

⎞⎠2
⎤⎥⎦

(19)

for the same j and for all i ∈ {1, . . . , n}/{j}. Rearranging the
equation (19) leads to the upper-bound. Note that the upper-
bound under the condition (15) has been explicitly constructed
and it remains to show how this upper-bound can be achieved.

With no loss of generality, the condition (17) can be
subsumed by the special case where φj = π

2 for the same
j ∈ {1, . . . , n} in (18) and φi = 0, ∀i ∈ {1, . . . , n}/{j}. This
can be achieved by a global rotation of the coordinate system.
Now note that sin(2φj) = sin(2φi) = 0 and cos(2φj) = 1 and
cos(2φi) = −1 for those values of i and j specified previously.
Putting these terms into the determinant (7) given in Theorem
1 part (ii) leads directly to (19) and thus proves the sufficiency
of (17). The necessity of (17) follows easily when n > 2.

The following corollary establishes the minimum MSE of
an unbiased estimator given that the optimal geometry is
characterized by the anglular solutions to (17).

Corollary 4: If (15) holds and (17) is satisfied then the
mean-square-error of an unbiased estimator obeys MSE ≥
( r2

j

κβj

∑n
i=1

βi

r2
i
)/(
∑n

i=1, i �=j
βi

r2
i
).

If (15) is satisfied for some sensor j, then that sensor j
is much closer to the target relative to all the other sensors.
Moreover, that same sensor j should be placed at a right angle
to all other sensors, i.e the other sensors should be collinear.
Alternatively, when (13) in Theorem 3 holds, then the condi-
tion (12) leads to the optimal sensor configuration. However,
finding values of φi, ∀i ∈ {1, 2, . . . , n}, that solve (12) is not
straightforward, in general, for an arbitrary number of sensors
n and for fixed but arbitrary ranges ri ∀i ∈ {1, 2, . . . , n}.

The next result provides a powerful tool with which to build
optimal sensor configurations using flexible positioning rules.

Corollary 5: Consider n ≥ 4 sensors tasked at localizing a
single target and assume that ri = ‖x−si‖ is arbitrary but fixed,
∀i ∈ {1, . . . , n ≥ 4}. Denote the set of n ≥ 4 sensors by V and
assume further that (13) is satisfied for the entire set of sensors
i ∈ V . Now assume that V can be split into some arbitrary
number m of subsets Bi such that Bi ∩ Bj = ∅ and |Bi| ≥ 2,
∀i, j ∈ {1, . . . , m} with i �= j. Moreover, assume the condition
(13) is satisfied by the subset group of range values for the
sensors in Bi. Then, an optimal m sensor configuration can be
obtained by placing all subsets of sensors Bi, ∀i ∈ {1, . . . , m}
in optimal angular positions as specified by (12) in Theorem 3.

If Corollary 5 can be employed, then an infinite number of
sensor configurations can be obtained by rotating any sensor
subset Bi relative to (and independent of) any other sensor
subset Bj with i �= j. Hence, for n ≥ 4 bearing-only
sensors there can exist an infinite number of optimal sensor
configurations. Note that Corollary 5 is thus a powerful tool
when it comes to the problem of optimal sensor placement.
Again, we highlight that an equi-angular spacing is almost
never optimal and is in fact never necessary for optimality.
Moreover, an optimal configuration can always be found with
all sensors positioned on a common half-plane.

We also note the striking similarity between the optimal
geometry for RSS-based and bearing-only localization; e.g.
see [8]. We will now completely and rigorously examine the
practically important case involving n = 3 sensors.



V. COMPLETE STUDY WITH THREE SENSORS

The RSS-based localization problem with three sensors is
not arbitrary since a minimum of three sensors is required
to uniquely localize the emitter. It is practically reasonable
to assume only three sensors will cooperate in localizing
individual emitters in modern wireless networks [2], [3], [6].

The following contribution completely characterizes the
geometry for RSS-based localization with three sensors.

Theorem 5: Let γi = βi/‖x − si‖2 and γij = γiγj > 0
be arbitrary but fixed ∀i ∈ {1, 2, 3}. The optimal sensor
configuration is not unique. Every optimal angular separation
ϑ12, ϑ13 and ϑ23 can be obtained by first solving

ϑ12 =
1
2

arccos
(

γ2
13γ

2
23 − γ2

12γ
2
23 − γ2

12γ
2
13

2γ2
12γ13γ23

)
ϑ13 =

1
2

arccos
(

γ2
12γ

2
23 − γ2

12γ
2
13 − γ2

13γ
2
23

2γ12γ2
13γ23

)
ϑ23 = π − ϑ12 − ϑ13

when the arccos(·) are real (which occurs simultaneously for
ϑ12 and ϑ13) and then by an application of Corollary 1 (giving
the first optimal solution set). If no real solution for both ϑ12

and ϑ13 exists then det (I(x)) is maximized when{
ϑij = π

2 , if γij > γkl, ∀kl ∈ {12, 13, 23}/{ij}
ϑij = 0 or π, otherwise

where now (in the second solution set) we have automatically
accounted for sensor reflections as per Corollary 1.

Proof: From Theorem 1 part (iv) we can derive the
following optimization problem

argmax
A,B

γ12 sin2(A) + γ13 sin2(B) + γ23 sin2(B −A) (20)

where A = (φ2 − φ1), B = (φ3 − φ1) and γij = γiγj > 0
are arbitrary constants with γi = βi/‖x − si‖2. Taking the
gradient with respect to A and B and rearranging leads to

γ12 sin(2A) + γ13 sin(2B) = 0 (21)

sin(2A)
[
γ12

γ23
+

γ12

γ13
cos(2A) + cos(2B)

]
= 0 (22)

sin(2B)
[
γ13

γ23
+

γ13

γ12
cos(2B) + cos(2A)

]
= 0 (23)

From (21) we note that if sin(2A) = 0 then sin(2B) = 0
or if sin(2A) �= 0 then sin(2B) �= 0. Thus, sin(2A) = 0 and
sin(2B) = 0 implies A = cAπ

2 and B = cBπ
2 with cA, cB ∈ N.

Also, if sin(2A) �= 0 �= sin(2B) then (22) and (23) lead to

A =
1
2

arccos
(

γ2
13γ

2
23 − γ2

12γ
2
23 − γ2

12γ
2
13

2γ2
12γ13γ23

)
(24)

B =
1
2

arccos
(

γ2
12γ

2
23 − γ2

12γ
2
13 − γ2

13γ
2
23

2γ12γ2
13γ23

)
(25)

where the arccos(·) are simultaneously real. We now have
two mutually exclusive sets of critical points corresponding
to sin(2A) = sin(2B) = 0 and sin(2A) �= 0 �= sin(2B)
respectively. If A = cAπ

2 and B = cBπ
2 then cos(2A) = ±1

and cos(2B) = ±1 which lie on the boundary of where (24)

and (25) are real. The maximizing values for A and B in
(20) must change continuously for continuous changes in γij .
Thus, if A = cAπ

2 and B = cBπ
2 solve (20) then they do so

for all γij or they do so only when no real solutions exist via
(24) and (25). Now it can be verified that if γ12 = γ13 = γ23

then both (24) and (25) give real solutions for A and B which
lead to a greater value of (20) when compared to A = cAπ

2
and B = cBπ

2 . Hence, it follows that (24) and (25) maximize
(20) when the solutions are real. Otherwise, the maximizing
solutions of (20) are A = cAπ

2 and B = cBπ
2 with cA, cB ∈ N.

It is easy to find the relationship between the ϑij and A and
B when (24) and (25) give real solutions. When A = cAπ

2 and
B = cBπ

2 maximize (20), then one of the sin2(·) terms in (20)
must be zero while the other two sin2(·) terms are one. In this
case if γij < γkl for some i, j ∈ {1, 2, 3} and ∀k, l ∈ {1, 2, 3}
with ij �= kl then the γij sin2(·) term in (20) should be zero
in order to solve the problem (20) and the ϑij follow.

We have completely characterized the sensor-emitter geom-
etry with n = 3 sensors for RSS-based localization. Note the
solutions given when the arccos(·) terms in Theorem 5 are
real correspond to the solutions of (12) given in Theorem 3.
Now, the second solution set in Theorem 5 are valid if and
only if (15) in Theorem 4 holds. That is, the two solution
sets in Theorem 5 are the exactly derived solutions to the two
general condition sets outlined in Theorems 3 and 4 in the
general n sensor case.

Corollary 6: Assume γi = βi/‖x − si‖2 is fixed such that
the arccos(·) terms in Theorem 5 are real. The mean-squared-
error is lower bounded with MSE ≥ 4/(κ(γ1 + γ2 + γ3)) and
this lower bound is achieved if and only if the angles ϑij are
given by the first solution set in Theorem 5.

Corollary 7: Assume γi = βi/‖x− si‖2 are fixed such that
no real solution of the arccos(·) terms in Theorem 5 exist. Then
γi > γj + γk for some i �= j, k. The mean-squared-error is
lower bounded with MSE ≥ (γi + γj + γk)/(κγi(γj + γk))
and this lower bound is achieved if and only if the angles ϑij

are given by the second solution set in Theorem 5.
Now let βi = 1 and γi = 1/‖x− si‖. Then the conditions

in Theorem 5 are in terms of the relative sensor-emitter ranges
ri = ‖x− si‖. Consider now the illustration in Fig. 2.

Fig. 2 shows the variation of the optimal geometry as r1

changes from one extreme r1 << r2 = r3 to the other r1 >>
r2 = r3 with βi = βj = 1. The particular ranges and ϑij (in
degrees) are given in the figure titles. In Fig. 2(a), the ranges
are such that both arccos(·) functions in Theorem 5 are not
real and thus the optimal geometry (shown) is such that sensor
1 forms right angles with sensors 2 and 3. At the other extreme
in Fig. 2(d), the ranges are such that r1 >> r2 = r3 and
thus sensor 2 and 3 are (almost) at right angles with sensor 1
splitting the difference between them. Indeed, from Theorem
5 we see that as r1 → ∞ then ϑ23 → π

2 . Sensor reflections
over the emitter do not change the optimality of the geometry.
Importantly, if the sensor-target ranges are not equivalent, then
placing the sensors with an equi-angular spacing around the
target is never optimal. Actually, this form of spacing is never
necessary for optimality in any case.
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Fig. 2. This figure illustrates the different optimal sensor-target geometries
for different ranges ri from sensor i to the emitter. We have assumed βi =
βj = 1, ∀i, j ∈ {1, 2, 3}. In this illustration, only r1 changes and the
ranges and ϑij (in degrees) are given in the figure titles. In part (a) the range
r1 << r2 = r3 means that both arccos(·) functions in Theorem 5 are not
real and hence the optimal sensor geometry (shown) is when ϑ12 = ϑ13 = π

2
and ϑ23 = π (or ϑ23 = 0 is equivalently valid but not shown). In part (b)
the ranges are r1 < r2 = r3 and both arccos(·) functions in Theorem 5 are
real and hence the optimal geometry (shown) is not a right angle geometry
but rather ϑ12 and ϑ13 are given by the arccos(·) functions and ϑ23 follows
immediately. In part (c) we see that when r1 = r2 = r3 the optimal sensor
geometry (shown) is equally spaced around the emitter. In part (d) we want
to illustrate that as r1 >> r2 = r3 the angle ϑ23 approaches π

2
as r1

approaches ∞. Indeed, when r1 >> r2 = r3, part (d) illustrates that we
can easily approximate the optimal geometry as such. Recall from Corollary
1 that sensor reflections over the emitter do not change the optimality of the
geometry and hence this figure illustrates only the most intuitive examples.

VI. DISCUSSION

We have provided a rigorous theoretical analysis of the
sensor-target geometry which indicates that commonly held
assumptions are not generally valid. There are obvious practi-
cal advantages in developing a deep theoretical understanding
of the sensor-target geometry and its affect on localization
performance. The results in this paper can be used to better
place sensors given approximate knowledge of the targets
region of location. Indeed, knowledge of the targets region
of location is often available as a function of the commonly
known sensor range and field-of-view.

Interestingly, the MSE (or RMSE) lower bound decreases
with an increase in the path loss exponent (given a fixed
geometry of course) [3].

VII. CONCLUSION

In this paper we explored the optimality of the relative
sensor-emitter geometry for signal strength based localization.
We completely characterized the geometry for n = 2 and
importantly for n = 3 sensors. Moreover, we provided a

number of explicit, and powerful, results that can be used
to optimally arrange an arbitrary number n of sensors given
arbitrary system parameters. No existing work in the literature
has analyzed the optimal geometry for RSS-based localization.
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