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Abstract

In this paper we characterize the relative sensor-target geom-
etry in R? in terms of potential localization performance for
time-of-arrival based localization. Our aim is to characterize
those relative sensor-target geometries which minimize the
relative Cramer-Rao lower bound.

1. INTRODUCTION

Currently the two most common passive measurement tech-
nologies available for localization and tracking are bear-
ing measurements [1], [2] and time-of-arrival measurements
[3] (or range-difference measurements). The received signal
strength (RSS) also permits passive localization of an emitter
whose transmission power is known. However, in this paper
we focus on range-difference based localization systems in R
This is part 2 of a pair of papers dealing with geometric char-
acterizations of potential passive localization accuracy. Part
1 [4] deals with bearing-based localization and the reader is
referred to [4] for a general introduction and related materials
and references.

The primary motivation for studying the relative sensor-
target geometry arises from the realization that the relative
geometry has a significant effect on the performance of
localization estimators. The performance bounds, e.g. variance
lower bounds etc., placed on a localization algorithm are inher-
ently derived in terms of the relative sensor-target geometry.
Indeed, in this paper we examine such accuracy lower-bounds
and explicitly optimize the geometry such that we can achieve
the smallest error bounds possible (under some given estimator
assumptions). This involves solving an optimization problem
for the relative sensor positioning requirements that permit
the smallest variance bound. We provide a rigorous analysis
of the time-of-arrival (or time-difference) based localization
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problem and we provide a necessary and sufficient condition
for optimal sensor placement. We also show that an equi-
angular arrangement of the sensors around a single target is an
optimal configuration of sensors regardless of the individual
sensor-target ranges.

The remainder of the paper is organized as follows. In
Section 2 we outline some notation and conventions and de-
fine the time-of-arrival (and related time-difference-of-arrival)
based localization problem. In Section 3 we introduce the
Cramer-Rao inequality and the related Fisher information
matrix. Moreover, in Section 3 we discuss the Fisher in-
formation matrix relationship to geometric characterizations
for localization and we derive the Fisher information matrix
and determinant for time-of-arrival based localization with an
arbitrary number of sensors. In Section 4 we characterize
the localization geometry in detail and provide a number
of illustrative examples. In Section 5 we provide a useful
discussion on the practicality of these results and in Section
6 we give our conclusion.

2. NOTATION AND RELATED CONVENTIONS

We consider a single stationary target and multiple sensors all
located in R2. The single target’s location is given by p =
[z, yp]T. Consider a number of sensors labeled 1,..., N > 2
with the location of the 7' sensor given by s; = [x4; ysi]. Let
the range between the i*" sensor s; and the target p be given
by r; = ||p—s;||. For simplicity we denote the angle subtended
at the target by two sensors ¢ and j by ¥;; = ¥j; € [0, 7).

A. On Time-of-Arrival and Time-Difference-of-Arrival

Consider a target emitter located p = [z, y,]7 € R? which
transmits a signal at a specific time 7. Let the location of
the event characterized by p and 7 be denoted by x =
[z, yp T]T € R®. Suppose that each sensor can measure the
time of arrival of the transmitted signal at the sensor. This
time of arrival is denoted by ¢;. Then ¢; obeys the following
relationship:

ti(x):”picsiu—i-ﬂ Vie{l,...,N} (1)
where c is the signal propagation speed. We normalize such
that ¢ = 1. Generally the measurement is assumed to be
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noisy, so that #; = t;(x) + e; where #;(x) is the true time of
signal arrival and e; is the measurement error. The errors e;,
Vi € {1,..., N} are assumed to be mutually independent and
Gaussian distributed with zero mean and the same variance
o?. Stacking the measurements from N sensors results in the
the following measurement vector

V) =yx)+e=[t1 ... ta] +e1 ... en]” ()

where now we assume that y(x) ~ AN(y(x),R;) where
R; = 071 is the covariance of y. The problem of estimating
p from the given noisy measurements y is known as the time-
of-arrival localization problem. The time-of-arrival localization
problem also results in an estimate of the time of signal trans-
mission 7 (although this parameter is not always required).
An alternative approach to estimate the location p from

the given timing measurements ;(x) = t;(x) + e;, Vi €
{1,..., N} involves taking the time differences. The true time-

difference d;; = (t; —t;)c between sensor ¢ and j where ¢ # j
results in the following range-difference equations

dij(p) = lp —s;ll = [p —sill, Vi,je{l,....N}

with ¢ = 1. Note that there are only (N — 1) independent
range-difference equations that can actually be formed. In
this formulation we have eliminated the unknown 7. Without
loss of generality we only consider range-difference equations
between sensor 1 and sensor . If we take the time difference
t; — 11 then we obtain the following range-difference measure-
ments

~

dy; = dyi(p) + €1, Vi€ {2,...,N}

where €;_; is the range-difference measurement error. Writing

the range difference equations in vector form gives
a = d(p) + €= [dlg dlg I le]T + [61 € ... GN_l]T

Note that the covariance matrix of € is now given by

1 1
L3 3
2 i '
Rd:20't 2
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so that d ~ A(d(p),Ry). The problem of estimating p
from the given noisy measurements d is known as the
time-difference-of-arrival localization problem (or the range-
difference based localization problem).

Clearly the information available for solving the two local-
ization problems is equivalent, and generally both require at
least four sensors in order to uniquely solve for an estimate of
p. The time-difference (or range-difference) based localization
problem is more common in the literature. The time-of-arrival
localization problem explicitly yields an estimate of the time
of signal transmission 7 and the simultaneous estimation of
p and 7 is commonly known as event localization. We point
out that the time-difference based localization problem can
indirectly yield a similar estimate of 7 if desired.

In this paper we want to explicitly characterize the geometri-
cal relationships between the sensors and the target in terms of
the lower bounds on the potential localization accuracy. Since
both the time-of-arrival and the time-difference-of-arrival (or
range-difference) localization problems are in essence equiv-
alent (albeit different algorithms of varying quality can be
designed separately for the two problem formulations) we can
choose which formulation yields the simplest analysis with the
geometrical results being equally applicable to both problems.
In this paper we use the time-of-arrival based formulation due
to its simplicity of formulation.

B. Comment on Relative Geometric Configurations

Without loss of generality we will always restrict the sensor
indexing such that the true bearings obey ¢; > ¢; when j >
i and Vi,j € {1,...,N}. Each bearing is modeled by the
following equation

¢;(p) = arctan2 (z, — Tsi, Yp — Ysi) 3)

where the arctan2 function is defined such that ¢;(p) €
[0,27) (note that arctan2 is related to the standard arctan
function and is common in many computer programming
languages). In the subsequent sections we explore the optimal
geometric configurations of a number of sensors relative to
a single target in terms of the angular relationships between
the target and the sensors. Requiring ¢; > ¢; when j > 14
and Vi,j € {1,..., N} will greatly simplify the subsequent
presentation with no loss of generality resulting.

3. THE CRAMER-RAO INEQUALITY AND FISHER
INFORMATION FOR RANGE-DIFFERENCE BASED
LOCALIZATION IN R?2

In this section we give the Cramer-Rao bound for the time-of-
arrival localization problem in R2. Considering an unbiased
estimate X of x = [z, y, 7]7 € R?® the Cramer-Rao bound
states that

B[E-x)&-x)"]>T7(x) 2 C(x) “

where Z(x) is the Fisher information matrix. In general, if
Z(x) is singular then no unbiased estimator for x exists with
a finite variance [5], [6]. If Z(x) is nonsingular then the
existence of an unbiased estimator of x with finite variance
is theoretically possible. If (4) holds with equality then the
estimator is called efficient and the parameter estimate X is
unique [6]. Finally, the condition (4) says nothing about the
performance and realizability of biased estimators.

Consider the set of independent measurements from N
sensors given by ¥ = y(x) + e with each time-of-arrival
measurement modeled as in (1). The observable measurements
obey ¥ ~ N(y(x),R;) where R; is defined by o?I. The
Fisher information matrix in this case quantifies the amount
of information that the observable random vector y carries
about the unobservable parameter p. It is a matrix with the
(i,7)" element given by

0

o (J5(5:3) o (5 (%)

(I (X))i,j =K 9%, X,



where x; is the it element of the event location vector x,

e.g. X1 = 2, and Xo = y,, and x3 = 7. Here fy(y;x) is the
likelihood function of x given fixed measurements y and the
natural logarithm of f5(¥;x) is given by
~ 1. RN
I (f5(¥:%)) = 5 (7 = y(x) 'R (¥ —y(x)) + ¢
where c is a constant independent of x. Following a simple
calculation we can determine that

I T

for i,j € {1,2} and x1 = x,, X2 = ¥y, and x3 = 7. Thus, the
entire Fisher information matrix is simply given by

Z(x) = Vxy(x) Ry 'V (x) )
where Vyy(x) is the Jacobian
sin(¢1) cos(¢r) 1
Vxy(x) = : : : (6)

sin(.qu) cos(.ngN) 1

where again ¢; is defined as in (3). When one sensor measures
the time-of-arrival ¢t; = ¢1 + ey then the Fisher information
matrix is given by

1 sin®(¢1) sin(¢1) cos(¢1)  sin(¢1)
I(x)= Pl sin(¢1) cos(¢1) cos®(1) cos(¢1)
t sin(¢1) cos(¢1) 1

Clearly det(Z(x)) = 0 is identically satisfied for any x.
Hence, no unbiased estimator with finite variance exists for
the location p or 7 when N = 1. The variance of the
sum of independent random variables is equal to the sum
of the variances. This immediately implies that the general
Fisher information matrix for N time-of-arrival measurements
is simply given by

1N sin?(¢;) SIH(TMZ) sin(¢;)
T(x)= o Z S“‘(Tw) cos?(¢;) cos(e;) (N
bi=1] sin(¢;)  cos(¢y) 1

where i indexes the timing measurement from the i*" sensor.

Independent measurements from additional sensors in general
positions cannot decrease the total information. It is straight-
forward to show that when N = 2 the determinant det(Z(x))
vanishes for all x. Hence, no unbiased estimator with finite
variance exists for the location p or 7 when N = 2. In general
we need at least N > 3 sensors in order to estimate the value
of x and due to the nonlinearity in the equations for ¢; we
generally require N > 3 sensors for the estimate of x to be
uniquely defined (i.e. no ambiguity in the solution for x).

Note that det (Z(x)) is inversely proportional to the un-
certainty volume of an unbiased estimate of x [6]. We use
det (Z(x)) to analyze the sensor-emitter geometry and estab-
lish which sensor configurations minimize the variance (or
mean-square-error) achievable by an efficient estimator.

In this paper we are not constructing estimators but rather
characterizing the effect of the localization geometry on the

performance of a generic unbiased and efficient estimator. In
practice this analysis can only serve as a guide for sensor
placement with biased estimation algorithms. Indeed, the
relationship between the analysis conducted in this paper
(assuming efficient unbiased estimators) and its applicability
for biased estimators is yet to be completely understood.
However, the goal of many localization algorithms, e.g. see
[1], [2], is to obtain unbiased estimates (despite the fact that
biased estimators have the ability to outperform the Cramer-
Rao bound in terms of the mean square error achieved).
Indeed, many localization algorithms attempt to remove the
bias via additional processing [2]. Hence, the results obtained
in this paper are still of practical significance. We also discuss
the practicality of these results further in Section 5.

Maximizing the determinant is equivalent to minimizing
the uncertainty volume in an unbiased and efficient estimate
of the parameter x. Hence we want to find the form of the
determinant of (7). Clearly (7) can be written as

1| Do) X Rsin()
T(x :F gnised) %-{-LSQ ) S cos(¢i)

! > sin(¢:) 2 cos(¢i) N
where the sum Y is taken over the index ¢ = {1,..., N}, ie.

S° = 32N . Taking the determinant of the 3 x 3 matrix and
rearranging yields

det (Z(x)) = 2 |3 = & (3 cos(26.)°
~ 3 (3 cos(@:)* + (Lsin(6:))°)
— 2o sin(26;) (4 Xsin(26;) — X cos(¢i) X sin(¢))
— 3" cos(2¢;) <(Z sin(¢:))” — (2 Cos(d)i))Qﬂ ®

In the next section we characterize those sensor placements
which maximize the determinant and minimize the bound on
the variance (or mean-square-error) of an unbiased estimator.

4. THE GEOMETRY OF TIME-OF-ARRIVAL BASED
LOCALIZATION

In this section we consider the relative sensor-target geometry
for the problem of time-of-arrival based localization.

A. On the Optimal Localization Geometry for N Sensors

In this subsection we examine the optimal relative sensor-
target geometry for time-of-arrival based localization with an
arbitrary number N > 3 of sensors. An unbiased and efficient
estimate of x (or more likely p) will achieve the smallest
mean-square-error (or variance) when the sensor-target geom-
etry obeys the configuration derived in this subsection. The
following is the main result of this paper.

Theorem 1: The Fisher information determinant (8) is
upper-bounded by % which is achieved if and only if

i sin(9i(x) =0 and SF sin(26:(x)) =0 o
Zi]i1 cos(¢;(x)) =0 and Zivzl cos(2¢;(x)) =0

are simultaneously satisfied with N > 3.
In order to prove Theorem 1 we need the following lemma.



Lemma 1: Let o, 3 and ~ be three quantities bounded in
magnitude by N. Then afy < Fa? + 552 + J42 unless
a=p=v=0.

Proof: We provide the following constructive proof:

1 1 1
afy = 1045’7 + iaﬁ’}’ + 50457

N N N
< - _
Llag] + ol + 5167
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N o
1 2
Notice that the last inequality is strict unless 3 = v = 0. Then
afy < %oﬁ unless a = 0. ]
Now we proceed to prove Theorem 1.
~ Proof: [of Theorem 1] The determinant upper-bound of
% can be verified by showing that for all N > 3 and ¢,,

T (X cos(26:)” + 5 (X cos(:)? + 5 (X sin(¢i))”
+4 (T sin(2¢4))” + § 3 cos(2¢:) (X sin(44))?
> >osin(2¢;) 3 cos(¢) 3 sin(¢;)
+4 > cos(26;) (X cos(¢;))?

holds. To do this we firstly point out that

g (Z cos(qﬁi))Q > %ZCOS@@) (Z COS(@))Q

holds for all ¢; since Y cos(2¢;) < N. Moreover, it is
straightforward to show that

5 (X cos()” + 5 (Xsin(¢:)” + § (X sin(26,))°
> > sin(2¢;) > cos(d;) Y sin(e;)

using Lemma 1 with o = > sin(2¢;), 8 = >_sin(¢;) and
v = > cos(¢;). Therefore we conclude the upper-bound of
the determinant (8) is given by % and that the upper-bound
is achieved if and only if the conditions (9) are satisfied. H
The bearing values which satisfy the conditions (9) given
in Theorem 1 lead directly to the required sensor-target an-
gular relationships which minimize the Cramer-Rao bound.
Such sensor configurations are referred to as optimal sensor
configurations. Later in the paper we discuss the practicality of
assuming unbiased and efficient localization. In the following
proposition we provide an intuitively appealing example of a
sensor configuration which minimizes the Cramer-Rao bound.
Proposition 1: One particular optimal (in the mean-square-
error sense) sensor-target configuration for unbiased and effi-
cient estimation of the target location p (or more generally the
event location x) occurs when N > 3 and
2
191‘]‘ = 19]'1‘ = Nﬂ'
foralli,j € {1,...,N > 3} with j — i = 1 and where 9,;; =
¥;; € [0,m) with j — ¢ = 1 is the angle subtended at the target
by the two adjacent sensors ¢ and j.

(10)

Proof: We need to relate the conditions given in Theorem
1 to the angles 9;; = ¥;; € [0, ) and the condition (10) given
in the proposition. With no loss of generality let ¢; = 0 and
¢; > ¢; when j > ¢ such that the condition (10) of Proposition
1 implies ¢; = 27 + ¢; for all j € {2,...,N} where
j—i=1.Nowif N is odd and M = (N+1)/2 then sin(¢y) =
—sin(¢;) where k € {2,...,M}andl € {M+1,...,N} and
Z?LQ cos(¢;(x)) = —1 which implies vazl sin(¢;(x)) = 0
and Zf\il cos(¢i(x)) = 0. If N is even and M = N/2 then
sin(¢r) = —sin(¢;) and cos(¢pg) = — cos(¢;) where k €
{1,...,M}andl € {M +1,..., N} which similarly implies
Ziil sin(¢;(x)) = 0 and Zszl cos(¢;(x)) = 0. Similar
reasoning will show that ¢; = 27 +¢; forall j € {2,..., N}
satisfies Zf\;l sin(2¢;(x)) = 0 and Zi]ilcos(Q@(x)) = 0.
Therefore, we have proved the sufficiency of the condition
given in the proposition. [ ]

Note that the optimal geometry conceptually requires all of
the sensors to have equi-angular spacing around the target and
is independent of the sensor-target ranges.

Note that the condition (10) of an equi-angular sensor
configuration surrounding the target is an intuitively pleasing
optimal configuration which minimizes the Cramer-Rao lower
bound. However, it is not unique and for N > 5 there
exists multiple optimal sensor configurations which satisfy the
required conditions (9) given in Theorem 1.

One would also expect that if the variance of the noise
associated with the measurement of ¢; was dependent on i,
being perhaps a function of the sensor-target range then the
optimal sensor placement would be dependent on the ranges,
e.g. see part 1 [4]. In the remainder of this section we examine
some illustrative examples.

B. On the Geometry for Three Sensors and One Target

In this section we examine the practically important case
involving N = 3 sensors and we graphically illustrate
Proposition 1. With NV = 3 sensors and three time-of-arrival
measurements (or two time-difference measurements) it is
possible that an ambiguity in the estimate of the target location
p exists since two hyperbola branches can intersect in more
than one location. In the case of a localization ambiguity it
might still be possible to localize given additional (a priori)
knowledge of a region containing the target’s position. In any
case, here we are primarily concerned with characterizing the
sensor placement for the N = 3 sensors which results in the
minimization of the Cramer-Rao bound.

From Proposition 1 we know that the optimal geometry is
obtained when the three sensors uniformly surround the target
and is invariant to the target ranges r;, Vi € {1,2,3}. An
example of the optimal sensor geometry for time-of-arrival
based localization with three sensors is given in Figure 1.

From Figure 1 we observe an arbitrary optimal placement
of N = 3 sensors around a single target. Note that the angle of
separation between adjacent sensors is equal for all adjacent
sensor pairs and the sensor placement is independent of the
sensor-target ranges.
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Fig. 1: An example of optimal geometric sensor placements for time-
of-arrival based localization with three sensors. The particular target
ranges and the angles ¥;; = ¥;; € [0, 7) subtended at the target by the
two sensors ¢ and j (in degrees) are given in the figure title.

In order to evaluate the localization geometry in general
scenarios we can explore a number of graphical examples.
Firstly, we plot the value of the determinant with o7 = 1
directly over the possible values of A, B € [0,27) where A =

d3(p) — ¢1(p) and B = ¢o(p) — ¢1(p). The surface and
contour plots are given in Figure 2.

(sin(A)-sin(B)-sin(A-B)*

(sin(A)-sin(B)-sin(A-B)}*

Fig. 2: The value of the Fisher information determinant for three sensors
measuring the time-of-signal-arrival.

We can observe in Figure 2 that for the bearing differences
A, B € [0, 2m), the value of the determinant is maximum when
A= %7‘( and B = %77 or when A = %w and B = %71 When
@3 > @2 > ¢ as assumed then the only maximum consistent
with the restriction is A = 47 and B = 2.

Now consider an where the sensors are arranged to form a
unit equilateral triangle. Let the sensor coordinates be given
by s; = [~1/2 0], sy = [1/2 0]” and s3 = [0 v/3/2]". We
then plot the surface of the determinant for target coordinates
obeying x, € [—1,1] and y, € [—1/2,1]. The determinant
surface is given in Figure 3 along with the contour plot.
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Fig. 3: The value of the Fisher information determinant for three sensors
arranged in an equilateral triangle measuring the time-of-signal-arrival.

From Figure 3 we see the determinant is maximized when
the target is at the center of the triangle. Indeed, if the target is
anywhere within the triangle, then the geometry is well-suited
to obtaining a bound suggesting the possibility of accurate
localization and conversely if the target moves outside the
triangle then this accuracy depreciates.

C. On the Geometry for Four Sensors and One Target

In this subsection we explore, via illustration, the geometric
characteristics with N = 4 sensors and one target. Firstly, we
will plot the contours of the Fisher information determinant

2 3 :
for fixed values ¢; = 0 and ¢o .E {1—”2, %_’ 5,5, 5+ with
¢3, 04 € [0,27). The plots are given in Figure 4.

6,=0and p,7w/12

0,20and 6,716

Fig. 4: The contours of the Fisher information determinant for four sensors
and various ¢; values.

From Figure 4 we can observe the optimal geometries in
terms of ¢3, ¢4 € [0,27) for the given fixed values of ¢; =0
and ¢ € {5, 5,5, %, m 37} The optimal geometry occurs
when ¢1 = 0, ¢ = 3, ¢3 = 7 and ¢4 = 37” as expected.
That is, when the sensors are equally spaced around the target
(regardless of the target ranges).

Now consider an arrangement of four sensors such that s; =
[—1/2 1/2]T, so = [1/2 1/2]T, s3 = [1/2 — 1/2]T and
sy = [-1/2 —1/2]T. The sensors are arranged to form a unit
square centered at the origin. We plot the value of the Fisher
information determinant for target coordinates obeying x, €
[—5/4,5/4] and y,, € [-5/4,5/4]. The determinant surface is
given in Figure 5 along with the associated contour plot.
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Fig. 5: The value of the Fisher information determinant for four sensors
arranged in a unit square measuring the time-of-signal-arrival.

From Figure 5 we note that the optimal geometry is clearly
achieved when the target is located at the origin (or at the
center of the unit square) as expected.

5. DISCUSSION

The results in this paper assume an unbiased and efficient
estimator is used to estimate the target location. However, the
estimation technique used in practice is likely to be biased [1],
[2]. For example, even the well-known maximum likelihood
localization techniques are only asymptotically unbiased and
efficient, i.e. require the number of sensors to approach infinity.
However, many localization algorithms are actually designed
with unbiasedness in mind and with a goal of achieving the
Cramer-Rao lower bound [7]. The Cramer-Rao bound for
unbiased estimators (i.e. used in this paper) is therefore an
interesting benchmark with which intuitively pleasing results
on sensor placement have been derived. However, these results
can only be considered a guide for practical sensor placement
with an accuracy dependent on the bias and efficiency char-
acteristics of the particular estimator employed.

It is well known that the variance (or mean-square-error)
of an estimate can actually be made smaller at the expense
of increasing the bias [8]. The work of [9], [10] explores the
concept of bias-variance trade offs in estimation. In [6], [10]
a biased Cramer-Rao inequality and in [9], [10] a uniform
Cramer-Rao inequality are developed and can be used to

study this so-called bias-variance trade off. In practice, we
are often limited by the choice of estimation algorithm with
the maximum likelihood algorithm being statistically optimal
and asymptotically unbiased and efficient. Given a specific
estimator (or possibly a class of estimator) then the results
of [6], [9], [10], [8] can be used to extend the results given
here to practical estimation algorithms such as maximum
likelihood. Moreover, the results of [8] might potentially be
useful in designing localization algorithms and relative sensor
placements schemes which permit estimation with a variance
below the unbiased Cramer-Rao bound. These problems are
yet to be rigorously addressed within the localization literature.

Finally, we remark that in this paper we considered only the
single-target scenario. However, the concepts proposed can be
extended to multiple-target localization. In general, an optimal
sensor placement scheme for multiple target localization will
result in a sub-optimal placement in terms of each individual
target (or all but one of the targets).

6. CONCLUSION

We have given a direct and rigorous characterization of the
relative sensor-target geometry for time-of-arrival based lo-
calization in terms of the potential localization performance
of unbiased and efficient estimators. We have shown that an
equi-angular surrounding of the target by an arbitrary number
of sensors is an optimal sensor placement. However, this
sensor configuration is not unique and we provide a necessary
and sufficient condition on the sensor-target bearings for a
particular sensor configuration to minimize the Cramer-Rao
bound. Any sensor configuration which minimizes the Cramer-
Rao bound is independent of the sensor-target ranges.
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