Plan Reordering and Parallel Execution – A Parameterized Complexity View

Meysam Aghighi and Christer Bäckström

Linköping University, Linköping, Sweden email: {meysam.aghighi,christer.backstrom}@liu.se

Introduction

We study the optimization problems for *partialorder* and *parallel* plans previously analyzed by Bäckström (JAIR-1998), but applying *parameterized complexity*.

- Analysis of *reordering* and *deordering* of a partial-order plan.
- Consider *parallel-length* of a partial-order plan, and use it as a criterion for plan optimization.

Least-constrained Plans

- REORDERING

- For any two partial-order plans $P = \langle A, \prec \rangle$ and $Q = \langle A, \prec' \rangle$, and a PPI Π , Q is a *reordering* of P wrt. Π if and only if both P and Q are Π -valid.
- A special case of reordering where $\prec' \subseteq \prec$, is called *deordering*.

Reordering Parallel Plans – Results

Summary of the results for different parameter combinations appear in the following table:

Planning Framework Partial-Order Plan

- A *planning problem instance* (PPI) П, contains *operator* specifications.
- A partial-order plan for Π is $P = \langle A, \prec \rangle$
- -A is a set of operator occurrences (or actions)
- $\neg \prec$ is an order on $A, a \prec b$ means action a has to be executed before action b.
- A partial-order plan P is П-valid if every topological sorting of it is a solution for П.
 PARALLEL PLAN
- A tuple $P = \langle A, \prec, \# \rangle$ where
- $-\langle A, \prec \rangle$ is a partial-order plan.
- -# is an irreflexive and symmetric relation on A, called the *non-concurrency* relation. a#b means actions a and b cannot be executed si-

INSTANCE:

- А ррі П.
- A Π -valid partial order plan $P = \langle A, \prec \rangle$.
- A positive integer k. ADDITIONAL PARAMETERS:
- n_{\prec} : $|\prec|$, i.e. size of the partial order (number of relation tuples)
- *h*_≺: height of ≺, i.e. size of its longest chain *w*_≺: width of ≺, i.e. size of its largest antichain
- $n_{\prec'}$, $h_{\prec'}$ and $w_{\prec'}$ are defined analogously for the desired order. QUESTIONS:
- **MIN-CONSTRAINED REORDERING (MCR):** Does P have a Π -valid reordering $Q = \langle A, \prec' \rangle$ such that $|\prec'| \leq k$?
- MIN-CONSTRAINED DEORDERING (MCD): Similar question for deordering.

W[2]-hard	$\delta \cup \{w_{\prec}, h_{\prec'}\}$
FPT	$\{n_{\#}, n_{\prec}\}$

where $\delta = \{l_p, n_{\#}, n_{\prec'}\}.$

Parallel Plan Length INSTANCE:

• А ррі П.

- A Π -valid parallel plan $P = \langle A, \prec, \# \rangle$.
- A positive integer l_p .

PARAMETERS:

- l_p : length of the parallel plan
- $n_{\#}$: size of the non-concurrency relation
- $\Delta_{\#}$: maximum degree of $G_{\#}$ (the graph of nonconcurrency relation)
- k: number of processors/parallel actions QUESTIONS:

PARALLEL ∞ -**PROC. PLAN LENGTH (PPL):** Does *P* have a parallel execution of length at most l_p ? (*unlimited processors/parallel actions*) **PARALLEL** *k*-**PROC. PLAN LENGTH (PPL**_k): Does *P* have a *k*-processor parallel execution of length at most l_p ?

multaneously.

Parameterized Complexity Theory

Standard Complexity measures complexity as a

function of the input size (n). *Tractable:* solvable in time $O(n^c)$ for some constant c.

Parameterized Complexity measures complexity as a function of both input size (n) and a parameter (k) which is independent of n.

Fixed-parameter tractable: solvable in time $O(f(k) \cdot n^c)$, for some function f.

• Multi-parameter complexity analysis: parameter k is replaced by a list of parameters k_1, k_2, \ldots, k_l and f(k) is replaced by $f(k_1, k_2, \ldots, k_l)$.

Parameterized Complexity Classes:

- **FPT:** Fixed-parameter tractable problems
- **W[i]:** Defined by WEIGHTED SATISFIABILITY PROBLEM (weight $\leq k$, literal alterations $\leq i$) **W[P]:** Same as **W**[i] but with with unbounded al-

Least-constrained Plans – Results

Summary of the results for different parameter combinations:

Reordering Parallel Plans

INSTANCE:

- А ррі ∏.
- A Π -valid parallel plan $P = \langle A, \prec, \# \rangle$.
- A positive integer l_p .

PARAMETERS:

Parallel Plan Length – Results

The length of the parallel execution is closely related to the graph coloring problem: (χ_# is the chromatic number of G_#)

 $\max\{h_{\prec}, \chi_{\#}\} \le l_p \le h_{\prec} + n_{\#}$

The above inequality is tight.

• Summary of the results for different parameter combinations appear in the following table:

ternations.

para-NP: Problems solvable in non-deterministic Q time $f(k) \cdot n^c$.

Every parameter applicable to MCR and PPL. QUESTIONS:

MIN-PARALLEL REORDERING (MPR): Does P have a Π -valid reordering with a parallel execution of length at most l_p ?

MIN-PARALLEL DEORDERING (MPD): Similar question for deordering.

References

- Christer Bäckström Computational aspects of reordering plans. *Journal of Artificial Intelligence Research*, 9:99–137, 1998.
- Bernhard Nebel and Christer Bäckström. On the Computational Complexity of Temporal Projection, Planning, and Plan Validation. *Artificial Intelligence*, 66(1):125-160, 1994.