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Abstract— We focus on autonomous robot action planning
problem from Linear Temporal Logic (LTL) specifications,
where the action refers to a “simple” motion or manipulation
task, such as “go from A to B” or “grasp a ball”. At
the high-level planning layer, we propose an algorithm to
synthesize a maximally satisfying discrete control strategy while
taking into account that the robot’s action executions may fail.
Furthermore, we interface the high-level plan with the robot’s
low-level controller through a reactive middle-layer formalism
called Behavior Trees (BTs). We demonstrate the proposed
framework using a NAO robot capable of walking, ball grasping
and ball dropping actions.

I. INTRODUCTION

Synthesis of correct-by-design robot controllers to achieve
a complex, high-level, recurrent task has recently received
an increasing amount of attention. In particular, temporal
logics have been suggested to express robot motion tasks,
such as combinations of surveillance (“periodically visit
region A”), sequencing (“visit region A, then B, then
C”), safety (“always avoid region D”), and many others.
Leveraging ideas from formal verification [1], a number
of techniques have been developed to find a controller to
achieve Linear Temporal Logic (LTL) [2], [3], [4], [5], [6],
[7] task specifications.

Many of the suggested approaches build on a three-step
hierarchical procedure: First, the robot in its environment
is abstracted into a finite, discrete state-transition structure
using e.g., sampling-based methods or cell decompositions.
Second, a discrete plan that satisfies the temporal logic task is
synthesized. Third, the plan is projected onto a correct-by-
design robot controller. The correlation between a discrete
plan and a robot controller has been investigated quite widely
in robot motion planning context [2], [5], [8], whereas
the literature focused on low-level implementation of both
motion and manipulation discrete plans has been, to our
best knowledge, limited to several standalone studies [9].
In this work, we enhance the temporal logic specification
of “where to go” with “what to do” there and we aim to
propose a framework that 1) bridges the high-level plan
with the low-level motion, grasping, and other controllers,
2) is modular and extensible to handle different robots and
their capabilities, 3) is reactive and able to cope with the
unreliability of the robot’s sensors and actuators leading to
failures of its actions, and 4) guarantees that the temporal
logic task is met as closely as possible.

The authors are with the Centre for Autonomous Systems, Royal Institute
of Technology (KTH), SE-100 44 Stockholm, Sweden. J. Tumova and D.
Dimarogonas are also with the Automatic Control Lab and the ACCESS
Linnaeus Center. A. Marzinotto and D. Kragic are also with Computer Vi-
sion and Active Perception Lab. This work was supported by the EU STREP
RECONFIG. e-mail: {tumova|almc|dimos|dani}@kth.se.

A. Our Approach and Contribution

The problem addressed in this paper can be formulated as
follows. Similarly as in some related literature (e.g., [3], [6],
[10]) we assume that the robot’s states and action capabilities
are at the highest level of abstraction captured through a
finite, discrete transition system. Due to imprecisions in
robot’s sensors and actuators, each attempt to execute an
action might result into a success or a failure. As the
specification language, we use a surveillance fragment of the
State-Event variant of LTL (SE-LTL) [11], [3] allowing for
requirements and restrictions on both the robot’s locations
and its actions.

Our approach builds on using Behavior Trees (BTs) as
a middle-layer interface between the high-level planner and
the low-level robot controller. The idea has been recently
proposed in [12], resulting in an open source BT library
for the Robot Operating System (ROS) [13]. The main
feature indicating that BTs are suitable for middle-layer
controller representation is their modularity; every sub-tree
of a BT can be treated as a standalone entity that represents
a certain action or a task. BTs are built using sub-tree blocks
in a hierarchical fashion, subsuming thus multiple levels
of abstraction and allowing to easily replace an abstract
action/task node with a concrete action/task implementa-
tion [12]. Additionally, BTs are equipped with control-flow
nodes to capture various conditional, or sequential sub-tree
executions, hence making BTs an appropriate formalism for
reactive controllers.

Our goal is to find a reactive controller that takes the form
of a BT, takes into account the action execution successes and
failures, and guarantees that the resulting robot’s behavior is
as close to the satisfaction of the SE-LTL task as possible in
case the task accomplishment cannot be ensured.

Related work focused on techniques for reactive temporal
logic planning include e.g., studying synthesis for nonde-
terministic systems [14], [6] or general-reactivity goals [2],
a receding horizon approach to synthesis [5], or synergistic
interface between a planner and a controller [4] . As opposed
to them, we consider a specific kind of nondeterminism
that we handle algorithmically while employing ideas from
synthesis for deterministic systems. Other related works aim
at planning under unsatisfiable temporal logic specifications,
such as [15], [16], [17], where the authors focus on least-
violating planning with respect to a proposed metric. Other
authors [18], [10] propose to systematically revise the given
temporal logic specification to be satisfiable by the given
model and close to the original formula.



The rest of the paper is organized as follows. In Sec. II,
we fix necessary preliminaries in transition systems, temporal
logics, and automata. In Sec. III, we formalize the discrete
action planning problem and in Sec. IV we introduce the
details of the proposed solution. Sec. V discusses the im-
plementation of a discrete plan by a robot. Sec. VI presents
several illustrative examples and experimental results. We
conclude and outline future research directions in Sec. VII.

II. PRELIMINARIES

A. Notation

Given a set S, let |S|, 2S, S∗ and Sω denote the cardinality
of S, the set of all subsets of S, and the set of all finite
(possibly empty) and infinite sequences of elements of S,
respectively. Given a finite sequence sfin and a finite or an
infinite sequence s, we denote by sfins their concatenation
and by sωfin the infinite sequence sfinsfinsfin . . .. The concate-
nation of a set of finite sequences Sfin , and a set of finite or
infinite sequences S, is Sfin · S = {sfins | sfin ∈ Sfin , s ∈ S}.

B. Transition System, Linear Temporal Logic, and Automata

Definition 1 (Transition System) A labeled transition sys-
tem (TS) is a tuple T = (S, sinit ,Σ,→,Π, L), where S is
a finite set of states; sinit ∈ S is the initial state; Σ is
a finite set of events (or actions); →: S × Σ × S is a
transition relation; Π is a set of atomic propositions, such
that Σ ∩ Π = ∅; and L : S → 2Π is a labeling function
that assigns to each state s ∈ S exactly the subset of atomic
propositions L(s) that hold true in there.

For convenience, we use s σ−→ s′ to denote the transition
(s, σ, s′) ∈→ from state s to s′ under action σ. The transition
system T is deterministic if for all s ∈ S, σ ∈ Σ, there
exist at most one s′ ∈ S, such that s σ−→ s′. A trace of
T is an infinite alternating sequence of states and events
τ = s1σ1s2σ2 . . . ∈ (S · Σ)ω , such that s1 = sinit and
si

σi−→ si+1, for all i ≥ 1. A trace fragment is a finite
subsequence τfin = siσi . . . sjσj ∈ (S · Σ)∗ of an infinite
trace τ = s1σ1 . . . σi−1siσi . . . sjσjsj+1 . . .. A trace τ =
τpre(τsuf )ω is called a trace with a prefix-suffix structure;
τpre is the trace prefix and τsuf is the periodically repeated
trace suffix. The set of all traces of T and the set of all
traces of all transition systems are denoted by T(T ) and T,
respectively. Analogously, Tfin(T ) and Tfin denote the set of
all finite trace fragments of T and of all transition systems,
respectively. A trace τ = s1σ1s2σ2 . . . of T produces a word
w(τ) = w(1)w(2) . . ., where w(i) = L(si) ∪ {σi}.

Definition 2 (Trace Fragments Distance)
Given τfin = siσi . . . sjσj ∈ Tfin , and a subset of
indexes I ⊆ {i, . . . , j}, the restricted trace fragment
τfin|I is created by removing the states and actions la-
beled with indexes from I , i.e., ∀`k ∈ I , τfin|I =
siσi . . . s`k−1σ`k−1s`k+1σ`k+1 . . . sjσj .

The distance between trace fragments τfin , τ
′
fin ∈ Tfin is

dist(τfin , τ
′
fin) = min(|I|+ |I ′|), s.t. w(τfin|I) = w(τ ′fin|I′).

Intuitively, the distance dist(τfin , τ
′
fin) is the number of states

and actions that have to be removed from and added to τfin

for it to produce the same word as τ ′fin .
A (control) strategy Ω : (S · Σ)∗ · S → Σ for T is a

function that assigns to each trace prefix followed with a
state the next action to be executed. A trace s1σ1s2σ2 . . .
is a trace under the controller Ω if for all i ≥ 1, it holds
that σi = Ω(s1σ1 . . . si). If T is deterministic, then there
is only one trace under each Ω, and thus we talk about the
trace as about the strategy itself. A finite-memory control
strategy is intuitively one, whose outputs depend only on
last m states and actions. Such a strategy can be represented
an Input/Output (I/O) automaton.

Definition 3 (I/O Automaton) An I/O automaton is a tuple
I = (Q, qinit ,Σin ,Σout , δ), where Q is a finite set of states;
qinit is the initial state; Σin is an input alphabet; Σout is an
output alphabet; and δ : Q × Σin → Q × Σout is a partial
transition function.

A run of an I/O automaton I over an input word ι1ι2 . . . ∈
Σωin is a sequence of states q1q2 . . ., with the property that
q1 = qinit , and ∀i ≥ 1, ∃oi ∈ Σout , such that δ(qi, ιi) =
(qi+1, oi). The output sequence of such a run is o1o2 . . ..

The I/O automaton I can serve as a finite-memory control
strategy for a transition system T = (S, sinit ,Σ,→,Π, L)
as follows. Assume that Σin = S, and Σout = Σ. Then, the
input words for I are state sequences of T and the output
sequences are action sequences for T . The transition system
T is controlled by I in the following way: Assume that
s is the current state of T , q is the current state of I, and
δ(q, s) = (q′, a). Then q′ becomes the new current state of I,
and a state s′, such that s a−→ s′ becomes the new current state
of T . There might be multiple states s′, such that s a−→ s′,
in which case, one of them is chosen nondeterministically,
corresponding to the fact that the application of the action a
may have several different effects. If there is no s′, such that
s
a−→ s′ in T , then I is not a valid control strategy for T .
State/Event Linear Temporal Logic: To specify the robot’s

goals, we will use state/event variant of LTL [11] that allows
to capture requirements on both the robot’s state or its
location and the actions it executes.

Definition 4 (SE-LTL) Let us consider transition system
T = (S, sinit ,Σ,→,Π, L). A State/Event Linear Temporal
Logic (SE-LTL) formula φ over the set of atomic propositions
Π and the set of events Σ is defined inductively as follows:

1) every π ∈ Π and every σ ∈ Σ is a formula, and
2) if φ1 and φ2 are formulas, then φ1 ∨ φ2, ¬φ1, Xφ1,

φ1 Uφ2, Gφ1, and Fφ1 are each formulas,
where ¬ (negation) and ∨ (disjunction) are standard Boolean
connectives, and X, U, G, and F are temporal operators.

Informally speaking, the trace τ = s1σ1 . . . of T satisfies
the atomic proposition π if π is satisfied in s1 and the
event σ if σ1 = σ. The formula Xφ states that φ holds
in the following state, whereas φ1 Uφ2 states that φ2 is
true eventually, and φ1 is true at least until φ2 is true.



The formulas Fφ and Gφ state that φ holds eventually
and always, respectively. For the full semantics of SE-LTL,
see [11].

The trace-satisfaction relation can be easily extended to
satisfaction relation for words over 2Π∪Σ. Particularly, a
word w satisfies an SE-LTL formula φ over Π and Σ if
there exists a trace τ ∈ T, such that τ |= φ and w = w(τ).
The language of all words that satisfy φ is denoted by L(φ).

Büchi Automata: An alternative way to capture a property
defined by an SE-LTL formula is a Büchi automaton.

Definition 5 (Büchi Automaton) A Büchi automaton (BA)
is a tuple B = (Q, qinit,Υ, δ, F ), where Q is a finite set of
states; qinit ∈ Q is the initial state; Υ is an input alphabet;
δ ⊆ Q × Σ × Q is a non-deterministic transition relation;
and F is the acceptance condition.

A run of a Büchi automaton B over an input word w =
w(1)w(2) . . . ∈ Υω is a sequence ρ = q1w(1)q2w(2) . . .,
such that q1 = qinit, and (qi, w(i), qi+1) ∈ δ, for all
i ≥ 1. A run ρ is accepting if it intersects F infinitely
many times. A word w is accepted by B if there exists an
accepting run over w. The language of all words accepted
by B is denoted by L(B). A Büchi automaton is tight if
and only if for all w ∈ L(B) there exists an accepting run
q1w(1)q2w(2) . . . with the property that w(i)qi+1w(i+1) =
w(j)qj+1w(j + 1)⇒ qi = qj . Any SE-LTL formula over Π
and Σ can be translated into a BA with Υ = 2Π∪Σ, such that
L(φ) = L(B) using standard techniques [11]. Furthermore,
some translation algorithms (e.g., [19]), guarantee that the
resulting BA is tight [20].

Graph Theory: Any automaton or transition system can
be viewed as a graph G = (V,E) with the set of vertices V
equal to the set of states, and the set of edges E given by
the transition function in the expected way. A simple path
in G is a sequence of states vi . . . vl such that (vj , vj+1) ∈
E, for all i ≤ j < l, and vj = vj′ ⇒ j = j′, for all
i ≤ j, j′ ≤ l. A cycle is a sequence of states vi . . . vlvl+1,
where vi . . . vl is a simple path and vl+1 = vi. A weighted
graph is a tuple G = (V,E,W ), where W : E → N is a a
function assigning weights to the edges. The length of a path
vi . . . vl is the sum of its respective weights len(vi . . . vl) =∑
j∈{i,...,l−1}W (vj , vj+1). A shortest path from v to v′ is a

path minimizing its length and can be found efficiently using
e.g., Dijkstra’s shortest path algorithm (see, e.g. [21]).

III. PROBLEM FORMULATION AND APPROACH

Our goal in this work is to algorithmically synthesize a
controller for an autonomous robot that guarantees that the
desired long-term goal is met as closely as possible, even in
cases when the robot fails to execute some of the actions in
its repertoire. Our approach to the problem builds on formal
methods; we model the expected robot’s action capabilities
as a transition system and the goal as an SE-LTL formula.
The proposed solution comprises two steps. First, we define a
quantitative metric to measure the level of noncompliance of

a robot’s behavior with respect to the given SE-LTL formula
and we synthesize a maximally satisfying discrete, reactive
control strategy in the form of an I/O automaton. Second,
we implement the control strategy through an automatic
translation into a middle-layer controller that takes the form
of a BT. This step interfaces the high-level planner with
the low-level controller that executes action primitives in
a continuous workspace. As a proof of concept, we have
implemented the solution in a testbed with a NAO robot
executing walking, ball grasping and ball dropping motion
primitives.

In the remainder of this section, we focus on formalizing
the first of the mentioned steps, i.e. the maximally satisfying
control strategy synthesis problem. The second step, i.e. the
implementation of the strategy in the continuous domain is
discussed later on in Section V.

Maximally Satisfying Discrete Action Planning Problem:
Similarly as in some related papers (e.g., [3], [6], [10]) we
model the robot as a TS T = (S, sinit ,Σ,→,Π, L). The set
of states S encode the possible states of the robot, such as
its position in the environment, or the object it is carrying.
The atomic propositions and the labeling function capture
properties of interest of the robot’s states. The actions in Σ
abstract the action primitives, such as “move from position A
to position B”, or “grasp a ball” and the transition function
expresses the evolution of the robot’s states upon a successful
execution of an action primitive. If the execution of an action
fails, the robot stays at the same state. Formally, we define a
success-deterministic transition system as the robot’s model.

Definition 6 (Success-deterministic Transition System)
A success-deterministic transition system T is a syntactically
deterministic transition system with specific nondeterministic
semantics defined as follows: The traces of T are sequences
s1σ1s2σ2 . . . and for each i ≥ 1 it holds that
• either si

σi−→ si+1 (σi succeeds in si), or
• si = si+1, and ∃s′i+1, s.t. si

σi−→ s′i+1 (σi fails in si).

Intuitively, the success-deterministic transition system has
two possible outcomes for each action execution attempt. If
the action succeeds, the transition is followed as expected;
if it fails, the system’s state does not change.

The specification of the robot’s task takes a form of an SE-
LTL formula φ. We specifically focus on recurrent tasks, that
involve, e.g., periodic visits to selected regions of the envi-
ronment or repeated execution of certain actions. To pose the
problem formally, we consider a special surveillance event
σsur to be periodically executed. Intuitively, the execution of
σsur indicates that the robot has finished a single surveillance
cycle. The action σsur is available in Ssur ⊆ S, and for all
s ∈ Ssur , the transition enabled by σsur is s σsur−−→ s only.
The attempt to execute the event σsur is always successful.

The SE-LTL formula φ is of form

φ = ϕ ∧ GFσsur , (1)

where ϕ is any SE-LTL formula over Π and Σ, such that
σsur does not appear in ϕ. In other words, there are no



other demands imposed on the execution of the surveillance
event σsur apart from its infinite repetition, whereas arbitrary
requirements and restrictions can be prescribed for the other
actions and atomic propositions.

Example 1 In Fig. 1 we give an example of a NAO robot’s
workspace partitioned into 9 regions; 6 rooms and 3 corridor
regions. We assume the following set of action and motion
primitives Σ: r, b, l, t (move to the neighboring region on the
right, bottom, left, or top, respectively), grab (grab a ball),
drop (drop the ball), and σsur = light up. The robot’s state
is compound of the region the robot is present at and whether
or not it holds a ball. The robot is not allowed to cross a
black line, and therefore the motion primitives r, b, l, t are not
enabled in all the states. Similarly, the action grab is enabled
only in the set of regions G ⊆ {R1, . . . , R6, C1, . . . , C3},
where an object to be grabbed is expected to be present.
Initially, the NAO is present in R1, with no object in its hand.
The transition system model is T = (S, sinit ,Σ,→,Π, L),
where
• S = {R1, . . . , R6, C1, . . . , C3} × {1, 0}; sinit = (R1, 0);

Σ = {r, b, l, t, grab, drop, light up}; Π = {R1, . . . , R6};
• (R1, 0)

light up−−−−→ (R1, 0); for all i ∈ {1, 2, 3}, x ∈ {1, 0} :

(Ci, x)
r−→ (Ci+1, x), (Ci+1, x)

l−→ (Ci, x) (Ri, x)
b−→

(Ci, x), (Ci, x)
t−→ (Ri, x), (Ri+3, x)

t−→ (Ci, x), (Ci, x)
b−→

(Ri+3, x), for all Ri ∈ G : (Ri, 0)
grab−−→ (Ri, 1), for all

i ∈ {1, . . . , 6} : (Ri, 1)
drop−−−→ (Ri, 0);

• for all i ∈ {1, 2, 3}, x ∈ {1, 0} : L((Ri, x)) = {Ri},
L((Ri+3, x)) = {Ri+3}, L((Ci, x)) = ∅, .

Fig. 1: A NAO robot’s workspace (left). A scheme of the workspace
partitioned in regions (right).

An example of an SE-LTL robot’s task is to periodically
1) survey R5, 2) grab a ball in R4 and 3) bring it to R2:
φ = GFR5 ∧GF(R4 ∧ grab∧ F(R2 ∧ drop))∧GF light up.

Before stating our problem formally, let us introduce
several intermediate definitions.

Definition 7 (Surveillance Trace Fragment) A finite trace
fragment τsur = siσi . . . sjσj ∈ Tfin is called a surveillance
fragment if σj = σsur , and σ` 6= σsur for all i ≤ ` < j.

In other words, a surveillance trace fragment ends with
a surveillance event, and it does not contain any other
surveillance event besides this one. Let Tsur (T ) and Tsur

denote the set of all surveillance trace fragments of T and
of all transition systems, respectively.

Definition 8 (Level of Noncompliance) The level of non-
compliance λ(τsur ) of a surveillance fragment τsur ∈ Tsur

is the minimal distance (see Def. 2) to a trace fragment
τ ′sur ∈ Tsur , with the property that for some surveillance
trace prefix τsurp ∈ Tsur , τsurp(τ

′
sur )ω |= φ.

Intuitively, the level of noncompliance for a surveillance
fragment τsur expresses how far the infinite repetitive execu-
tion of τsur is from satisfying the LTL formula φ. Note that if
there exists a prefix τsurp ∈ Tsur , such that τsurp(τsur )ω |=
φ, then λ(τsur ) = 0. Dually, if there does not exist any
τsurp(τ

′
sur )ω |= φ, then λ(τsur ) =∞ for all trace fragments

τsur ∈ Tsur . Furthermore, we set λ(τfin) =∞, for all trace
fragments τfin ∈ Tfin \ Tsur .

Remark 1 We limit our attention to traces with a prefix-
suffix structure only, and hence, on finite memory controllers.
This assumption is in fact not restrictive; well-known results
from model-checking show, that the existence of a trace of T
satisfying an LTL or an SE-LTL formula implies the existence
of such a trace with a prefix-suffix structure [1].

We aim to propose a control strategy synthesis algorithm
that copes with possible failures of the action primitives
executions. Technically, the action failures can be captured
by introducing transitions s

σ−→ s, for all σ ∈ Σ and
s ∈ S in T , thus making T nondeterministic and treating the
problem using a standard control strategy synthesis algorithm
for a nondeterministic system. Such an approach is very
conservative as the control strategy Ω is required to guarantee
the satisfaction of φ regardless the action failures, including
the unlikely scenario when all of the action fail at all times.
Due to such cases, the desired Ω often does not exist at all.

In contrast, our approach is to find a strategy that responds
to the action failures locally to achieve maximal level of sat-
isfaction of the desired specification. Our default assumption
is that all actions can be successfully executed; if it is found
out that an action fails upon the run of the system, we change
our original assumption to the belief that this particular action
would fail for the rest of the current surveillance fragment as
well, however it would be executed successfully again later,
after the current surveillance fragment is finished.

Formally, consider a trace prefix
τpre = τsur1

. . . τsurm
siσi . . . sjσj of T , where

• τsur`
, 1 ≤ ` ≤ m are surveillance fragments, and

• σ` 6= σsur , for all i ≤ ` ≤ j.
We denote by T (T , τpre) the set of all traces τ = τpreτsuf

of T with the prefix τpre that satisfy the following conditions:

• τ =

τpre︷ ︸︸ ︷
τsur1 . . . τsurmsiσi . . . sjσj

τsuf︷ ︸︸ ︷
sj+1σj+1 . . . skσk(τsur )ω ,

s.t. siσi . . . skσk, and τsur are surveillance fragments;
• for all i ≤ ` ≤ j, j < `′ ≤ k, s.t. s` = s′` and σ` = σ′`

it holds that σ` fails in s` iff σl′ fails in s′l; and
• for all ` > k it holds that σ` succeeds in s`.

The quality of the trace τ is measured in terms of the level
of noncompliance of its surveillance fragments. Namely, we
are interested in two measures:
• Long-term level of noncompliance λ∞(τ) = λ(τsur )
• Transient level of noncompliance λ↓(τ) = λ(si . . . σk).



Note that given a trace prefix τpre , and a controller Ω,
there is only one trace under Ω that belongs to T (T , τpre),
since the nondeterminism is resolved by assuming explicitly
which actions fail and which succeed.

We are now ready to state our problem, Problem 1.

Problem 1 (Discrete Planning Problem) Given a robot
modeled as a success-deterministic transition system T and a
SE-LTL formula φ = ϕ∧GFσsur , synthesize an I/O automa-
ton representing a so-called maximally satisfying control
strategy function Ω that satisfies the following conditions:
For all prefixes τpre of T , the trace τ ∈ T (T , τpre)
under Ω

(i) minimizes λ∞(τ) among all traces in T (T , τpre), and
(ii) minimizes λ↓(τ) among all traces in T (T , τpre) sat-

isfying condition (i).

IV. SOLUTION TO THE DISCRETE PLANNING PROBLEM

Let us first focus on solving Problem 1 under the assump-
tion that T is purely deterministic, i.e., we first assume that
none of the actions can fail. We propose an algorithm to find
a maximally satisfying control trace τ .

Following the automata-based approach to model check-
ing [1] and similar ideas as in [15], [16], we first construct
a specialized weighted product automaton P that captures
not only the traces of T that satisfy B, but also the level
of noncompliance of individual trace fragments through its
weights. Using standard graph algorithms, we find a lasso-
shaped accepting run in P that projects onto the maximally
satisfying trace τ of T with a prefix-suffix structure.

Definition 9 (Weighted Product Automaton)
A product of a deterministic TS T = (S, sinit ,Σ,→,Π, L)
and a tight BA B = (Q, qinit, 2

Π∪Σ, δ, F ) is a weighted BA
P = T ⊗ B = (QP , qinit,P ,Σ, δP , FP ,WP), where
QP = S ×Q; qinit,P = (sinit, qinit); FP = S × F ; and
• ((s, q), σ, (s′, q′)) ∈ δP , WP((s, q), σ, (s′, q′)) = 0 if

a) s
σ−→ s′ in T , and (q, L(s) ∪ {σ}, q′) ∈ δ;

• ((s, q), σ, (s′, q′)) ∈ δP , WP((s, q), σ, (s′, q′)) = 1 if
b) s

σ−→ s′ in T , and q = q′, or
c) s = s′, and (q, L(s) ∪ {σ}, q′) ∈ δ;

A run ρ = (s1, q1)σ1(s2, q2)σ2 . . . of P projects onto
the trace τ = α(ρ) = s1σ1s2σ2 . . . and onto the run
ρB = β(ρ) = q1σ1q2σ2 . . .. Analogously as for T , we define
surveillance run fragments for P; ρfin is a surveillance run
fragment if α(ρfin) is a surveillance trace fragment. We say
that a run ρ is with a surveillance prefix-suffix structure if
ρ = ρsurp(ρsur )ω in P , such that ρsurp , ρsur are surveillance
fragments. The product automaton can be viewed as a graph
(see Sec. II-B) and therefore, with a slight abuse of notation,
we use len(ρfin) to denote the sum of weights on a finite run
fragment ρfin . The accepting runs of the weighted product
automaton project onto traces of T and the weights of the
transitions in P capture the level of noncompliance of the
traces as explained through the following two lemmas.

Lemma 1 Let τ = τsurp(τsur )ω be a trace of T , such that
τsurp , τsur ∈ Tsur (T ) are surveillance fragments. Then there
exists an accepting run ρsurp(ρsur )ω in P , such that
(i) α(ρsurp) = τsurp , α(ρsur ) = τsur

(ii) λ(τsur ) = len(ρsur ).
Vice versa, any accepting run ρ = ρsurp(ρsur )ω in P with
a surveillance prefix-suffix structure projects onto a trace
τ = α(ρ) satisfying conditions (i)-(ii) above.

Proof: The proof is lead via induction w.r.t. λ(τsur ).
Let τ = τsurp(τsur )ω be a trace of T , s.t. λ(τsur ) = 0.

Then there exists τ ′surp , such that w(τ ′) = τ ′surp(τsur )ω

is accepted by B. Following classical results from model-
checking [1], we get that there exists an accepting run
ρ′surp(ρsur )ω of P that projects onto τ ′. All transitions along
this run are of type a), and therefore len(ρsur ) = 0. By
replacement of τ ′surp with τsur , we replace also ρ′surp =
(s1, q1)σ1 . . . (si, qi)σi with a run fragment ρsurp that ends
with (si, qi)σi, is over τsur . Such a fragment can be obtained
following a sequence of c)-type transitions to state (s1, qi)
and then b)-type transitions to (si, qi). For analogous reasons,
any accepting run ρsurp(ρsur )ω in P with len(ρsur ) = 0
projects onto a trace τ = τsurp(τsur )ω with λ(τsur ) = 0.

Let the lemma hold for all 1 ≤ k < λ(τsur ). Consider a
trace τ = τsurp(τsur )ω of T with λ(τsur ) = k + 1. Then,
necessarily either τ = uv and there exists τ ′sur = usσv with
λ(τ ′sur ) = k, or τ = usσv and there exists τ ′sur = uv with
λ(τ ′sur ) = k. For the former case, there exists ρ′sur = ρuρv
with len(ρ′sur ) = k. By injecting a c)-type transition between
ρu and ρv we obtain run ρsur . Thanks to the tightness of B,
len(ρsur ) = k+ 1 and λ(ρsur ) = τsur . Analogous argument
holds for the latter case with the difference of injecting a b)-
type transition. Dually, an accepting run ρsurp(ρsur )ω in P
with len(ρsur ) = k+1 projects onto a trace τ = τsurp(τsur )ω

with λ(τsur ) = k + 1. Thus, the proof is complete.

Lemma 2 An accepting run ρ = ρsurp(ρsur )ω of P with a
surveillance prefix-suffix structure that minimizes len(ρsur )
among all such runs of P projects onto a maximally satis-
fying trace τ = α(ρ) of T .

Proof: The proof follows directly from Lemma 1.

Lemmas 1 and 2 give us a guideline, how to find a
maximally satisfying trace τ of a deterministic TS T ; when
viewing P as a graph, a shortest cycle that is reachable from
the initial state and contains both an accepting state and
a surveillance action represents a run ρ of P that projects
onto the sought τ . The algorithm is summarized in Alg. 1,
where the functions min frag and min sur frag compute
the shortest run fragment and the shortest surveillance run
fragment, respectively, using standard graph methods.

Finally, the maximally satisfying trace τ = τsurp(τsur )ω ,
τsurp = s1σ1 . . . si−1σi−1, τsur = siσi . . . sjσsur is trans-
lated into an I/O automaton I = (QI , qinit,I ,Σin ,Σout , δI),
where QI = {q1, . . . , qj}, qinit,I = q1, Σin = {succ, fail},
Σout = Σ, for all 1 ≤ ` < j, δI(q`, succ) = (q`+1, σ`), and
δI(qj , succ) = (qi, σsur ). Note that state qi can be reached



Algorithm 1: Maximally-satisfying Ω for a determ. T
1 Input: Product P = T ⊗ B = (QP , qinit,P ,Σ, δP , FP ,WP)
2 Output: Control strategy given as a trace τ of T
3 for all ps ∈ {(s, q) | s ∈ Ssur}, pf ∈ FP do
4 ρfin(pa, pf ) = min frag(P, ps, pf)
5 ρfin(pf , ps) = min sur frag(P, pf , ps)
6 end
7 ρsur (ps) = concatenate (ρfin(ps, pf ), ρfin(pf , ps))
8 Opt = {ps minimizing len(ρsur (ps))}
9 pick any ps ∈ Opt reachable from pinit

10 ρsurp = min sur frag(P, pinit , ps)
11 τ = α(ρsurp(ρsur )ω)

Algorithm 2: Maximally-satisfying τ for a given τpre

1 Input: T ⊗ B = (QP , qinit,P ,Σ, δP , FP ,WP), τpre , failed
2 Output: Control strategy given as a trace τ ∈ T (T , τpre)
3 for all pj = (sj , q), for some q ∈ Q, ps ∈ Opt (Alg. 1) do
4 ρfin(pj , ps) = min restrict sur(P, pj , ps, failed)
5 end
6 Opt transient = {(pj , ps) minimizing len(ρfin(pj , ps))}
7 pick any (pj , ps) ∈ Opt transient
8 τ = τpre α(ρfin(pj , ps)(ρsur (ps))

ω)

only right after execution of a surveillance event, hence we
call it a cycle start and we remember the corresponding
system state start i = si.

Let us now consider a success-deterministic TS T , its fixed
trace prefix τpre = τsur1

. . . τsurm
siσi . . . sjσj and a subset

of indexes failed ⊆ {i, . . . , j} meaning that σ` failed in
s`, for all ` ∈ failed . Let us concentrate on finding a trace
τ = τpresj+1σj+1 . . . skσk(τsur )ω that minimizes the long-
term and the transient level of noncompliance among the
traces in T (T , τpre). The solution is given in Alg. 2 and
involves two steps; finding all suitable, i.e., the shortest frag-
ments τsur , and finding the shortest surveillance fragment
leading to some of the found fragments τsur while taking
into account that actions defined by failed are forbidden in
the respective states (function min restrict sur). Because
τsur corresponds to the long-term behavior and we assume
all actions will be succeeding then, the suitable suffixes τsur

are already determined by Opt in Alg. 1.
The remainder of the solution lies in enhancing the

I/O automaton I = (QI , qinit,I ,Σin ,Σout , δI) con-
structed for a deterministic variant of the system T
with systematic action failures. Consider a prefix τpre =
τsur1

. . . τsurm
siσi . . . sjσj , such that failed = {j}, and

the current state q of the I/O automaton. The value
δI(q, fail) is not defined. We apply Alg. 2 to find
the desired trace suffix and we extend the automaton
I accordingly: Given that the found suffix is τsuf =
sj+1σj+1 . . . skσk(sk+1σk+1 . . . slσl)

ω , we introduce new
states q′j+2 . . . q

′
k in case that sk+1 = start i, for some cycle

start qi ∈ QI , or q′j+2 . . . ql otherwise. We set δI(q, fail) =
(q′j+2, σj+1), and similarly as before, δI(q`, succ) =
(q`+1, σ`), for all j + 2 ≤ ` < k, or j + 2 ≤ ` < m,
and δI(qk, succ) = (qcyc, σ`) or δI(qm, succ) = (qk+1, σ`),
respectively. The rest of the solution to Problem 1 is obtained

inductively in the straightforward way. The I/O automaton I
is systematically searched through and whenever δI(q, fail)
is not defined for some q, the action failure is simulated. The
overall procedure is finite as Opt is finite as well as every
surveillance fragment.

V. ACTION PLAN EXECUTION

The I/O automaton I obtained as a solution to Problem 1
represents a discrete action plan for an abstract model of the
considered robotic system, however its application in such
a dynamical system itself is not straightforward. Hence, in
this section, we focus on the actual execution of the control
strategy. Specifically, we propose an automatic translation
of the I/O automaton I into a BT that maps abstract
action primitives from Σ onto their respective continuous
controllers and hence serves as a bridge between the high-
level planning and the low-level control layers. We first
present BTs following the notation in [12], where BTs were
introduced in the context of robot control. Second, we extend
the BTs with new features that enrich their expressive power
to match the semantics of I/O automata and we focus on the
translation from an I/O automaton to a BT itself.

Behavior Trees: Behavior Trees (BTs) are rooted trees
that are used to represent and execute plans; actions and
conditions are placed in its leaves, connected through internal
control-flow nodes. The nodes are systematically evaluated,
having a Running, Success, or Failure status. The node types
are summarized in Table I.

Node Symbol Succeeds if Fails if Runs if
Root ∅ tree S tree F tree R

Selector(*) ?, ?∗ 1 Ch S N Ch F 1 Ch R
Sequence(*) →,→∗ N Ch S 1 Ch F 1 Ch R

Parallel ⇒ ≥ K Ch S ≥ L Ch F otherwise
Decorator �δ varies varies varies

Action � Xσ(t)∈ Sσ Xσ(t)∈ Fσ Xσ(t)∈ Rσ
Condition © Xc(t)∈ Sc Xc(t)∈ Fc never

TABLE I: The node types of a BT. Ch ≡ children, S ≡ Success,
F ≡ Failure, R ≡ Running. N ≡ # children, K,L ∈ N are node
parameters, Xσ(t), Xc(t) are the continuous states, and Sσ,Fσ ,
and Rσ , and Sc,Fc are the respective success, failure, and running
subsets of the action σ, and the condition c, respectively.

The execution of a BT is governed through ticks represent-
ing discrete evaluation cycles. The tick is a periodic enabling
signal, generated at the Root of the BT at every ∆T . The tick
is instantly propagated through the tree and triggers each
node’s pre-defined algorithm upon reaching it. For details
on the relevant nodes see Alg. 3. Broadly speaking, control-
flow nodes redirect the course of the program depending on
the Success or Failure of their children, whereas action and
condition leaves are evaluated over continuous variables and
optionally perform a control algorithm. The tick frequency
is assumed to be sufficiently high to respond to changes in
the environment and control the robot in real-time.

Consider the continuous trajectory (σ,∆σ, Xσ(t), Uσ(t))
associated with the action σ in a time interval [0,∆σ]
during which σ is active, where Uσ(t) : [0,∆σ] → U is



Algorithm 3: BT Execution at each ∆T

1 switch Node Type do
2 case Root return Tick(child(0))
3 endsw
4 case Selector∗

5 for i← run-index to N do
6 status ← Tick(child(i))
7 if status = Running then
8 run-index ← i; return Running
9 if status = Success then

10 run-index ← 1; return Success
11 end
12 end
13 run-index ← 1; return Failure
14 endsw
15 case Sequence∗

16 for i← run-index to N do
17 status ← Tick(child(i))
18 if status = Running then
19 run-index ← i; return Running
20 if status = Failure then
21 run-index ← 1; return Failure
22 end
23 end
24 run-index ← 1; return Success
25 endsw
26 case Action σ
27 if Xσ(t) ∈ Sσ then return Success
28 if Xσ(t) ∈ Fσ then return Failure
29 if Xσ(t) ∈ Rσ then
30 Uσ(t) ← γσ(Xσ(t)); return Running
31 end
32 endsw
33 case Condition
34 if Xσ(t) ∈ Sσ then return Success
35 if Xσ(t) ∈ Fσ then return Failure
36 endsw
37 ...
38 endsw

a piecewise continuous function, and Xσ(t) : [0,∆a] →
X is a continuous piecewise differentiable function, such
that ∀t ∈ [0,∆σ], Xσ(t) stays in the invariant set
and f(Xσ(t), Uσ(t)) = Ẋσ(t) except for the points of
discontinuity. The execution of a BT is a sequence of
continuous trajectories: (σ1,∆σ1

, Xσ1
(t), Uσ1

(t))
status1−−−−→

(σ2,∆σ2
, Xσ2

(t), Uσ2
(t))

status2−−−−→ · · · . The times of the ac-
tion node return status is Success or Failure are tσ1

, tσ2
, . . .,

where tσn
=

∑
i∈{1,...,n}∆σi

. If Xσj
(tσj

) ∈ Sσj
, i.e., if σj

succeeded, then statusj = Sσj . If Xσj (tσj ) ∈ Fσj , i.e., if
σj failed, then statusj = Fσj .

To obtain the abstract action-driven BT, we, simply put,
ignore the Running statuses of actions. At times t1, t2 . . .,
where tn = n ·∆T ,∀n ≥ 0, the tick-driven BT produces the
sequence of action evaluations that takes the following form:
Rσ1

(1) . . . Rσ1
(j1)S/Fσ1

(j1+1) = Rσ2
(1) . . . S/Fσi

(ji+1) =
Rσi+1

(1) . . . , where Rσ , Sσ , and Fσ denotes that action
σ is Running, Success or Failure, respectively. The action-
driven BT produces a sequence of successes and failures
S/Fσ1

S/Fσ2
. . ., i.e., a sequence status1, status2, . . ., hence

allowing us to view each action as an atomic primitive.

The action-driven BT represents a function (Σ×{Sσ, Fσ |
σ ∈ Σ})∗ → Σ, where Σ is the set of BT actions. In
other words, given the history of the actions executed and
their statuses, the next action to be executed is determined.
As such, if all actions succeed, the BT can be viewed
as a control strategy for a deterministic transition system
T = (S, sinit ,Σ,→,Π, L), in which all actions are assumed
to succeed, too.

I/O Automaton to BT Translation: To translate an I/O
automaton I = (QI , qinit,I ,Σin ,Σout , δI) into a BT. Since
standard BTs lack mechanisms to explicitly store history of
their execution (see [12] for a discussion), which is in an
I/O automaton provided through its states, we introduce two
global variables: qcurr to remember a current state of the
I/O automaton and ls to store the success/failure status of
the latest executed action. Furthermore, we introduce the
Update Decorator to maintain the correct values of the global
variables, which is presented in Alg. 4.

Algorithm 4: Update Decorator
1 status ← Tick(child)
2 if status = Success then
3 ls ← Success; qcurr ← δI(qcurr , succ)
4 else if status = Failure then
5 ls ← Failure; qcurr ← δI(qcurr , fail)
6 return status

The translation procedure is illustrated in Fig. 2. Note that
the action nodes can be easily substituted with sub-trees that
implement the respective actions.

∅

∗
?

∗→ · · · ∀q ∈ QI

qcurr = q ∗
?

∗→ ∗→

ls = Success
execute

σ ∈ δI(qcurr , succ)

δ Update

ls = Failure
execute

σ ∈ δI(qcurr , fail)

δ Update

Fig. 2: Scheme of the I/O Automata BT translation using global
variables and Update Decorator.

With the translation from I/O automata to BTs, we con-
clude the solution to Problem 1 and its execution by a robot.

VI. EXPERIMENTS

We implemented the proposed solution in Robot Operating
System (ROS) and tested it in a NAO robot testbed described
in Example 1. The NAO humanoid robot has basic motion
and grasping capabilities. Due to low resolution of its native
vision, we used a custom positioning system with a camera
overlooking its workspace. To recognize the robot’s position,
its head was equipped with an easily distinguishable pattern.

To illustrate the results of our approach, we consider three
different SE-LTL tasks involving motion between regions,



grasping and dropping a ball. The grasping action has shown
as the most critical, often failing one. Thus, for simplicity of
presentation, in Fig. 3 we depict resulting trajectories while
considering only grasping action failures.

Case A: Periodically grab a ball in R6 and drop it in R2:

GF(R4 ∧ grab ∧ F(R2 ∧ drop)) ∧ GF light up.

The executed surveillance cycle is depicted in Fig. 3 on
the left. After a grasp failure, room R2 is not visited as
R2 ∧ drop cannot be satisfied.

Case B: Periodically grab a ball in R4 or in R5 and drop
it in R2 (illustrated in Fig. 3 in the middle):

GF((R4 ∧ grab ∨R5 ∧ grab) ∧ F(R2 ∧ drop)) ∧ GF light up.

Case C: Periodically visit R2, R3, R6, R5 and R4 in this
order, while in R6 grab a ball and drop it later on in R4

(illustrated in Fig. 3 on the right). The formula says that
if in R1 then no other room should be visited until R2 is
visited, then no other room should be visited untill R4 is
visited, etc., until R1 is reached again:

G(R1 ⇒
∧
i6=1

¬Ri UR2 ∧ (
∧
i 6=2

¬Ri UR3 ∧ (
∧
i6=3

Ri U (R6 ∧ grab) ∧

(
∧
i 6=6

¬Ri UR5 ∧ (
∧
i 6=5

¬Ri U (R4 ∧ drop) ∧ (
∧
i 6=4

¬Ri UR1)))))) ∧

GF light up.

Fig. 3: NAO robot’s surveillance cycles for test cases A,B,C. The
yellow star represents light up action. The filled and empty circles
depict grasp and drop, respectively. The black arrows illustrate the
beginning of a surveillance cycle, before grasp is attempted. The
continuation of the trajectory after a successful and a failed grasp
is in green and red, respectively.

Results from the experimental run of Case B in the testbed
are demonstrated in the movie that accompanies this paper.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed an algorithm to find maximally satis-
fying action plans and interfaced the high-level planner with
a low-level robot controller through automatic translation
to BTs. As a future work, we will explore an option to
update the BT upon a run of a system instead of its offline
generation.

Acknowledgement: We would like to thank Meng Guo and
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