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Abstract. This paper provides a comparative performance evaluation
of local features for infrared (IR) images across different combinations
of common detectors and descriptors. Although numerous studies report
comparisons of local features designed for ordinary visual images, their
performance on IR images is far less charted. We perform a systematic
investigation, thoroughly exploiting the established benchmark while also
introducing a new IR image data set. The contribution is two-fold: we i)
evaluate the performance of both local float type and more recent binary
type detectors and descriptors in their combinations under a variety (6
kinds) of image transformations, and ii) make a new IR image data set
publicly available. Through our investigation we gain novel and useful
insights for applying state-of-the art local features to IR images with
different properties.
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1 Introduction

Thermography, also known as infrared (IR) imaging or thermal imaging, is a
fast growing field both in research and industry with a wide area of applications.
At power stations it is used to monitor the high voltage systems. Construction
workers use it to check for defective insulation in houses and firefighters use it
as a tool when searching for missing people in buildings on fire. It is also used
in various other contexts for surveillance.

In the field of image analysis, especially within computer vision, the majority
of the research have focused on regular visual images. Many tasks there comprise
the usage of an interest point or feature detector in combination with a feature
descriptor. These are, for example, used in subsequent processing to achieve
panorama stitching, content based indexing, tracking, reconstruction, recogni-
tion etc. Hence, local features play essential roles there, and their development
and evaluations have, for many years, been an active research area, resulting in
rich knowledge on useful detectors and descriptors.

A research question we pose in this paper is how we can exploit those lo-
cal features in other types of images, in particular, IR spectral band images,
which has been less investigated. The fact that IR images and visual images
have different characteristics, where IR images typically contain less high fre-
quency information, necessitates an independent study on the performances of
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common local detectors in combination with descriptors in IR images. In this
context, the contributions of this paper are:
1) the systematic evaluation of local detectors and descriptors in their combina-
tions under six different image transformations using established metrics, and
2) a new IR image database (http://www.csc.kth.se/~atsuto/dataset.html).

1.1 Related Work

For visual images several detectors and descriptors have been proposed and
evaluated in the past. Mikolajczyk and Schmid [1] carried out a performance
evaluation of local descriptors in 2005. The local descriptors were then tested on
both circular and affine shaped regions with the result of GLOH [1] and SIFT [2]
to have the highest performance. They created a database consisting of images of
different scene types under different geometric and photometric transformations,
which later became a benchmark for visual images.

A thorough evaluation of affine region detectors was also performed in [3].
The focus was to evaluate the performance of affine region detectors under differ-
ent image condition changes: scale, view-point, blur, rotation, illumination and
JPEG compression. Best performance in many cases was obtained by MSER [4]
followed by Hessian-Affine [5, 6] and Harris-Affine [5, 6].

Focusing on fast feature matching, another evaluation [7] was performed
more recently for both detectors and descriptors: the comparison of descriptors
shows that novel real valued descriptors LIOP [8], MRRID [9] and MROGH [9]
outperform state-of-the-art descriptors of SIFT and SURF [10] at the expense of
decreased efficiency. Our work is partly inspired by yet another recent evaluation
[11] involving exhaustive comparisons on binary features although those are all
for visual images.

IR images have been studied in problem domains such as face recognition
[12, 13], object detection/tracking [14, 15], and image enhancement of visual
images using near-infrared images [16], to name a few. With respect to local
features, a feature point descriptor was addressed for both far-infrared and vi-
sual images in [17] while a scale invariant interest point detector of blobs was
tested against common detectors on IR images in [18]. This work however did
not use the standard benchmark evaluation framework which kept itself from
being embedded in comparisons to other results.

The most relevant work to our objective is that of Ricaurte et al. [19] which
evaluated classic feature point descriptors in both IR and visible light images
under image transformations: rotation, blur, noise and scale. It was reported
that SIFT performed the best among several considered descriptors in most of
their tests while there is not a clear winner. Nevertheless, unlike their studies
on visual images, the evaluation was still limited in that it did not test differ-
ent combinations of detectors and descriptors while also opting out view-point
changes. Nor was it based on the standard evaluation framework [1, 3].

To the best of the authors’ knowledge, a thorough performance evaluation
for combinations of detectors and descriptors was yet to be made on IR images.
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Fig. 1: Examples of images, under various deformations, that are included in the data
set. Each image pair consists of a reference image, left, and a test image, right. (a,b)
Viewpoint, (c,d) Rotation, (e,f) Scale, (g,h) Blur, (i,j) Noise, (k,l) Downsampling.

2 Evaluation Framework

The benchmark introduced in [1,3] made well established evaluation frameworks
for measuring the performance of detectors and descriptors. We thus choose to
use those to ensure the reliability and comparability of the results in this work.

2.1 Matching

To obtain matching features we use nearest neighbours (NN). To become a NN
match the two candidates have to be the closest descriptors in descriptor space
for both descriptors. The distance between features are calculated with the Eu-
clidean distance for floating point descriptors whereas the Hamming distance is
applied to binary descriptors.

Further, a descriptor is only allowed to be matched once, also known as a pu-
tative match [11]. Out of the acquired matches, correct matches are identified by
comparing the result to the ground truth correspondences. The correspondences
are the correct matching interest points between a test image and a reference
image. For insight in how the ground truth is created see [1].

2.2 Region Normalization

When evaluating descriptors a measurement region larger than the detected
region is generally used. The motivation is that blob detectors such as Hessian-
Affine and MSER extract regions with large signal variations in the borders.
To increase the distinctiveness of extracted regions the measurement region is
increased to include larger signal variations. This scale factor is applied to the
extracted regions from all detectors. A drawback of the scaling would be the risk
of reaching outside the image border.
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In this work we implement an extension of the region normalization used
in [3] (source available) to expand the image by assigning values to the unknown
area by bilinear interpolation on account of the border values.

As detected regions are of circular or elliptical shape all regions are normal-
ized to circular shape of constant radius to become scale and affine invariant.

2.3 Performance Measures

Recall Recall is a measure of the ratio of correct matches and correspondences
(defined in [1]). The measure therefore describes how many of the ground truth
matches were actually found.

Recall =
#Correct matches

#Correspondences
(1)

1−Precision The 1−Precision measure portraits the ratio between the number
of false matches and total number of matches (defined in [1]).

1 − Precision =
#False matches

#Putative matches
(2)

Matching Score MS is defined as the ratio of correct matches and again the
number of detected features visible in the two images.

Matching Score =
#Correct matches

# Detected features
(3)

2.4 Database

We have generated a new IR image data set for this study. The images contained
in the database can be divided into the categories structured and textured scenes.
A textured scene has repetitive patterns of different shapes while a structured
scene has homogeneous regions with distinctive edges. In Figure 1, examples of
structured scenes are presented in the odd columns of image pairs and those of
textured scenes in the even columns of image pairs. Out of the standard images,
captured by the cameras, the database is created by synthetic modification to
include the desired image condition changes. An exception is for view-point
changes where all images (of mostly planar scenes) were captured with a FLIR
T640 camera without modification. The database consists of 118 images in total.

Deformation Specification The image condition changes we include in the
evaluation are six-fold: view-point, scale, rotation, blur, noise and downsampling.

– Images are taken from different view-points starting at 90◦ angle to the
object. The maximum view-point angle is about 50-60◦ relative to this.

– Zoom is imitated by scaling the height and width of the image using bilinear
interpolation. The zoom of the image is in the range ×[1.25-2.5] zoom.

– Rotated images are created from the standard images by 10◦ increments.
– Images are blurred using a Gaussian kernel of size 51×51 pixels and standard

deviation up to 10 pixels.
– White Gaussian noise is induced with increasing variance from 0.0001 to

0.005 if the image is normalized to range between 0 and 1.
– Images are downsampled to three reduced sizes; by a factor of 2, 4 and 8.
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2.5 Implementation Details

Local features are extracted using OpenCV [20] version 2.4.10 and VLFeat [21]
version 0.9.20 libraries. OpenCV implementations are used for SIFT, SURF,
MSER, FAST, ORB, BRISK, BRIEF [22] and FREAK [23] while Harris-Affine,
Hessian-Affine and LIOP are VLFeat implementations. Unless explicitly stated
the parameters are the ones suggested by the authors.

IR images are loaded into Matlab R2014b using FLIR’s Atlas SDK. When
loaded in Matlab the IR images contain 16 bit data which are quantized into
8 bit data and preprocessed by histogram equalization.

To calculate the recall, MS and 1−precision, this work utilizes code from [3].

Parameter Selection VLFeat includes implementations of Harris-Laplace and
Hessian-Laplace with the possibility of affine shape estimation. To invoke the
detectors functions there are parameters to control a peak and edge threshold.

The peak threshold affects the minimum acceptable cornerness measure for
a feature to be considered as a corner in Harris-Affine and equivalently a blob
by the determinant of the Hessian matrix in Hessian-Affine. According to the
authors of [5] the used value for the threshold on cornerness was 1000. As no
similar value is found to the Hessian-Affine threshold it is selected to 150. With
the selected threshold the number of extracted features is in the order of magni-
tude as other detectors in the evaluation. The edge threshold is an edge rejection
threshold and eliminates points with too small curvature. It is selected to the
predetermined value of 10.

Regarding the region normalization, we choose a diameter of 49 pixels whereas
41 pixels is chosen arbitrary in [1]. The choice of a larger diameter is based on
the standard settings in the OpenCV library for the BRIEF descriptor.

3 Evaluation Results

This section presents the results of combinations of the detectors and descriptors
which are listed in Table 1. The evaluation is divided into floating point and bi-
nary point combinations, with the exceptions Harris-Affine combined with ORB
and BRISK, and SURF combined with BRIEF and FREAK. The combination of
Harris-Affine and ORB showed good performance in [11], while BRISK is com-
bined with Harris-Affine as the descriptor showed good performance throughout
this work. SURF is combined with binary descriptors as it is known to outper-
form other floating point detectors in computational speed. Combinations which
are also tested in the evaluation on visual images in [7].

Evaluated combinations are entitled by a concatenation of the detector and
descriptor with hes and har being short for Hessian-Affine and Harris-Affine.
In case of no concatenation, e.g. orb, both ORB detector and descriptor are
applied.

The performances are presented in precision-recall curves for the structured
scenes, Figure 2, and for the textured scenes, Figure 3. We also present the
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average results of both scene types in recall, precision and MS for each transfor-
mation. Here the threshold is set to accept all obtained matches as a threshold
would be dependent on descriptor size and descriptor type.

3.1 Precision-Recall Curve

Recall and 1−Precision are commonly combined to visualize the performance
of descriptors. It is created by varying an acceptance threshold for the distance
between two NN matched features in the descriptor space. If the threshold is
small, one is strict in acquiring correct matches which leads to high precision
but low recall. A high threshold means that we accept all possible matches which
leads to low precision, due to many false positives, and a high recall since all
correct matches are accepted. Ideally a recall equal to one is obtained for any
precision. In real world applications this is not the case as noise etc. might
decrease the similarity between descriptors. Another factor arises while regions
can be considered as correspondences with an overlap error up to 50%, hence
descriptors will describe information in areas not covered by the other region.
A descriptor with a slowly increasing curve indicates that it is affected by the
image deformation.

3.2 Results

View-Point The effect of view-point changes on different combinations is illus-
trated in Figure 2a and Figure 2b for the structured scene in Figure 1a, while
the results of the textured scene in Figure 1b are presented in Figure 3a and
Figure 3b. The average of the performances against perspective changes in the
structured and textured scenes are presented in Table 2a.

From the result it is clear that the performance varies depending on the scene
and the combination. In the structured scene all combinations show dependency
to perspective changes by a slow continuous increase in recall. Best performances
among floating point descriptors are obtained by mser-liop and hes-liop.

Among binary combinations the best performance is obtained by orb-brisk,
for both scenes, with results comparable to the best performers in the floating
point family of combinations. Consecutive in performance are orb and orb-freak

indicating how combinations based on the ORB detector outperform other bi-
nary combinations based on BRISK and FAST.

Table 1: Included binary and floating point detectors and descriptors. Binary types
are marked with (*).

Detectors Descriptors

Hessian-Affine SURF LIOP BRISK*

Harris-Affine BRISK* SIFT FREAK*

MSER FAST* SURF ORB*

SIFT ORB* BRIEF*
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Fig. 2: Performance against view-point (a) & (b), rotation (c) & (d), scale (e) & (f),
blur (g) & (h), noise (i) & (j), downsampling (k) & (l) in structured scenes.

Rotation The results of the combinations due to rotation are illustrated in
Figure 2c and Figure 2d, for the structured scene in Figure 1c, and in Figure 3c
and Figure 3d, for the textured scene in Figure 1d. The average results are
presented in Table 2b.

We observe that the overall performance is much higher for rotation than for
view-point changes. The majority of combinations has high performance in both
the structured and textured scene. Figure 2d shows an illustrative example of
how different detectors and descriptors perform in different setups. For example
surf-brief, with BRIEF known to be sensitive to rotation, has a poor perfor-
mance while surf-freak and surf, still indicating a dependence to rotation,
have a greatly improved performance. The poor performance of surf-brief is
shown by its fixed curve at a low precision and recall in the lower right corner.

Overall best performance is achieved by hes-liop followed by har-liop

among floating point combinations, while for binary methods best performance
is obtained by orb-brisk, orb and orb-freak.

Scale The effects from scaling are shown in Figure 2e and Figure 2f for the
structured scene in Figure 1e, and in Figure 3e and Figure 3f for the textured
scene in Figure 1f. The average results are presented in Table 2c.

The combinations show a stable behavior with similar performance in both
scene types. Among floating point combinations, best performance is achieved
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Fig. 3: Performance against view-point (a) & (b), rotation (c) & (d), scale (e) & (f),

blur (g) & (h), noise (i) & (j), downsampling (k) & (l) in textured scenes.

by mser-liop succeeded by hes-liop.The top performers within binary combi-
nations are surf-brief, orb-freak and orb-brisk.

Blur The results of combinations applied to images smoothed by a Gaussian
kernel can be seen in Figure 2g and Figure 2h for the scene in Figure 1g, and
in Figure 3g and Figure 3h, for the scene in Figure 1h. Combinations average
results are presented in Table 2d.

Best performance among floating point combinations is attained by surf,
outperforming other combinations in stability, which is visualized by a horizontal
precision-recall curve. It is followed by sift and hes-liop. Overall best perfor-
mance can be found in the category of binary combinations, with surf-brief

as the top performer, outperforming floating point combinations. The consecu-
tive performers are orb-brisk and orb which achieve best performance among
corner based combinations, with comparable or better results than blob based
combinations.

Noise The performance of combinations applied to images with induced white
Gaussian noise is presented in Figure 2i and Figure 2j for the structured scene
in Figure 1i. The corresponding results for the textured scene in Figure 1j are
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Table 2: Average performance when using NN as matching strategy by the measures:
precision, recall and Matching Score (MS).

(a) Viewpoint

Combination Precicion Recall MS

har-orb 19.6 40.8 19.6

har-brisk 22.9 47.3 22.9

har-sift 21.5 45.1 21.5

har-liop 26.3 54.9 26.3

hes-liop 41.8 62.8 41.8

sift 14.6 39.6 14.6

surf 31.7 44.0 31.7

mser-liop 30.1 71.1 30.1

orb 39.2 56.2 39.2

brisk 20.7 42.2 20.7

surf-brief 37.6 51.8 37.6

surf-freak 27.8 38.2 27.8

orb-freak 38.1 55.3 38.1

orb-brisk 43.0 62.1 43.0

fast-brisk 15.4 28.6 15.4

(b) Rotation

Combination Precicion Recall MS

har-orb 59.1 76.8 59.1

har-brisk 63.7 82.5 63.7

har-sift 61.3 79.6 61.3

har-liop 74.1 96.4 74.1

hes-liop 84.9 96.6 84.9

sift 44.2 76.4 44.2

surf 62.7 75.3 62.7

mser-liop 67.0 88.0 67.0

orb 76.6 87.4 76.6

brisk 37.7 63.5 37.7

surf-brief 7.2 8.4 7.2

surf-freak 54.7 65.7 54.7

orb-freak 71.4 81.5 71.4

orb-brisk 79.2 90.4 79.2

fast-brisk 61.6 75.0 61.6

(c) Scale

Combination Precicion Recall MS

har-orb 44.6 75.7 44.6

har-brisk 48.8 82.9 48.8

har-sift 48.0 81.5 48.0

har-liop 53.6 90.9 53.6

hes-liop 65.0 94.0 65.0

sift 57.5 83.4 57.5

surf 60.7 81.2 60.7

mser-liop 74.2 97.0 74.2

orb 60.5 82.1 60.5

brisk 35.1 59.6 35.1

surf-brief 64.8 86.6 64.8

surf-freak 54.8 73.2 54.8

orb-freak 62.8 85.5 62.8

orb-brisk 62.7 84.9 62.7

fast-brisk 11.2 13.3 11.2

(d) Blur

Combination Precicion Recall MS

har-orb 19.5 30.9 19.5

har-brisk 29.8 47.8 29.8

har-sift 20.2 32.0 20.2

har-liop 24.5 38.4 24.5

hes-liop 53.7 57.3 53.7

sift 35.7 60.9 35.7

surf 63.4 66.7 63.4

mser-liop 24.4 33.0 24.4

orb 60.4 71.0 60.4

brisk 21.5 53.4 21.5

surf-brief 82.4 86.5 82.4

surf-freak 62.8 66.0 62.8

orb-freak 38.7 45.6 38.7

orb-brisk 67.9 79.6 67.9

fast-brisk 33.1 34.2 33.1

(e) Noise

Combination Precicion Recall MS

har-orb 51.9 65.2 51.9

har-brisk 67.9 85.8 67.9

har-sift 51.1 64.1 51.1

har-liop 68.7 86.8 68.7

hes-liop 76.5 88.8 76.5

sift 45.7 72.9 45.7

surf 73.5 80.7 73.5

mser-liop 69.2 86.5 69.2

orb 81.7 91.0 81.7

brisk 47.5 62.3 47.5

surf-brief 79.1 86.9 79.1

surf-freak 69.6 76.5 69.6

orb-freak 76.1 84.7 76.1

orb-brisk 83.8 93.4 83.8

fast-brisk 63.0 65.1 63.0

(f) Downsampling

Combination Precicion Recall MS

har-orb 47.6 68.2 47.6

har-brisk 59.4 86.2 59.4

har-sift 51.0 73.5 51.0

har-liop 60.8 88.6 60.8

hes-liop 65.3 88.3 65.3

sift 26.9 36.7 26.9

surf 78.2 85.8 78.2

mser-liop 39.5 72.0 39.5

orb 28.3 53.2 28.3

brisk 15.9 42.7 15.9

surf-brief 82.4 90.5 82.4

surf-freak 61.5 67.8 61.5

orb-freak 27.2 50.5 27.2

orb-brisk 29.8 55.8 29.8

fast-brisk 0.0 0.0 0.0

shown in Figure 3i and Figure 3j. The average results of the two scenes against
noise are presented in Table 2e.

The overall performance for various combinations is relatively high. Best
performance among floating point combinations are attained by hes-liop and
surf, stagnating at about the same level of recall in the precision-recall curves for
both scenes and in Table 2e. The overall best performance in the case of induced
noise is achieved by orb-brisk followed by orb and surf-brief showing better
performance than the floating point category.

Downsampling Last, we evaluate the effect on combinations caused by down-
sampling and present the results in Figure 2k and Figure 2l for the structured
scene in Figure 1k. For the textured scene in Figure 1l the results are presented
in Figure 3k and Figure 3l. The obtained average results for NN matching are
presented in Table 2f.

Studying the precision-recall curves of floating point methods and Table 2f,
the best performers on downsampled images are surf, hes-liop and har-liop

and har-brisk. Among binary methods the best performance is obtained by
surf-brief, with better results than surf, with surf-freak, orb-brisk and
orb to come after. MSER does in Figure 2k reach a 100 % recall which can be
explained by that very few regions are detected.
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4 Comparisons to Results in Earlier Work

4.1 IR images

The most related work in the long wave infrared (LWIR) spectral band [19] shows
both similarities and differences to the results in this work. Best performance
against blur is in both evaluations obtained by SURF. For rotation and scale best
performance is achieved by SIFT in the compared evaluation while LIOP, not
included in mentioned evaluation, shows highest robustness to the deformation
in this work.

Among binary combinations [19] presents a low performance for ORB and
BRISK with their default detectors. In this work the low performance of the com-
bination of BRISK is observed while the combination of ORB is a top performer
among binary methods. An important difference between these two evaluations
is that we have performed a comparison of numerous detector and descriptor
combinations, which have led to the conclusion of a good match of the ORB
detector and BRISK descriptor.

4.2 Visual Images

In the evaluation of binary methods for visual images in [24], it is obvious how
the combination of detector and descriptor might affect the performance. When
evaluating descriptors with their default detectors, BRISK and FREAK perform
much worse than when combined with the ORB detector. Best overall perfor-
mance was obtained by ORB detector in combination with FREAK or BRISK
descriptors and ORB combined with FREAK is the suggested combination to
use. In this work we have observed that BRISK with its default detector per-
formed worse, in most categories the worst, compared to when in combination
with the ORB detector while the combination of ORB and FREAK has lower
performance in the LWIR spectral band. With the high performance of the com-
bination of ORB and BRISK we can conclude that the choice of combination
has large effect on the performance both in visual images and IR images.

Another similarity is the high performance by Hessian-Affine with LIOP
in [8] and in this work as well as by the combination of SURF which shows high
performance in both spectral bands.

5 Conclusions and Future Directions

We have performed a systematic investigation on the performance of state-of-
the-art local feature detectors and descriptors on infrared images, justified by
the needs in various vision applications, such as image stitching, recognition,
etc. While doing so, we have also generated a new IR image data set and made
it publicly available. Through the extensive evaluations we have gained useful
insight as to what local features to use according to expected transformation
properties of the input images as well as the requirement for efficiency. It should
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be highlighted that the combination of detector and descriptor should be con-
sidered as it can outperform the standard combination. As the consequence of
our comparisons at large, Hessian-Affine with LIOP, and SURF detector with
SURF descriptor have shown good performance to many of the geometric and
photometric transformations. Among binary detectors and descriptors competi-
tive results are received with the combination of ORB and BRISK.

Compared to the most relevant work by Ricaurte et al. [19] this work eval-
uated performances against viewpoint changes, the LIOP descriptor, float type
detectors as Hessian-Affine and Harris-Affine including different combinations of
detectors and descriptors, filling the gap of evaluations for IR images.

In future research we will extend the study from those hand crafted features
to learning based representations such as RFD [25] as well as those [26, 27]
obtained by deep convolutional networks which were shown to be very effective
for a range of visual recognition tasks [28–30]. Fischer et al. [31] demonstrated
that those descriptors perform consistently better than SIFT also in the low-
level task of descriptor matching. Although the networks are typically trained
on the ImageNet data set consisting of visual images, it will be interesting to
see if such a network is applicable to extracting descriptors in IR images (via
transfer learning), or one would need yet another large data set of IR images to
train a deep convolutional network. Nevertheless, the study in this direction is
beyond the scope of this paper and left for the subject of our next comparison.
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