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Abstract - Image processing of natural scenes is very processing-
intensive.  Through  the  localization  of  salient  regions,  later
recognition  processes  can  take  place  more  efficiently,  by
focusing computation-intensive processing on several areas. Our
approach to designing an artificial visual system is inspired by
early  filtering  mechanisms  in  the  human visual  system.  Our
technique  of  calculating  salient  regions  is  computationally
efficient and flexible, and can be extended to other applications.

Index Terms – Intelligent Robotics, Image Processing, Robot
Vision, Feature Extraction

I. INTRODUCTION

Field  missions  rely  on  an  effective  analysis  of  the
environment.  The greatest  problem therein  is to reduce the
data  to  make  image  processing  more  feasible.  The  most
important  information is probably visual and for vision, the
image processing of natural  features in  humans  provides a
source for many useful ideas for filtering mechanisms. In our
research,  we try  to  isolate  some  mechanisms  used  in  the
human visual system in search tasks and to implement them
as filtering mechanisms, for an artificial visual system that is
applied in autonomous robots. 
Very roughly,  the human  visual  system works by choosing
regions in the visual field that are of potential interest. In our
research,  we  call  these  points  “attention  points”,  a  word
coined in Japanese research (compare [23]). Conceptions very
similar  to ours of attention points have been given various
names before, e.g.  human regions of interest  (hRoI [15,26],
saliency map [17,18],  or  location maps  [1].  We refer  by it
generally  to  areas  in  the  visual  field  that  attract  more
processing capacities in  human  brains in  overt  (bottom-up)
visual  attention  tasks than  do other  areas.  Attention  points
may be indicating danger, food, goal relevance, etc. Based on
the representation of attention points,  urgent  or vital  target
objects can be extracted. The speediness and accuracy of that
process in humans originates probably in the characteristics
of  the  distribution  of  spatial  attention  in  these  processes
(compare [7]). 
Treisman's feature integration theory (see [18]) has been the
most influential model of human attention until recent years.
According to Treisman,  in  a first  step to visual processing,
several  primary  visual  features  (such  as  color,  orientation,
and  intensity)  are  processed and  represented  with  separate
feature maps that are later integrated in a saliency map that
can  be  accessed  in  order  to  direct  attention  to  the  most
conspicuous areas [17,18]. 

Psychological and computational models for visual attention,
as  in  Wolfe's  Guided  Search  [21]  and  Treisman's  Feature
Integration Model [18], conceive of the human visual system
as  having  two stages in  anatomy and  physiology (compare
[22], for a recent review of the research).  Thus, the human
visual system is devided into an initial processing stage (more
or less data-driven) and a stage that includes more high level
knowledge (compare the guided search paradigm [21]). The
interaction of both stages leads to the selection of candidate
points  (attention  points,  saliency maps,  or  hRoI,  etc.)  and
from them to the subsequent  extraction of targets from the
visual display for further analysis and image recognition. The
first stage performs in a fast and parallel manner and carries
out  pre-attentive  computations  to  detect  and  highlight
conspicuous image locations for pre-attentive segmentation. It
extracts visual features that in the subsequent stage are being
analyzed.  This  second  stage  processes  in  serial  and  more
slowly, and is characterized by a more conscious guidance. 
Our model works in analogy to the human system by finding
regions of high saliency in an image, attention points, that are
to be analyzed in more detail. It is mimicking several aspects
that  are  thought  to  make  human  attention  so  fast  and
effective. We will come to these aspects in sections III and IV
and show some preliminary evaluation of the model in section
V. 

II. A SYSTEM FOR ARTIFICIAL  VISION

In autonomous robots the natural environment is taken in by
a camera. These complex data have to be filtered, in order to
process only data, that are somehow important, ignoring data
that are unnecessary. 
We propose an architecture of artificial  vision  to make the
recognition process both faster and less-error prone. We take
a stance that is inspired by means by which the human visual
system processes complex natural environments. Doing so we
incorporated many psychological and neuroscientific findings
in order to approach human performance in attention point
selection and have more effective autonomous robots. 
Our  architecture,  similar  to  Treisman's  model,  calculates
attention  points   by a  combination  of feature  maps.  These
attended ressources are  exploited and finally targets can be
extracted, objects be perceived and identified. 
We distinguish  conceptionally early and later  processes (or
stages) in visual processing, attention point selection (stage 1)
and processes that  set on attention points,  i.e.  processes for
directing  attention  and  higher-level  processes  for  object
recognition  (stage  2).  Fig.1  illustrates  a  conceived  input-



output  model  of  the  visual  information  processing  of  our
architecture. 

By bottom-up perception attended locations are selected and
then higher-level factors such as experiences and desires and
the like influence (e.g. inhibit) the locations that are attended
and thereby where the information is acquired from. In the
following  paragraphs  stage  1  and  stage  2  are  briefly
explained. 
(i) Stage  1  mechanisms  work  data-driven,  identify  the

locations which draw attention and store a representation
of attention  points  (similarly to the  saliency map).  This
representation  includes  an  attentional  gradient,  i.e.  it
comprises regions that are perceived from highly salient
over somehow salient,  to not-salient-at-all.  Furthermore,
as  the  saliency map  arises  from the  parallel  activation
relaxation  process  of  neural  networks,  it  has  different
preferences over time. 

(ii) Stage 2  processes are  the  means  by which  targets  (e.g.
objects,  or  affordances) are extracted from the  attention
points and attention can be guided for information uptake
from other visual areas. 

In  this  article  we  are  concerned  with  the  bottom-up
mechanisms  that  lead  to  the  selection  of  attention  points.
Later on, we want to incorporate high-level processes in our
model  to achieve visual  search  and  object recognition.  We
think  that  bottom-up and  top-down processes perform in  a
highly interactive fashion, in a way that bottom-up processes
lead  to  top-down  processes  and  top-down  processes  guide
bottom-up processes (compare  [20]).  Although  we start  by
including bottom-up (stage 1) processes, we strive to include
an  interactive component  in  our  architecture  and  we think
that  in  a  later  step  many  parameters  in  the  processing,
described in this paper, can be tuned according to high-level
processing (cf. [8]). 

III. REALIZATION OF THE ATTENTION POINT
SELECTION

We  implemented  feature  dimensions,  such  as  color
(luminance), the area (i.e. size), shapes, position and others.
Some of these dimensions apply to regions rather than single

points.  Therefore,  before  a  selection  of  attention  points  is
feasible,  perceptional  organization  by  segmentation  and
clustering  has  to  occur,  determining  which  points  can  be
grouped  together  and  which  locations  belong  together  and
form a sufficiently coherent region. 
Our model first performs an image segmentation by applying
edge feature detectors (Laplacian of the Gaussian).  There is
strong  evidence  and  it  is  commonly  assumed  that  human
center-off and  center-on  cells,  held  responsible  for  feature
detection,  work  by  a  similar  principle  (see  [5],  or  [3]).
Afterwards  we  apply  a  growing  regions  algorithm  for
grouping  neighboring  points,  based  on  luminance,  in  a
pyramidal filtering approach [similar  to 25].  Sample results
of the segmentation are shown in fig. 2 and fig. 3. 
Although the selection process relies heavily on knowledge
and  experience,  we assume  fixed  stimulus  variables  (until
implementation  of  the  second  level)  and  we  define  an
evaluation function for attention points including several facts
from psychological experiments, relying as broad a research
as we can and experimenting with the features. 
The  research  is  very  diversified  and  many  results
controversial.  E.g.  in  many studies  on  visual  features  that
correlate  with  saliency in  overt  attention,  the  stimuli  have
been simplified to geometric figures or Gabor patches, e.g., in
order to exclude higher order properties of complex stimuli.
Therefore,  it  is not  clear,  whether  results,  obtained in  such
experiments  can be transferred to natural  images.  Here, we
tried to concentrate on few visual  features that  had a good
standing  in  research  and  on  the  other  hand,  achieved
subjectively the best results. 
For several features we used the formula for Stevens' power
law, 
S = kIa, 
which  relates  the  intensity  of  a  stimulus  to  its  perceived
strength.  S is  the  perceived  strength  of  sensation,  k is  a
constant, I is the stimulus intensity, and a is an exponent. a is
dependent  on  the  type  of  stimulus,  experimentally
determinable. This we transformed to 
log S = log k + a  log I
which comes as the form y=m+bx, with the original exponent
a as the slope, k as the y intercept, and log I as the intensity of
the physical stimulus (compare [16]). 
We go on to discuss especially the importance of six stimulus
dimensions for attracting bottom-up attention. These are are
area,  the  degree  of  circular  rate  (shape),  color  hue  and
brightness,  aspect  ratio,  centrality  (and  distance).  Below,
these six stimulus dimensions are explained and we comment
on their implementation. 

1.) Area (size)  : It has been repeatedly experimentally shown
(e.g.  [2])  that  the  bigger  the  area  of a  target  the  more
intense  the  stimulus.  Based  on  [16]  we  estimated
magnitude saliency, with a= 0.8. 

2.) Color  hue  and  luminance  :  Saliency  depends  on  color
properties. Of the surface colors, red and yellow have been
attributed high  saliency. Shinzaku and others showed in
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an experiment on saliency of colors (reported in [13])  that
red  and  yellow  are  the  most  salient  colors  and  we
increased the  intensity of red  and  yellow in  our  model.
Many experiments in the past (e.g. [14]) have shown that
luminance  contrast  correlated  positively  with  stimulus
intensity.  However,  Einhaeuser  and  Koenig  showed
recently that  strong  local  reductions  luminance contrast
attract  fixations  [19].  We included  grey-level difference
with a=1 (assumed a perceptually linear space). 

3.) Circular ratio (shape)  : According to Attneave (reported in
[12]), humans attend more to irregular and complicatedly
shaped  figures  rather  than  to  simple  geometric  forms,
such  as  circles and  squares.  We calculated  the  circular
ratio that measures the regularity of shapes by
R =    4πA   

   l2 , where R is the circular ratio of an area
A  and circumference l. We set a=-0.43 in Stevens' power law
(compare [16]). 

4.)  Aspect ratio (ratio of length and breadth): According to a
research by Clark (reported in [4]), the ratio of the edges
of quadrilaterals  a and b (where length  and breadth  are
exchangeable)determines  the  saliency of  such  a  figure.
The more a figure stretches (i.e. the more a/b differs from
1) the more attention is attributed to the figure. Therefore,
we took the ratio of the extension of a figure over the x
and y axes. We set a=0.26 (compare [16]).

5.) Position  (centrality)  :  In  an  experiment  conducted  by
Higuchi  [2],  the  visual  screen  was  divided into  nine
rectangles  and  subjects  chose the  targets  in  the  middle
rectangle  with  a  higher  frequency.  Also  Elias  et.  al.
showed that  TV-viewers eyes fixate on the center of the
screen  in  most  cases  [24].  We  calculate  the  euclidian
distance from the center and set a=-0.61 (compare [16]).

6.) Distance from the observer  : We are planning  to include
depth information later on. 

Averaging  or  addition  of factors  would not  allow extreme
values  for  a  particular  feature  to  contribute  proportionally
more to the computed saliency. On the other side, excessive
weight  of some  values,  could  bias  the  calculation  and  be
affected  by  noise  very  easily.  We  therefore  estimated
reasonable bandwiths  for each feature values,  then  squared
and summed the so-obtained feature values. 

IV. DISCUSSION

We built  our  system according  to the  principles  that  were
stated above. We have tested our technique for a wide variety
of images and results have been promising. 
The  computation  works  very  efficient.  After  the
segmentation,  the localization of salient regions takes about

15 seconds in matlab on a Windows PC with 1.2 Ghz and 256
MB RAM. 
In  order  to  compare  it  to  human  attention  point  selection
Muto and Kunii conducted a first experiment that is described
in [9] and [10]. In the experiment, the stimuli were images of
natural  scenes (see fig. 8 for a sample).  60 human subjects
had to choose three regions they thought to be most salient
and  as  first,  second,  and  third  preference.  In  the  appendix
Fig.  8  shows  an  example  for  the  stimuli  used  for  the
experiment.  Fig.  7  shows how many people had  particular
regions  among  the  first  three  choices for  a  particular.  For
many  pictures,  Muto  and  Kunii  could  obtain  saliency
gradients generated by the model that were very similar to the
distribution of the results in  experiment 1. 
In a follow-up psychophysical experiment conducted by Muto
[11],  images  depicting  geometric  figures  or  natural  scenes
were presented to subjects on a screen. 20 subjects were each
looking at  400 pictures in  total,  100 for each of the tested
feature dimension.  The tested feature dimensions were area
(size),  circular  degree (shape),  aspect ratio (length/breadth),
and position (refer to section 4 for definitions and see figures
4,5,6  for  sample  stimuli).  The  pictures  showed  a  target
stimulus (comparison stimulus) next to a second figure that
was a  standard  (standard  stimulus)  for  which  the  subjects
were told it had a saliency value of 100. The subjects had to
weight  the  comparison  stimulus  according  to  how  they
thought  it  differed  from  the  standard  stimulus  that  was
displayed next  to  it  (compare  figures  4,5,6).A  comparison
with the images showed that our system matches fairly well to
the human attention point selection in the used set of images,
though  the  data  are  not  consistent  enough  to  allow  a
prediction of matches for arbitrary images and more testing,
probably  using  eye-trackers,  is  needed  to  give  a  reliable
evaluation. 

V. CONCLUSIONS

In this paper, we presented our model for robot vision that is
inspired by many fascinating ideas about the human  visual
system.  The  model  breaks  down  the  problem  of  image
processing  by  rapidly  and  efficiently  finding  conspicuous
locations (attention points) to be analysed in more detail. We
outlined  how  we identify  salient  regions.  Further,  in  two
experiments,  for  a  set  of  pictures  of  natural  scenes  and
geometric  figures,  attention  points  that  were  chosen  by
humans were evaluated,  the attention points generated by our
model compared. The attention points chosen by our model
are generally very close to human intuition. 
Our  system  could  find  future  application  in  autonomous
robots and could possibly facilitate tasks such as pathfinding,
navigation, position sensing, and object recognition. It could
further be used for  active visual perception and attention in
real-time, and automated target identification and acquisition
systems. 



VII. RESEARCH PERSPECTIVE

There are several directions in which we aspire to extend our
research in future, several of them already indicated earlier in
this paper. We want to improve our model and approach the
human  visual  system in  performance  and  experiment  with
different feature dimensions. 
What we are working on in parallel is to combine our stage 1
with  stage  2  processing  that  is  being  developed  in  our
laboratory in order to build up towards a system which can
perform many more tasks. We believe that the effectiveness of
the human  visual  system originates in the characteristics of
the attention point selection, with the interaction of bottom-
up  early  processes  and  a  top-down  processes  largely
contributing (by changing parameters or selection weights or
by inhibiting lower processes; c.f. [8]). 
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APPENDIX

Table 1 - a compilation of some of the exponents measured
for Stevens' power law (taken from [16])

Fig.2: An illustration of the image segmentation of our
model

Fig.3: Another illustration of the image segmentation

Fig.4: An example for the stimuli used in experiment 2. The
independent variable was size. 

Fig.5: Another example of the stimuli from experiment 2.
The independent variable was aspect ratio. 



Fig.6: Example for the stimuli in experiment 2.  Independent
variable was circular ratio (shape). 

Fig.7: Sample answers in experiment 1. People were asked to
circle on the paper the three regions they found most salient
in  the  picture(shown below, Fig.8).  The  graph  shows how
many subjects chose a particular region (here called area) as
one  of  the  three  most  salient  regions.  Most  subjects  had
similar  choices.  This  was more  or  less consistent  over  the
trials. 

Fig.8: The stimulus corresponding to Fig.7, segmented by the
model.  Most  people  chose  regions  4,3,  and  2  to  be  most
salient.  For  many  pictures  we obtained  saliency  gradients
generated  by  the  model  that  were  very  similar  to  the
distribution of the results of experiment 1. 


