
How to Build a Linux Cluster for Scientific

Computing

Benjamin Auffarth

Institute for Bioengineering of Catalonia (IBEC),

Barcelona Science Park,

C/Josep Samitier 1-5,

08028 BCN, Spain

January 15, 2009

Abstract

A beowulf cluster is a cluster of Linux computers designed to run

computing jobs in parallel. This article is going to give an up-to date

example of assembled hardware, and installed programs (plus config-

uration). Finally there will be explanations of how to run processes

in parallel in computing languages such as matlab and R. After the

computers are setup we may want to transfer the configuration to

other computers, a process which is called cloning. In the last section,

we will deal with profiling. keywords: scientific computation, cluster,

1

beowulf cluster, linux, matlab, R

1 Introduction

The improvement of a single processor performance seems to have reached its

limits. As a solution the emergence of multi-core and many-core processors

can give a better performance and reduce problems like power comsump-

tion or heat dissipation. Multiprocessing in scientific computing however

still seems to present a challenge for many research groups, which buy ex-

pensive mainframe or servers instead of investing their money in parallel

architectures. This is even more astonishing, given that many computations

in scientific research are embarrassingly parallel, called so, because each run

or iteration is independent from others and in principle all could run in paral-

lel. Examples are bootstrapping or genetic algorithms. Other computations

can be parallelized by rewriting algorithms.

The idea is instead of buying one huge expensive computer, many cheap

computers and have them compute in parallel. If these computers are con-

nected in a network and run Linux1, the architecture is called a beowulf

cluster (Sterling et al., 1995; Ridge, Becker, Merkey, & Sterling, 1-8 Feb

1997). The advantage of a beowulf with respect to server workstations or

mainframes is in the price/performance relationship. While this article may

1An important consideration in running an open–source operating system is the control

and transparency it gives the advanced user. Some beowulfs run BSD, however for hard-

ware and software compatibility, it can be expected that Linux is more straightforward.

2

serve as a short introduction, for broader overviews, references (Brown, 2004)

and (Sloan, 2005) can be recommended.

A basic “recipe“ for a cluster might be: (Brown, 2004)

1. Buy a pile of MMCOTS PCs (“pile of PCs“).

2. Add a network interface card (NIC) to each.

3. Add GNU/Linux (or BSD) as operating system and middle-ware to

support distributed parallel computing.

4. Parallelize your code.

We will come to each step in turn. In the next section we will see an

example of some hardware with actual prices (in euros). Then we weal deal

with issues of installation and configuration, before we come to running pro-

cesses in parallel using numeric computing environments MATLAB and R.

When everything is set up for two machines, we want to extend our beowulf

to more machines (cloning of machines). In the end, we will look at profiling.

2 Hardware

A lot of attention should be focused on the hardware assembly. There are

many trade-offs and considerations of speed bottlenecks. If you are a newbie

in the beowulf business, you should be careful to settle on a vendor with

experience, where they can give you good recommendations.

Which parameters of hardware are important depends on the computing

tasks you want to dedicate the beowulf to. However you probably need above

3

all fast and lots of memory, a fast bus system, fast and lots of processor cache.

As a general rule, in your computations you should try avoid accessing the

hard disk very much, however, if you need a lot of access to the hard disk,

you should look for one with high revolutions. Hard disks are one of the

components that fail most, so do not try to make a bargain but rely on your

experience with hard disk vendors. Bye a fast ethernet card and a good

switch.

Here is a list of hardware, which we assembled at the artificial olfaction

lab at the Institute for Bioengineering of Catalonia. Prices are as of May

2008 and do not include taxes.

We bought 8 computers with these parameters:

• Intel Core 2 Duo Quad Q6600 2.4 Ghz FSB1066 8MB

• Chipset Intel X38 / Intel ICH9R

• 4 GB RAM DDR3 1066 (in 2x2Gb).

• 2 x PCI Express x16, 1 x PCI Express x1, 2 x PCI-X y 1 PCI

• Marvell88E8056 Dual Gigabit LAN controller

• Realtek ALC882M 7.1 chanels (sound

• 6 USB 2.0 ports y 1 IEEE1394

• VGA 512MB Gforce8400GS PCI-e

• 160 GB de Disco Duro SATA II 3 Gb.

• DVD R/W, Multicard reader/writer

• 19“ rack computer case, 4U, with frontal lock.

• 550W Server Guru

4

These machines cost us 923 euros each, a reasonable price for a computer

with these characteristics.

In order to operate 8 computers efficiently you need a monitor that you

can connect to all machines. Better even a KVM (keyboard video mouse),

which allows you to switch keyboard, monitor, and mouse between different

computers by button press. A KVM with 8 ports cost us 850 euros. The

KVM, as the name says, serves as keyboard, monitor, and mouse, and did

great service during configuration.

We also need to connect all the computers among themselves: A switch

with 16 ports, 10/100/1000, comes at 162 euros.

We want to put all the hardware somewhere, where it is save and where

it has good conditions of cooling and safety: a 19 inch rack. A rack which

can take up 42 units cost us 500 euros.

Don’t be surprised to be charged extra for cables, screws, and multi-outlet

power strips. Rails allow you to stack in and take out your computers like

drawers. Additional cost: about 700 euros.

Also on top, the VAT, in Spain 18%, which makes about 1500 euros.

Total cost of the beowulf: about 11,090 euros.

In order to connect your computers, you need power lines that can support

them. The configuration above needs about 4.5kWatt and we had to wait

about 2 months for technicians to fix the capacity (that’s Spain).

5

3 Installation, Configuration, and Adminis-

tration

In this section, you will find basics of installation, configuration, and adminis-

tration. Most important here: 1. network setup with DHCP, 2. sharing files

over the network with the network file system (NFS)(Shepler et al., 2003).

After we cover this, we will come to some more general ideas of administra-

tion.

Most beowulfs use a network structure of master (also network head) and

slaves, so that computing jobs are going to be distributed from the master

to the slaves. All machines of the cluster are connected to the switch. The

head will additionally interface with an external network. Master and slaves

will share user data over the network.

Practically this means, that the master (or head node) has two network

interfaces (say eth0, eth1), one connected to the outside world and one con-

nected to the cluster intranet over a network switch. All other computers

computers (the slaves or nodes) are connected to the switch. In order to

start processes on the cluster a user logs in on the master and spawns the

processes from there to the slaves.

It is easiest, to only install the master and one slave (called golden slave)

in a first step. Later, after setting up master and golden slave, we will

dedicate a section to cloning, which is the process of creating machines that

are identical to the golden slave.

6

3.1 Operating System and Software

We could run our beowulf on any Linux distribution. Some Linux distribu-

tions are specialized on beowulf clusters, such as Rocks Clusters(Papadopoulos,

Katz, & Bruno, 2003), which can facilitate the installation and administra-

tion of clusters. However, while Rocks helps you as a beginner, you will have

to learn the fundamentals anyways some time or later. Rocks clusters (v.

5) didn’t recognize the network cards of our computers. We also tried the

Ubuntu Server Edition (Hardy)(Ubuntu Server Edition, 2008), which didn’t

recognize the CD-ROM. Fedora 9(Fedora project , 2008) recognized all hard-

ware at once, so this was our distribution of choice.

The Fedora distribution is available on the internet free of charge. All

programs we need are included in the standard Fedora installation or can

be installed using the Fedora package manager2. For master and slaves, we

started from vanilla installations and added then some more software from

the Fedora repositories.

Here is a selected list of software you might want to consider: the ssh

server(Campbell et al., 2008), vim(Moolenaar, 2008), emacs(Stallman &

Foundation, 1993), the gnu toolchain with compilers for C/C++ and For-

tran(Stallman & Foundation, 1992), gnu screen(Laumann et al., 2008), subversion(Collins-

Sussman, Fitzpatrick, & Pilato, 2004), git(Torvals & Hamano, 2008), some

texlive(TeX Live – TeX User Group, 2008) latex(Lamport, 1994) packages,

2Except for mpich2 which needs to be compiled and Matlab, which is a commercial

product.

7

GNU R(Ihaka & Gentleman, 1996), GNU octave(Eaton, 1997), python(Van Rossum

& Drake, 2003), perl(Wall, Christiansen, & Orwant, 2000), java runtime and

development kit(Gosling, Joy, Steele, & Bracha, 2000), maxima(Schelter et

al., 2008), gnu scientific library(Galassi et al., 2002), blas(Dongarra, Du Croz,

Hammarling, & Duff, 1990), graphviz(Ellson, Gansner, Koutsofios, North, &

Woodhull, 2002), gnuplot(Williams, Kelley, et al., 1998).

All commands and instructions refer to Fedora 9, however should have

close equivalents in other Linux distributions.

3.2 Networking

We want the computers to work in a local network. The easiest way to setup

the network so it can be extended fast in the clustering step (as described

in the last section) is by dynamic addresses (DHCP) on the basis of physical

addresses of slaves’ network interfaces. DHCP simplifies the installation of

new nodes, because the mac address and hostname is the only thing that is

different among the nodes and the DHCP server on the master can manage

a new node by a new entry into the configuration file.

In this example we will set up the network IPs to 192.168.1.1 until

192.168.1.8, where 8 is the master.

slave(s):/etc/sysconfig/network-scripts/ifcfg-eth0

DEVICE=eth0

ONBOOT=yes

BOOTPROTO=dhcp

master:/etc/dhcpd.conf

8

opt ion subnet−mask 2 5 5 . 2 5 5 . 2 5 5 . 0 ;

opt ion broadcast−address 1 9 2 . 1 6 8 . 1 . 2 5 5 ;

opt ion r ou t e r s 1 0 . 5 . 1 7 0 . 2 5 4 ;

de f i n e i n d i v i d u a l nodes

subnet 1 92 . 1 6 8 . 1 . 0 netmask 255 . 255 . 255 . 0 {

group {

de f i n e a l l s l a v e s , the master (head node) i s has a s t a t i c ip

address

host node0{

hardware e the rne t 00 :1E: 8C: 3 0 :AC:2A;

f ixed−address 1 9 2 . 1 6 8 . 1 . 2 5 0 ;

}

host node1{

hardware e the rne t 00 :1E: 8C: 3 0 : B0 :A1 ;

f i xed−address 1 9 2 . 1 6 8 . 1 . 1 ;

}

#. . . Here you can put more nodes . Make a l i s t o f the mac

addres se s o f a l l your machines and enter them in the l i s t .

}

}

ignore p e t i t i o n s from second network i n t e r f a c e

subnet 1 0 . 5 . 1 7 0 . 0 netmask 255 . 255 . 255 . 0 { not au tho r i t a t i v e ; }

The idea is to give to slaves the names nodei corresponding to their

ip address 192.168.1.i. Note that the DHCP server provides IP addresses

for the other machines not for itself. The master you give a static ip ad-

dress (192.168.1.250 here). In red hat based distributions this is config-

ured in /etc/sysconfig/network-scripts/ifcfg-eth0 or /etc/sysconfig/network-

9

scripts/ifcfg-eth1. I configured eth0 for the organization network and eth1

for the cluster intranet.

Example files:

/etc/sysconfig/network-scripts/ifcfg-eth0 corresponds to your organiza-

tion network settings.

DEVICE=eth0

ONBOOT=yes

. . .

/etc/sysconfig/network-scripts/ifcfg-eth1

DEVICE=eth1

ONBOOT=yes

BOOTPROTO=s t a t i c

NETWORK=192.168 .1 .0

IPADDR=192.168 .1 .250

TYPE=Ethernet

For the slaves, the interface to the cluster intranet is as follows:

DEVICE=eth0

ONBOOT=yes

BOOTPROTO=dhcp

NETMASK=255.255 .255 .0

NETWORK=192.168 .1 .0

BROADCAST=192.168 .1 .255

DNS1= . . .

DNS2= . . .

If you don’t use a DNS service on your head you use the DNS service of

the network of your organization. /etc/hosts

10

1 2 7 . 0 . 0 . 1 l o c a l h o s t . loca ldomain l o c a l h o s t

: : 1 l o c a l h o s t 6 . loca ldomain6 l o c a l h o s t 6

192 . 168 . 1 . 2 50 node0

192 . 1 6 8 . 1 . 1 node1

. . . add more names o f machines here

Note in /etc/hosts that in the loopback line (first line) the hostname is not

given in order to avoid problems with message protocols (PVM, MPI). You

need to activate ip forwarding on the head in order to have internet access

on all machines. You enable the firewall and include masquerading on the

network interface to you cluster. This you do by changing the /etc/syscon-

fig/iptables file or using some user interface, e.g. system-config-firewall on

red hat based systems. Be careful not to make your firewall too restrictive

as this can cause problems. In the /etc/sysconfig/network you need to have:

NETWORKING=YES

IPFORWARD=YES

HOSTNAME=nodei

. . . where i is your node number.

You have to reinitiate the network services and startup the dhcp server

daemon (dhcpd). To have dhcpd startup at boot, in fedora the ntsysv pro-

gram allows you to search a list and mark the corresponding entry. You may

want to setup your printers on master and slave (you can copy an existing

printer configuration recursively from /etc/cups e.g. from your local office

desktop computer).

11

3.3 Shared Directories and SSH

We want to share data among computers. Network File System (NFS) setup

is remarkably simple. You basically have to install the package, start the nfs

services, and change two files. Let’s see the example files:

on the master:/etc/export

/home/ 192 . 1 6 8 . 1 . 0 / 2 5 5 . 2 5 5 . 2 5 5 . 0 (rw , sync , no root squash)

/ root 1 9 2 . 1 6 8 . 1 . 0 / 2 5 5 . 2 5 5 . 2 5 5 . 0 (rw , sync , no root squash)

on the slave(s):/etc/fstab

192 . 1 6 8 . 1 . 2 5 0 : / home /home n f s rw , hard , i n t r 0 0

1 92 . 1 6 8 . 1 . 2 5 0 : / root / root n f s rw , hard , i n t r 0 0

Sharing /home and /root directories password-less ssh login is simplified.

For every user that need access to slaves the following achieves the goal:

> ssh−keygen −t r sa

confirm choices and leave password empty.

> cat ˜/ . ssh / i d r s a . pub ˜/ . ssh / author i z ed keys

The ~/.ssh/known_host file needs entries for each computer (e.g. by

logging in to each machine once). I used option -v with the ssh com-

mand to speed up ssh changing parameters in /etc/ssh/ssh_config and

/etc/ssh/sshd_config. Options that you might want to specify include

protocol 2, port 22, PreferredAuthentications PublicKey, IdentityFile ~/.ssh/id_rsa.

You might want to turn off checking of .ssh/known_hosts, and on the slaves

you might want to ignore the host ip (CheckHostIP no), and turn off any

12

authentication method except for public key and password. Blowfish is one

of the fasted cipher methods (Allen, 2003).

These two functions can help in setting up other user accounts or in-

stalling additional software. I put them into /etc/bashrc, so I have them

available.

execu te command on a l l s l a v e nodes

function s l a v e {

i f [$# −ne 1] ; then

echo ”Forma de uso : s l a v e comando”

else

for i in $ (seq 1 7) ;

do

ssh 1 9 2 . 1 6 8 . 1 . $ i $1 ;

done ;

f i

}

copy to a l l s l a v e nodes

function s lavecopy {

i f [$# −ne 2] ; then

echo ”Forma de uso : s lavecopy <or igen> <

de s t i no en l o s nodo s >”

else

for i in $ (seq 1 7) ;

do

scp $1 1 9 2 . 1 6 8 . 1 . $ i : $2 ;

done ;

13

f i

}

On a side note, using GNU screen the above two scripts could be already

used for parallelization of computing tasks, however there are dedicated pro-

tocols for more advanced usage, you might want to have resource balancing,

for example.

To create more users, create them on node0 and node1. Then from node1

you copy /etc/passwd and /etc/group to the other slaves.

4 Parallelization of computation

As the principal goal of having the cluster is to run programs in parallel on

different machines, I installed protocols for message-passing for distributed-

memory applications. There are two common ones: the Parallel Virtual

Machine (PVM) and Message Parsing Interface (MPI).

For scientific computing we can use high-level computing platforms or

languages such as C/C++ and fortran. Here we will see GNU R and matlab.

R can spawn parallel jobs using either PVM or MPI. Matlab comes with an

implementation of MPI (more precisely mpich2).

Note that for PVM you need to enable password-less ssh access (see pre-

vious section) from the server to all clients. Also, for PVM, MPI (includes

matlab’s mdce), the network configuration you have to remove the host names

from the loop-back line (where it says 127.0.0.1) of the /etc/hosts file. Just

put localhost instead. Then you need a text file with a list of all machines

14

you wish to use for computing and call it pvmhosts and mpihosts.

In C/C++ you can use MPI or PVM to spawn processes.

4.1 MPI

As for MPI, you can install different implementations.Compiling and in-

stalling Mpich2(Gropp, 2002) was very straightforward and the install guide(Gropp

et al., 2008) is a great help in setting it up.

On the master (node0) you type:

mpd &

mpdtrace − l

And you should get back the node name (say node0) and port

number (say 51227) . Then you connect each node to by typing :

mpd −h node0 −p 51227

The test could be spawning o f the hostname command . You can

spawn pro c e s s e s with mpiexec :

mpiexec −n 10 /bin /hostname .

4.2 PVM

The Parallel Virtual Machine (PVM)(Beguelin, Dongarra, Jiang, Manchek,

& Sunderam, 1995) allows computers which are connected over a network

to be used as a single distributed parallel computer. Installation of PVM is

straightforward from packages, for configuration environment variables need

to be set up:

add to /etc/profile:

15

export PVMROOT=/usr / share /pvm3

export PVMTMP=/tmp

export PVM RSH=/usr /bin / ssh

export PVM ARCH=LINUXX86 64

export PATH=/usr / l o c a l / bin / :$PATH

In the pvm environment (which you enter typing ’pvm’) after adding your

machines you can then try the following and see if you can get a list of your

machines.

spawn −> −10 /bin /hostname

4.3 GNU R

In this section we see an examples of parallelization from within the R com-

puting platform(Ihaka & Gentleman, 1996) (statistical computing similar to

Matlab) using the snow package(Rossini, Tierney, & Li, 2007), which can

distribute jobs using either MPI or PVM. In this subsection we will only see

usage of R+PVM.

Note, that for installation of packages within R the development packages

of R are needed. I just installed all R packages that were available in the R

repository.

You need to install R libraries snow and rpvm on master and all your

slave(s). If you don’t, R lets you create the PVM cluster object but then

freezes when you try to execute a job.

In R:

> l ibrary (’ snow ’)

16

> l ibrary (’ rpvm ’)

> c l<−makePVMcluster (count=2,names=c (’ node0 ’ , ’ node1 ’))

> c l u s t e rC a l l (c l , function () Sys . i n f o () [c (”nodename” , ”machine”)

])

[[1]]

nodename machine

”node1” ”x86 64”

[[2]]

nodename machine

”node0” ”x86 64”

See reference (Rossini et al., 2007) for more explanations the possibilities

of the snow package.

4.4 MATLAB

As for matlab, note that in order to run it on a 64bit system you need shared

libraries (on Fedora the package is called libXp, on ubuntu ia32) and some

java packages.

Matlab comes with the parallel computing toolbox, the distributed com-

puting server, and an implementation of mpich2. You can find manuals in

pdf format on the corresponding mathworks site(Inc., 2008). You start the

mpich2 server as root:

$MATLAB/ too lbox /distcomp/bin /mdce s t a r t

where $MATLAB is the directory of your matlab installation.

(Note: Here holds the same as for PVM. For mdce to work, you need

17

to remove from /etc/hosts the loopback line with your host name in it, i.e.

127.0.1.1 node0 becomes your_network_ip node0.)

We start the job manager:

$MATLAB/ too lbox /distcomp/bin / start jobmanager −name MyJobManager

Connect one worker:

$MATLAB/ too lbox /distcomp/bin / s ta r tworke r −jobmanager

MyJobManager −jobmanagerhost node0

where node0 is the machine where your jobmanager is running (obvi-

ously).

. . . and a second worker on a different machine. From node0:

$MATLAB/ too lbox /distcomp/bin / s ta r tworke r −jobmanager

MyJobManager −jobmanagerhost node0 −name worker2 −remotehost

node1

Use the option remotehost to start a worker on a different machine.

Make sure that job manager and workers are running:

$MATLAB/ too lbox /distcomp/bin / nodestatus

We start matlab in desktop mode (we need the Java Virtual Machine in

matlab in order to configure the matlabpool). In the menu under Parallel->configure

and parallel->administrate, we choose MyJobManager basically and start

the matlabpool:

>> matlabpool open

You should see the confirmation “Connected to a matlabpool session with

2 labs (or more).“

18

The simple proof of concept using the powerful parfor construct:

>> par f o r i =1:5

unix (’ hostname ’) ;

end

In matlab don’t use too much load/save, close, figure, etc. You can start

matlab with the -noawt option to start it within a screen session (see next

section).

5 Profiling

It is important to know how long applications take, whether they paralellize

at all (or just run locally). Also if computers heat up too much, they are

gone, so we see how to control the temperature.

As a general rule for paralellization: avoid network trafic and access to

physical devices. You can use GNU screen to have any programs running

without the need of staying logged in. If you detach from it by pressing

control-A d, you can logout, having all your running programs available on

next login when you attach to your screen by typing screen -d -r.

Useful commands in linux for profiling are w, ps, top. W shows you how

many users are logged in and what they are doing.

If we want to know how good our matlab programs are paralellizing we

can do:

for i in ‘ seq 0 7 ‘ ; do echo node$i ; s sh node$i ” top −bn 1 |

grep − i matlab | grep −v he lpe r ” ; done

19

5.0.1 CPU temperature

> cat /proc / acp i / thermal zone /THRM/temperature

(you might have different THRM directories for your cores)

If this doesn’t work or you want more information, install sensors (in

Fedora: yum install sensors). You install it by sensors-detect and sensors

then prints you information.

> s en s o r s

. . .

Adapter : ISA adapter

Core 0 : +67.0 C (high = +82.0 C , c r i t = +100.0 C)

coretemp−i s a −0001

Adapter : ISA adapter

Core 1 : +66.0 C (high = +82.0 C , c r i t = +100.0 C)

coretemp−i s a −0002

Adapter : ISA adapter

Core 2 : +61.0 C (high = +82.0 C , c r i t = +100.0 C)

coretemp−i s a −0003

Adapter : ISA adapter

Core 3 : +61.0 C (high = +82.0 C , c r i t = +100.0 C)

6 Cloning of Slaves

When master and one slave (the golden slave) are installed and configured

and now we want to scale up this configuration to more slaves by replicating

20

the exact configuration of the golden slave.

Installing and configuring the OS on each machine manually is cumber-

some and prone to error. However, nodes are identical, so why not just copy

everything we need? This process is called cloning. We first setup a so-called

golden node or model node and then transfer the system to other slave ma-

chines. Each new node will come with one new entry in the head node’s

DHCP server file (/etc/dhcpd.conf) and /etc/hosts file.

For preparation, make sure that in /etc/fstab and in the /boot/grub/-

menu.lst, there are no physical addresses of hardware (e.g. a hard disk), as

they will be different among the nodes. All hardware should be addressed by

their subdirectory in /dev which you can see in the output when you type

mount.

I used low level R/W with dd and piping to and from netcat, respectively

on machine to clone from and machine to clone to. We clone using convert

and copy (dd) and netcat (nc).

On node1 you run:

node1# dd i f=/dev/hda conv=sync , noerror bs=64k | nc − l 5000

On node2 you run:

node2# nc 192 .168 .1 .1 5000 | dd o f=/dev/hda bs=64k

where 192.168.1.1 is the ip of node1. This presupposes the disk of node2

is at least as big as node1’s.

21

7 Conclusions

This article gave instructions of how to install a beowulf cluster. We gave an

example of hardware acquisition, went through principal steps of installation

and network setup, and showed how to parallelize programs in R and matlab.

We hoped to show that it is not that difficult to get lots of computing power

for comparatively little money.

References

Allen, D. (2003). Eleven SSH tricks. Linux Journal, 2003 (112).

Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., & Sunderam, V. (1995).

PVM: Parallel virtual machine: a users’ guide and tutorial for net-

worked parallel computing. MIT Press Cambridge, MA, USA.

Brown, R. G. (2004, May). Engineering a beowulf-style compute

cluster. http://www.phy.duke.edu/~rgb/Beowulf/beowulf_book/

beowulf_book/index.html.

Campbell, A., Beck, B., Friedl, M., Provos, N., Raadt, T. de, & Song, D.

(2008). Openssh. http://www.openssh.com/.

Collins-Sussman, B., Fitzpatrick, B., & Pilato, C. (2004). Version Control

with Subversion. O’Reilly Media, Inc.

Dongarra, J., Du Croz, J., Hammarling, S., & Duff, I. (1990). A set of level 3

basic linear algebra subprograms. ACM Transactions on Mathematical

Software (TOMS), 16 (1), 1–17.

22

http://www.phy.duke.edu/~rgb/Beowulf/beowulf_book/beowulf_book/index.html
http://www.phy.duke.edu/~rgb/Beowulf/beowulf_book/beowulf_book/index.html
http://www.openssh.com/

Eaton, J. (1997). GNU Octave Manual. Network Theory.

Ellson, J., Gansner, E., Koutsofios, L., North, S., & Woodhull, G. (2002).

Graphviz-Open Source Graph Drawing Tools. LECTURE NOTES IN

COMPUTER SCIENCE, 483–484.

Fedora project. (2008). http://fedoraproject.org/.

Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Booth, M., et

al. (2002). GNU scientific library. Network Theory Ltd.

Gosling, J., Joy, B., Steele, G., & Bracha, G. (2000). Java Language Speci-

fication: The Java Series.

Gropp, W. (2002). MPICH2: A New Start for MPI Implementations. LEC-

TURE NOTES IN COMPUTER SCIENCE, 7–7.

Gropp, W., et al. (2008). Mpich2 : High-performance and widely portable

mpi. http://www.mcs.anl.gov/research/projects/mpich2/.

Ihaka, R., & Gentleman, R. (1996). R: A Language for Data Analysis and

Graphics. JOURNAL OF COMPUTATIONAL AND GRAPHICAL

STATISTICS, 5, 299–314.

Inc., M. (2008). Parallel computing toolbox. http://www.mathworks.com/

access/helpdesk/help/toolbox/distcomp/.

Lamport, L. (1994). LaTeX: A Document Preparation System Users Guide

and Reference Manual. Reading, Mass.

Laumann, O., et al. (2008). Gnu screen. http://www.gnu.org/software/

screen/.

Moolenaar, B. (2008). Vim – the editor. http://www.vim.org/.

Papadopoulos, P., Katz, M., & Bruno, G. (2003). NPACI Rocks: tools and

23

http://fedoraproject.org/
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/
http://www.gnu.org/software/screen/
http://www.gnu.org/software/screen/
http://www.vim.org/

techniques for easily deploying manageable Linux clusters. Concurrency

and Computation: Practice & Experience, 15 (7), 707–725.

Ridge, D., Becker, D., Merkey, P., & Sterling, T. (1-8 Feb 1997). Beowulf:

harnessing the power of parallelism in a pile-of-pcs. Aerospace Confer-

ence, 1997. Proceedings., IEEE, 2, 79-91 vol.2.

Rossini, A., Tierney, L., & Li, N. (2007). Simple Parallel Statistical Com-

puting in R. JOURNAL OF COMPUTATIONAL AND GRAPHICAL

STATISTICS, 16 (2), 399.

Schelter, W., et al. (2008). Maxima, a computer algebra system. http://

maxima.sourceforge.net/.

Shepler, S., Callaghan, B., Robinson, D., Thurlow, R., Beame, C., Eisler,

M., et al. (2003). RFC3530: Network File System (NFS) version 4

Protocol. Internet RFCs.

Sloan, J. (2005). High Performance Linux Clusters with OSCAR, Rocks,

OpenMosix, and MPI. O’Reilly.

Stallman, R., & Foundation, F. S. (1992). Using and Porting GNU CC. Free

Software Foundation.

Stallman, R., & Foundation, F. S. (1993). GNU Emacs Manual. Free

Software Foundation.

Sterling, T., Savarese, D., Becker, D. J., Dorband, J. E., Ranawake, U. A., &

Packer, C. V. (1995). BEOWULF: A parallel workstation for scientific

computation. In Proceedings of the 24th international conference on

parallel processing (pp. I:11–14). Oconomowoc, WI.

Tex live – tex user group. (2008). http://tug.org/texlive/.

24

http://maxima.sourceforge.net/
http://maxima.sourceforge.net/
http://tug.org/texlive/

Torvals, L., & Hamano, J. (2008). Git–fast version control system. http://

git.or.cz/.

Ubuntu server edition. (2008). http://www.ubuntu.com/products/

whatisubuntu/serveredition.

Van Rossum, G., & Drake, F. (2003). Python Language Reference Manual.

Network Theory.

Wall, L., Christiansen, T., & Orwant, J. (2000). Programming Perl. O’Reilly.

Williams, T., Kelley, C., et al. (1998). GNUplot: an interactive plotting

program. Manual, version, 3.

25

http://git.or.cz/
http://git.or.cz/
http://www.ubuntu.com/products/whatisubuntu/serveredition
http://www.ubuntu.com/products/whatisubuntu/serveredition

	Introduction
	Hardware
	Installation, Configuration, and Administration
	Operating System and Software
	Networking
	Shared Directories and SSH

	Parallelization of computation
	MPI
	PVM
	GNU R
	MATLAB

	Profiling
	CPU temperature

	Cloning of Slaves
	Conclusions
	References

