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Abstract. We study filter–based feature selection methods for classifi-
cation of biomedical images. For feature selection, we use two filters — a
relevance filter which measures usefulness of individual features for target
prediction, and a redundancy filter, which measures similarity between
features. As selection method that combines relevance and redundancy
we try out a Hopfield network. We experimentally compare selection
methods, running unitary redundancy and relevance filters, against a
greedy algorithm with redundancy thresholds [9], the min-redundancy
max-relevance integration [8,23,36], and our Hopfield network selection.
We conclude that on the whole, Hopfield selection was one of the most
successful methods, outperforming min-redundancy max-relevance when
more features are selected.
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1 Introduction

Computerized Tomography (CT) is a technique of producing a 3-dimensional
image from a large series of X-ray images taken around a single axis of rotation.
The 3-D image is cut into sections (Greek tomos = cutting), so the data is an
array of 2-D images which together constitute a volume. The information of
density of cell tissue is given in gray intensity levels.

Volume visualization of such CT–slices can help experts in biomedical anal-
ysis, such as e. g. inspection of cell tissue and of anatomical structures, or in
gaining a better understanding of cell growth (more general: Computer-Assisted
Diagnosis). For this purpose, first, a transfer function maps from possible voxel
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(MAT-2005-07244-C03-03).
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values to RGBA space, defined by colors and opacity (red, green, blue, alpha).
Using volume visualization techniques, 2–dimensional projections on different
planes can then be displayed.

The opacity of voxels depends on cell tissue that the voxels represent. There-
fore, distinguishing between different tissues can enhance the volume visualiza-
tion. Hence, we break the transfer function between intensity values and optical
properties into two parts: i) classification function, and ii) transfer function from
tissue to optical properties.

Classification, in the context of this work, refers to the process of distin-
guishing between different kinds of data, here biomaterial and non-biomaterial,
and the result of this process. Our data consist of slices in a 3-D volume taken
from CT of bones, in which was artificially introduced a biomaterial for tracing
purposes1. The introduced biomaterial is the target class and relatively small
as compared to the non-target class. The data set originally was of dimensions
423 × 486 × 562, but because 403 slices did not contain any biomaterial, in the
current study, dimensionality was reduced to 423 × 486 × 159.

Earlier, working on these data, we introduced a pipeline process for classifica-
tion and subsequent volume rendering [22]. In classification, instead of a unique
single-run classifier, as in most approaches, we applied a learning pipeline con-
sisting of three steps. After initial Gentle Boost [13] classification based on image
properties, a conditional random field [20] on an image of reduced scale works on
spatial characteristics of uncertain pixels (output of Gentle Boost), and finally
we refined the result in a last step. This article aims at extending the framework
with a feature selection step.

For organic tissues, as in our case, distributions of intensities overlap con-
siderably [33]. In order to produce a reliable classification model, we extracted
characteristics (features) – a process called “feature extraction“ (see 4.1) – from
images by integrating image intensity within a window around each pixel. With
high number of features, classifiers become slow and tend to produce unstable
models with low generalization performance, so our problem was then selecting
from a number of features, compiling a set of features that would give good
performance.

Each of the extracted features can have merits on its own and merits when
used in combination with a selection of other features and we did not know
beforehand, which of the features to use. “Feature selection“ refers to methods
dedicated to finding a set of features that together can be more successful than
others. Feature selection within the context of pattern classification will be the
focus of most of this work.

The outline of this article is as follows: First, in section 2, we explain the
concepts of relevance and redundancy filters, briefly survey related research on
feature selection, and line out two heuristics for combination of the information
from the two filters. In section 3 we present a novel method that uses a Hopfield
network with the idea of taking into account more complex redundancy relations

1 Samples from the data set are available on one of the authors’ homepage: http://
www.maia.ub.es/~maite/out-slice-250-299.arff.

http://www.maia.ub.es/~maite/out-slice-250-299.arff
http://www.maia.ub.es/~maite/out-slice-250-299.arff
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than other methods. In section 4 we describe our experimental benchmarks of
several feature selection methods, and interpret conclusions based on the results
regarding the best method for feature selection, quality of selection, and finally
the best features. Lastly, we draw conclusions in section 5 and outline future
work in section 6.

2 Relevance and Redundancy Feature Selection

Feature selection in biomedical research is still often done manually by experts,
however due to great quantities of data it is becoming increasingly automatized.
A comparison of methods over articles by different authors is difficult, because of
incompatible performance indicators, often unknown significance, and different
data sets methods are applied to. Saeys et al. [28] review research in feature
selection in application to biological data.

Sets of features can be evaluated by either filters, which measure statistical
properties or information content, or a performance score of a classifier (“wrap-
per approach“). There exist many heuristics for choosing subsets of features.
Two standard iterative search strategies are forward selection and backward
selection. Forward selection, starts from the empty set and adds at each step
a feature, which gives the most performance improvement. Backward selection
starts from all features, eliminating at each iteration one or several features.
Forward-backward algorithms make an initial guess of a useful feature set and
then refine the guess by eliminating variables and adding new ones.

In the context of this work, we define the feature selection task as follows:
given a selection criterion (error function) ε(·) and an initial feature set X with
m features we want to find a subset X∗ ⊆ X such that |X∗| = s (s for number
of selected features) and X∗ = arg minX̄⊆X,|X̄|=s ε(X̄).

Many approaches to feature selection in bioinformatics are either based on
ranks (“univariate filter paradigm“) and thereby do not take into account rela-
tionships between features, or are wrapper approaches which require high com-
putational costs. We chose a filter-based feature selection approach for being
fast and giving good results, which other computation-heavy methods are not
guaranteed to achieve (cf. [16]). Filter-based have the additional advantage of
providing a clearer picture of why a certain feature subset is chosen through
the use of scoring methods in which inherent characteristics of the selected set
of variables is optimized. This is contrary to wrapper-based approaches which
treat selection as a “black-box“ optimizing the prediction ability according to a
chosen classifier.

Multivariate filter-based feature selection with the idea to have a set of fea-
tures of maximal relevance to the target, which are least redundant has enjoyed
increased popularity [28]. It has been shown that the best subset of features
may not be the set of the best individual features (e. g. [6]). The idea behind
combining redundancy and relevance information is simple: you should take the
features that together have the highest value for prediction and not the ones
which alone have highest prediction value.
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Relevance criteria determine how well a variable discriminates between the
classes. They are a measure between a feature and the class.

Redundancy criteria should capture similarities of mappings from attributes
to classes, i.e. given a predictor function f ∈ F : R → C then our intuition is that
for two non-redundant features Xk and Xl, f(Xk) should be different to f(Xl)
(and hopefully provide complementary information). Formally the redundancy
between features X1 and X2 given class targets Y ∈ Cn = {c1, . . . , |C|}

n
can be

written as

Red(X1,X2, Y ) =
1

|C|

|C|
∑

i=1

∆ (X1|Y = ci,X2|Y = ci), (1)

where X1|Y = ci denotes the distribution of feature 1, given class i (i. e.
{X l

1|∀l, Y l = ci}, and ∆ one of the distributional similarity measures that we ap-
plied. Given a relevance measure Rel(), features X1 and X2, and targets Y ∈ Cn,
we can define Red(X1,X2, Y ) = 1

|C|

∑

∀i∈[1,|C|] Rel(X1|ci,X2|ci).

Ding, Peng, et al. [36,23,8] select features in a framework they call “min-
redundancy max-relevance“ (here short: mRmR) that integrates relevance and
redundancy information of each variable into a single scoring mechanism to
automatically annotate the fruitfly’s embryonic tissue.

Knijnenburg [19] presented a cluster-based approach where variables are first
hierarchically (complete linkage) clustered and then from each cluster the most
relevant feature is selected. Relevance and redundancy were measured by Pear-
son Correlation Coefficients. He concluded that cluster-based selection could
not improve upon greedy ranking-based selection, but a second approach that
integrated relevance and redundancy into a single score (in a way similar to
mRmR [8]) did so.

Duch et al. [9] presented an algorithm that proceeds at each step includ-
ing variables starting from highest relevance and excluding variables that are
redundant. Their heuristics is simple, straightforward, and seemed to work.

In the next subsection we will describe the mRmR approach and thereafter
describe Duch and Biesiada’s [9] greedy heuristics with threshold.

2.1 Minimum Redundancy Maximum Relevance

Ding, Peng et al. [8,23,36] presented minimum redundancy maximum relevance
feature selection. The method boils down to a forward scheme2 maximizing one
of two formulas for combination of redundancy and relevance information (mu-
tual information in both cases) by subtraction and division, respectively. These
formulas are:

– arg maxi rel(i, c)−
P

j
red(i,j)

m
, with i and j being two features, c the matching

target, and m the numbers of competing features at each step

2 Peng et al. [23] also discuss and test a backward scheme but it is given less impor-
tance than the forward scheme.
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– arg maxi
rel(i,c)

P

j red(i,j)

m

Peng et al. [23] use mutual information as measure for relevance and redun-
dancy and they refer to the first formula as mutual information difference (MID),
to the second as mutual information quotient (MIQ). We will refer to (dropping
the reference to mutual information) mRmRD and mRmRQ,respectively. We im-
plemented the mRmR forward search and integrated it with our redundancy and
relevance methods. The algorithm works as lined out in algorithm 1. best() is the
selection formula, i.e. either quotient or difference. Features are Xi, i ∈ [1, . . . ,m].

Input: rel ∈ R
m: relevance scores ;

red ∈ R
m2

redundancy scores ;
s: number of features that need to be selected (assumed k ≥ 1)
Initialize set D = {X1, . . . , Xm} ;
for i ← 1;i ≤ s; i + + do

Si ← best(D) ;
D ← D \ S(i) ;

end

Output: S: s features ordered by mRmR

Algorithm 1: mRmR feature selection

2.2 Greedy Algorithm with Redundancy Threshold

Duch et al. [9] in their forward scheme used the Kolmogorov–Smirnov test for
measuring redundancy and set the cut–off threshold to a p-value> 0.95.

Algorithm 2 lines out the workings of the implemented algorithm. The Greedy
selection scheme could be extended to select a specific number of variables,
however this would mean giving up on the strict thresholding and to introduce
arbitrariness into feature selection.

Input: m: number of features, ;
rel ∈ R

m: relevance scores, ;

red ∈ R
m2

: redundancy scores, ǫ: threshold
Initialize sets: set S ← ∅, and C ← {c1, . . . , cm} = {1, . . . , m} ;
while |C| > 0 do

S ← S ∪ argi max relci
;

C ← C \ {i} ;
C ← C \

˘

j|∃si ∈ S, redsi,cj
≥ ǫ

¯

;

end

Output: Selected features are in S

Algorithm 2: Greedy feature selection algorithm with Thresholding
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3 Hopfield Network for Relevance and Redundancy

Feature Selection

The spaces of feature combinations and the corresponding space of their energy
or error functions has numerous local optima, which iterative algorithms intrin-
sically have difficulties dealing with. This inspired us to think of other graph
based methods as a manner of partitioning and selecting the best features.

We can form complete graphs from the redundancy matrices, if we think of
them as a proximity matrices D = R

m2

, where m is the number of variables.
We had the idea of the features as nodes, and to add as additional dimension
relevance, redundancy constituting inhibitory connections between the features.

The lateral connections represented by the redundancies could create an at-
tractor network that forms basins of attractions, where redundancies are lowest
and relevancies are highest. In this manner, the choice of features could come
up as an emergent pattern within the configuration space of the network arising
from the connections and activations.

A recurrent attractor network with well-studied convergences is a Hopfield
network[17,18,31]. A Hopfield network has the advantage of being able of gener-
ating arbitrary shapes and providing insight into the number of variables without
prior knowledge.

In the simplest form of the Hopfield network, we formalize connections (hav-
ing an appropriate normalization) as symmetric, real-valued connections wij ,
units Si ∈ [0, 1] and corresponding bias units Ii. The input to each unit S is

ni ←
∑

j

wijSj + Ii , (2)

where Ii is a bias term of unit i.
In the classical (bipolar) formalization, nodes can be asynchronously (seri-

ally) updated at each time step t:

Si(t + 1) ←







1 if ni(t) > 0
0 if ni(t) < 0

Si(t) otherwise
(3)

The energy function of such a network is

E = −
1

2

∑

ij

SiSj −
∑

i

IiSi +
∑

i

∫ Si

0

g−1
λ (S)dS, (4)

where gλ is a sigmoidal funcion, often the sigmoid function ≡ 1
1+e−λx , and λ

is its gain, which guarantees the convergence to a continuous local minimum of
the energy function over time and the synchronization of clusters of units.

We tried many different parameters, normalizations of activations and con-
nections. Parameters included annealing with different rates, including using e.g.
Rprop[25]. Finally, we chose a simple implementation for continuous (graded)
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activation (and responses) and asynchronous updating in discrete time-steps3

with the hyperbolic tangent tanhx = sinh x
cosh x

as our sigmoidal function. Weights
and activations were normalized in the range [−1, 0] and [0, 1] respectively, with
the diagonal of the weight matrix set to 0. We set the noise parameter u0 = 0.015
(cf. [18]) and we fixed the learning rate λ = 0.1.

The update of the activation S of a neuron i at time step t is then

Si(t + 1) ← (1 − λ)Si(t) + λ

(

1 + tanh

(

ui

u0

)

/2

)

, where (5)

ui =
∑

j

wij × Sj(t). (6)

For application to feature selection, at the end we choose the most highly
activated units, thresholding the unit activations:

Si ←

{

1 if
∑

j wijaj > θ,

0 otherwise.
(7)

In the coming section (4) we will submit the presented feature selection
schemes to a testing procedure using information of relevance and redundancies
(all combinations). Afterwards we will present results and compare methods.

4 Experiments and Results

We conducted experiments in order to find out which selection schemes and
which relevance and redundancy measures perform best. For the experiments
we need to extract a set of features from the images and compute measures of
redundancy and relevance. After describing methods corresponding to these, we
come to our experimental design, and methods of statistical validation. After
this we look at results.

4.1 Feature Extraction

A standard method for compact image encoding is a method called Laplacian
pyramids [3]. For their computation, an image is iteratively smoothed by com-
puting averages in constant windows as low-pass filters. The bottom level of this
representation (g0) is the original image. The Laplacian pyramid is then the se-
quence of difference maps between two levels at the pyramid Ln = gn − gn+1,
for 0 ≤ n < N , with N denoting the number of levels in the smoothed pyramid.

Gabor filters (e.g. [12] have received considerable attention because the char-
acteristics of simple cells in the primary visual cortex of some mammals can be
approximated by these filters. They are used a lot in pattern recognition and

3 Our attempts at converging at a good implementation were streamlined considerably
by Hervé Abdi [1].
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texture segmentation. Gabor filters, in contrast to the other features presented
here, incorporate orientation information.

In eye-tracking studies, Reinagel and Zador [24] gave evidence for increased
luminance contrast in fixated regions as compared to control points (fixated
points on different images). They defined luminance contrast (LC) as the vari-
ance of luminance within a patch (a rectangular patch for practical purposes)
divided by the mean intensity of the image. Given a patch P of pixel intensity
from image I and around a pixel (x, y): LCP = δP

µP
. Another texture function

from neuropsychological research is texture contrast [10]. The texture contrast
(TC) of a patch is the standard deviation of the luminance contrast values in the
patch standardized by the luminance contrast mean of the image. More formally,
given a patch P̄ from LCI : TCP̄ = δP̄

µP̄
= LCP̄ .

We extracted 10 features from the Laplacian Pyramid, 100 Gabor features
(10 orientations at 10 scales), 9 features from luminance contrast, 7 features
from texture contrast, and intensity. We added 50 probes which have a function
in performance assessment; a good feature selection method should eliminate
most of these probes. 25 probes were standard normal distributed, 24 uniformly
distributed in the interval (0, 1). The last probe was a variable of zeros.

4.2 Relevance and Redundancy Criteria

Due to the uncertainty of the true distribution underlying data, we prefer non-
parametric and model-free metrics. Non-parametric tests have less power (i. e.
the probability that they reject the null hypothesis is smaller) but are more
robust to outliers than parametric tests.

The four relevance criteria that we used in experiments are: Symmetric Un-
certainty (SU), Spearman Rank Correlation Coefficient (CC), Value Difference
Metric (VDM), and Fit Criterion (FC). In [2], we showed how a measure of
probability difference, presented before as the “value difference metric“ [29], can
be adapted as a relevance criterion. We also use a measure, which we call “fit
criterion“, presented in [2].

As for redundancy criteria, we used seven measures: Kolmogorov-Smirnov
test on class-conditional distributions (KSC), Kolmogorov-Smirnov test ignoring
classes (KSD), Value Difference Metric adapted to redundancy (RVDM) [2],
Redundancy Fit Criterion (RFC) [2], Spearman Rank Correlation Coefficients
(CC), Jensen-Shannon Divergence (JS), and the Sign-test (ST).

As for discretization, we use histograms. Conforming to Cromwell’s rule of
avoiding probabilities of 1 and 0 (except for logical true and false), we apply
the Laplacian rule of succession by calculating the probabilities of bin i with
frequency count ni as p̃(i) = ni+1

k+
P

k
j=1 nj

. In order to avoid any problems with

optimization of a bandwidth or bin number and because of impracticality of
mixture modeling, we chose a rigid bin number of 100.
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4.3 Experimental Design

We benchmarked first each relevance and redundancy criterion on its own (“uni-
tary filters“), then all 28 combinations of mentioned relevance and redundancy
measures with the selection methods mRmRQ, mRmRD, Greedy, and Hopfield.
For the threshold in Greedy we used all thresholds possible in combination with
the redundancy measure. As for unitary filters, for relevance measures, the s
highest relevant features were used and for redundancy measures, at each step
the most redundant feature with all the remaining features is removed until the
desired numbers of features s are left. We also introduced a baseline of random
selection.

We selected feature sets of sizes [4, 8, 12, 16, 20, 30, 45, 60, 80, 100]. We em-
phasized feature sets of sizes ≤ 30 because that was were they were the greatest
differences between the different methods. The reported experiments and com-
parisons are based on the set of 177 features and their respective relevance
measures and mutual redundancies. We used three classifiers for benchmarking:
Näıve Bayes, GentleBoost, and a linear Support Vector Machine.

As for Näıve Bayes we relied on our own implementation for multi-valued
attributes using 100 bins for discretization. Given m features X1, . . . ,Xm and
corresponding targets Y ∈ Cn, classifying a pattern x = {x1, . . . , xm} by Näıve
Bayes means argmaxc∈C p(c)

∏m
i=1 p(xi|c = Y ). As for GentleBoost we used An-

tonio Torralba’s matlab toolbox [27] and fixed the iterations to 50, which seemed
to be a good trade–off between speed and performance. As for SVM [5] we used
libsvm 2.84 [4], accessed from within MATLAB using an interface by Michael
Vogt [30] from Technical University Darmstadt. We made the cost function to
compensate for unequal class priors, by setting the weight of the less frequent

class to max
(

♯(Y =c2)
♯(Y =c1)

, ♯(Y =c1)
♯(Y =c2)

)

. Further, we set the SVM complexity parameter

C to 1 which seemed to be a good choice and in the right order of magnitude.
We tried out several normalization methods. Comparisons showed that clas-
sification performance being approximately equal, there was a notable loss of
speed with classification after normalization according to Graf et al. [15], with
z-normalization performing faster than normalization between [0, 1] or k[−1, 1].
Consequently, features were z-normalized.

The whole set of experimental conditions can be obtained by combining selec-
tion schemes with corresponding relevance and redundancy measures, classifiers,
and numbers of features. Greedy, Hopfield, mRmRQ, and mRmRD, were tried
out with the 28 redundancy and relevance combinations, all classifier, at each
number of features. Unitary filters with their redundancy or relevance measures,
were combined with a classifier and a number of features. Random selection ran
with each classifier at each number of features. In total we had 3700 experimental
conditions.

In order to have many validations at acceptable speed – we made 10 random
samplings of size n/10 and for each sampling we did 5-fold cross-validation. As
for random feature selection, we did 10 random samplings of the data of size
n/10 and tested 10 random selections of features in 5-fold cross-validation.
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4.4 Statistical Evaluation

As performance measure, we used the area under the curve (AUC) throughout
the analysis and — following the recommendations of Janez Demŝar [7], who
surveyed the state of the art of comparing classifiers — we did not base our
statistics on performances of single folds but took averages (medians4) over folds.

4.5 Results

Statistics were extracted from performance vectors and are given over all three
classifiers (Näıve Bayes, GentleBoost, and SVM). For feature selection, what
is the “best“ method depends on how many features there are, which is the
application, and what computational resources are available.

We will focus on three questions:

1. Which is the best feature selection scheme?

(a) In particular, are there differences with respect to numbers of features?

2. Are the best methods the ones with fewest probes?
3. What is the best feature set?

Question 1 includes feature selection schemes, measures of redundancy and
relevance (short: RR measures), and combinations of relevance and redundancy.
Apart from an overall winner according to our experimental setup, we will look
at which selection scheme gives the best results. We will have to look whether
there are differences between the methods with respect to RR measures.

As for question 1.a, we will analyze, if relative performance of the different
methods is the same when the number of attributes selected increases. We will
have to decide which is a good feature size for our classification task and with
respect to this decision decide on the best selection scheme.

As for question 2, we look at probe frequency and see whether a selection
scheme with good performance is automatically one with few probes.

Question 3 deals with the final result of our feature selection: which are the
best features for our classification task?

In table 1, the first column gives the name of the method (the selection
scheme followed by redundancy and relevance measures), ordering (column two)
follows the mean rank of performance (third column), win–loss statistics (W/L)
from statistical tests based on ranks at all feature numbers respectively show

4 According to the central limit theorem, any sum (such as e. g. a performance bench-
mark), if of finite variance, of many independent identically distributed random
features will converge to a Gaussian distribution. This is however not necessarily to
expect for only 5 values, i. e. from 5-folds of cross-validations. After finding partly
huge differences between means (which are usually taken) and medians over cross-
validations, in pre-trial runs, we decided to take the more robust median (which
in case of normal distributions is equal to the arithmetic mean anyway). As for
the error-bar, we plot the interquartile range (short: IQR), which is the difference
between values at the first (25%) and the third quartile (75%).
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index mean rank F/N W/L SR W/L
mRmRD 1 2.10 3/0 4/0
Hopfield 2 2.85 2/0 2/0
Red 3 3.50 1/0 2/0
mRmRQ 4 3.70 1/0 1/1
Rel 5 3.95 1/1 1/1
Greedy 6 5.00 1/2 1/3
rand 7 6.90 0/6 0/6

Table 1. Ranking of all Selection Schemes

in column four and five: Friedman test with Nemenyi post-hoc test (F/N) and
Wilcoxon Signed Rank Test (SR, also called the Mann-Whitney U test).5

According to table 1, mRmRD is overall winner followed by Hopfield. mRmRQ
is by Wilcoxon Signrank worse than mRmRD. Hopfield and unitary redundancy
filters are not statistically worse than mRmRD. Random feature selection is
clearly (and statistically significantly) worse than all other selection schemes.
Greedy is the worst non-random scheme. Unitary redundancy filters come high
up in third place.
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Fig. 1. Normalized Probe Frequencies of all Selection Schemes

5 We included the Greedy schemes using a threshold of
|sdesign−sGreedy|

sdesign
≤ 0.1.
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Fig. 2. Normalized Median Rankings of all Selection Schemes

Fig. 2 shows changes with different numbers of features. Because of the com-
plications with the Greedy scheme, rankings of selection methods at all numbers
of features were normalized by the total number of competing methods with their
different combinations of methods. The medians for each selection scheme are
depicted in fig. 2. We see that with more features all selection schemes become
better than random choice because of the inclusion of less probes. MRmRQ
starting as best at 4 variables, adding more features improves relatively less
than most other selection schemes. Hopfield, unitary redundancy filters, and
Greedy see best improvements as compared to other methods as compared to
mRmRQ/D and unitary relevance filters. We observe that Hopfield copes better
with higher feature spaces than other methods and constitutes one of the best
methods from 45 features on.

Fig. 1 shows the expected frequency of probes in the selection of schemes.
Frequencies are normalized by numbers of features in the selected set. We see
that Greedy, the worst selection scheme, was very resistant to probes, however
chosen features could obviously not have been the most useful ones. The same is
true for (unitary) redundancy measures. Redundancy and Greedy curves show
an increasing probe tolerance (as was to expect), the Greedy curve exhibiting
a steep rise from 80 to 100 features. Unitary relevance filters and Hopfield let
in most probes as compared to the other measures. mRmRD/Q were in the
mid-field.

Over all classifiers, Spearman correlations of normalized ranks and inverse
(subtracting from 1) normalized probe frequencies over all RR combinations at
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each number of features ranged between −0.08 and 0.6. This suggests to us
that low probe frequencies are not sufficient for good classifier performance. The
correlations follow a curious pattern: they start at medium range with 4 features
(0.5), go down (until −0.08) at 45 features, and climb up again. This suggests
low probe frequencies being relatively important at low numbers of variables and
when there are few to choose from (but not in-between). This explains for higher
numbers of features the success of redundancy filters and the revival of Greedy.

As we will see below in table 2, the probe of zeros (feature index 177), enjoyed
some popularity. This seems to be a problem that comes from the skewed class-
distributions in our data, which makes that 0 can be to 90% associated with one
class.

♯features selection method LP Gabors LC TC Int. RN RU Zeros
4 mRmRQ, CC+CC 4.42 0.89 0.00 0.00 0.00 0.00 0.00 44.25
8 mRmRD. CC+VDM 6.64 1.11 0.00 0.00 0.00 0.00 0.00 0.00
12 mRmRD, CC+VDM 7.38 0.89 0.00 2.11 0.00 0.00 0.00 0.00
16 Redundancy Filter VDM 0.00 1.33 4.92 0.00 0.00 0.00 0.00 0.00
20 Redundancy Filter VDM 0.00 1.33 4.92 0.00 0.00 0.00 0.00 0.00
30 mRmRQ RVDM FC 5.31 1.00 1.97 0.84 0.00 0.00 0.00 0.00
45 mRmRQ, RVDM+FC 3.54 1.14 2.62 0.56 0.00 0.00 0.00 0.00
60 Hopfield. KSC+CC 0.00 1.24 2.95 2.95 2.95 0.00 0.00 2.95
80 Hopfield, KSD+FC 0.89 1.28 2.21 2.21 2.21 0.00 0.00 2.21
100 Hopfield, KSD+FC 1.77 1.27 1.77 1.77 1.77 0.00 0.00 1.77

Table 2. Best Selection Methods for each Number of Features

Table 2 lists from 4 to 100 numbers of features (first column) the selection
method (second column) that provided the best performing feature set. At the
end of the second column we put the redundancy and relevance measures (cf.
4.2). From column 3-10 you see normalized frequencies of features from Laplacian
Pyramid (LP), Gabor filters, luminance contrast (LC), texture contrast (TC),
intensity (Int.), random normal probes (RN), random uniform probes (RU), and
the zero probe. The frequency of each feature type in the selected set was divided
by the frequency expected from prior probabilities. E.g. as for Gabor filters, the
a-priori probability is 100/177 ≈ 0.56. For 100 features, the expected number of
Gabor features is 0.56 × 100 = 56. The figures corresponding to each number
of features and feature type tell how much the frequencies found for the type
exceed or fall behind expectations. E.g. for 100 features from Gabor filters there
were 1.27 times more than expected.

Laplacian Pyramids, intensity, texture contrast, and luminance contrast ap-
pear prominently (relative to their proportion in the feature set). There are
many Gabor filters present. It is remarkable that only few probes are selected
(however the zeros each time).

5 Conclusions

In this paper, we presented a new method for feature selection based on re-
dundancy and relevance of features. Approaches that use neural networks for
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feature selection (e.g. [35]) or that use feature selection before feeding data
into neural networks exist in manifold (e.g. [32]. However, to our knowledge,
a non-supervised neural network has not been used before for feature selection
in the minimal redundancy and maximal relevance framework. As a recurrent
artificial neural network attractor model, the Hopfield network [17,18], shares
phenomenology with the associative memory function of the cortex. Similarly
in both, if several patterns are presented simultaneously, a rivalry process leads
to competition, from which stable states result in perceptual groupings. In the
brain, this process possibly functions by synchronization of neural cell oscilla-
tion [14].

On the whole, for all the tested features we saw that mRmRD was the best
combination scheme. Curiously, the selections with least numbers of probes are
not necessarily the best ones. We observed a log-shaped performance curve over
number of features, unsaturated until 100 for some methods. Therefore we de-
cided that the best selection came from the best method at 100 features, a
Hopfield network using the Kolmogorov-Smirnov test as redundancy measure
and FC relevance. Selection with Hopfield networks showed improvements for
higher-dimensioned feature sets.

Not explained yet, but what deserves mention is that the SVM classifier
was the best classifier, followed by GentleBoost and Näıve Bayes. Performance
estimations obtained could be optimistically biased, because we used only one
data set for estimation and the methods were partly chosen for the expected
aptness in the domain.

6 Future Work

We identify four lines of future work. These concern relevance and redundancy
measures, discretization methods, extension to multi-class classification, and
more numbers of features.

Though not reported in this article, due to space limitations6, we obtained
some interesting results comparing different relevance and redundancy measures.
As for redundancy, Jensen–Shannon Divergence, was best, followed by VDM,
and the sign–test. As for relevance measures, VDM and FC were good. Some
measures had difficulties with the zero–probe and this should be taken care of.
Future research could try out other relevance and redundancy measures and try
them out on several data sets.

Liu et al. [21] systematize and test several methods of discretization and
again found the minimum description length best performing. Ding, Peng et
al. [23] chose to discretize data using mean ± ασ, with α ∈ [0, 2, 0.5]. We have
not tried out this method, neither did we try out minimum description length.

Although this study was limited to binary classification, its methods are not
and it remains to be seen how our feature selection scales up from a two-class
problem to multi-class domains with thousands of features.

6 For relevance and redundancy measures check [2] for details
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In our experimental design we emphasized few numbers of features (70% be-
low 50), which turned out favorably for mRmRD. The Hopfield network selection
seems to perform well for high-dimensional feature spaces and could be used in
analysis of complex data. It stands out to test the methods in higher dimensional
feature spaces. Studies in this direction for the NIPS feature selection challenge
are in preparation.
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