Syntax and Semantics of Propositional Linear Temporal Logic

Defining Logics

$\langle\mathcal{L}, \mathcal{M}, \models\rangle$
\mathcal{L} - the language of the logic
\mathcal{M} - a class of models
\vDash - satisfaction relation
$M \in \mathcal{M}, \varphi \in \mathcal{L}: \quad M \models \varphi$ is read as " M satisfies φ "

Typical additional parameters to \models :

$$
\begin{aligned}
& \mathcal{A}, a, b \models \varphi(x, y) \quad a, b \text { are values for } x, y ; \\
& M, w \models \varphi \quad w \text { is a reference possible world }
\end{aligned}
$$

etc.

Syntax of LTL

A vocabulary \mathbf{L} of propositional variables $p, q, \ldots \in \mathbf{L}$

$$
\begin{array}{rlrl}
\varphi::= & \perp|\top| & & \text { logical constants false and true } \\
& p \mid & & \text { propositional variable } \\
& \neg \varphi \mid & & \text { negation } \\
& (\varphi \vee \varphi)|(\varphi \wedge \varphi)| & & \text { disjunction, conjunction } \\
& (\varphi \Rightarrow \varphi)|(\varphi \Leftrightarrow \varphi)| & & \text { implication, equivalence } \\
\circ \varphi \mid & & \text { circle, "nexttime" } \\
\diamond \varphi \mid & & \text { diamond, "now or sometimes in the future" } \\
\square \varphi \mid & & \text { box, "now and always in the future" } \\
& (\varphi \cup \varphi) & & \text { until, }(p \cup q) \text { is read as "p until } q "
\end{array}
$$

$\varphi \in \mathbf{L}-$ " φ is a formula written in the vocabulary \mathbf{L} "

Binding strengh of $L T L$ connectives

$$
\begin{aligned}
\varphi::= & \perp|\top| p|\neg \varphi|(\varphi \vee \varphi)|(\varphi \wedge \varphi)|(\varphi \Rightarrow \varphi) \mid(\varphi \Leftrightarrow \varphi) \\
& \circ \varphi|\diamond \varphi| \square \varphi \mid(\varphi \mathrm{U} \varphi)
\end{aligned}
$$

The $L T L$ connectives in decreasing order of their binding strength:
$\neg, \circ, \diamond, \square$
\wedge
v
$\Rightarrow, \Leftrightarrow$
(.U.) - we always write (and) around U.

Models and satisfaction

Vocabulary \mathbf{L}
$\sigma: \omega \rightarrow \mathcal{P}(\mathbf{L})$ an $L T L$ model for \mathbf{L}
$\sigma, n<\omega, \varphi \in \mathbf{L}$
$\sigma, n \models \varphi-" \varphi$ is satisfied at position n of $\sigma . "$

$$
\begin{array}{lll}
\sigma, n \not \models \perp & \\
\sigma, n \models p & \text { if } \quad p \in \sigma_{n} \\
\sigma, n \models \varphi \Rightarrow \psi & \text { if } \quad \text { either } \sigma, n \not \models \varphi \text { or } \sigma, n \models \psi \\
\sigma, n \models o \varphi & \text { if } \quad \sigma, n+1 \models \varphi \\
\sigma, n \models \diamond \varphi & \text { if } \quad & \sigma, n+i \models \varphi \text { for some } i<\omega \\
\sigma, n \models \square \varphi & \text { if } \quad & \sigma, n+i \models \varphi \text { for all } i<\omega \\
\sigma, n \models(\varphi \cup \psi) & \text { if } \quad \text { there exists a } k<\omega \text { such that } \\
& \quad \sigma, n+i \models \varphi \text { for all } i<k \text { and } \sigma, n+k \models \psi
\end{array}
$$

On the form of \models

\circ, \diamond, \square and (.U.) are future temporal operators:
$\sigma, n \models \circ \varphi \sigma, n \models \diamond \varphi$, etc. depend only on

$$
\left.\sigma\right|_{\{n, n+1, \ldots\}}
$$

Let $\sigma^{(i)}$ denote $\lambda j \cdot \sigma_{i+j}$. Then

$$
\sigma, i \models \varphi \text { is equivalent to } \sigma^{(i)}, 0 \models \varphi \text {. }
$$

Using the $\sigma^{(.)}$notation, mentioning positions can be avoided:

$$
\sigma \models o \varphi \quad \text { if } \quad \sigma^{(1)} \models \varphi
$$

$\sigma \models(\varphi \mathrm{U} \psi) \quad$ if there exists a $k<\omega$ such that

$$
\sigma^{(i)} \models \varphi \text { for all } i<k \text { and } \sigma^{(k)} \models \psi
$$

Abbreviations

\top, \neg, \wedge, \vee and \Leftrightarrow abbreviate formulas built using just \perp and \Rightarrow

$$
\begin{aligned}
& \diamond \varphi \rightleftharpoons(T \mathrm{U} \varphi) \\
& \square \varphi \rightleftharpoons \neg \diamond \neg \varphi
\end{aligned}
$$

Conversely

$$
\diamond \varphi \rightleftharpoons \neg \square \neg \varphi
$$

To keep proofs by induction on the structure of formulas short, we take

$$
\perp, \quad \Rightarrow, \quad \circ, \quad \text { and }(. U .) \text { as the basic connectives. }
$$

Validity in $L T L$

Definition $1 \models_{L T L} \varphi$ if $\sigma, n \models \varphi$ for all models σ and all $n<\omega$
$\models_{L T L} \varphi$ is equivalent to $\models_{L T L} \square \varphi$
$\models_{L T L} \varphi$ is equivalent to $\sigma, 0 \models \varphi$ for all models σ

Replacement of equivalents

φ and ψ are equivalent, if $\models_{L T L} \varphi \Leftrightarrow \psi$

Proposition 1 (replacement of equivalents) Let

$$
\models_{L T L} \varphi_{i} \Leftrightarrow \psi_{i}, \quad i=1, \ldots, n .
$$

Then

$$
\left[\varphi_{1} / p_{1}, \ldots, \varphi_{n} / p_{n}\right] \chi \text { is equivalent to }\left[\psi_{1} / p_{1}, \ldots, \psi_{n} / p_{n}\right] \chi
$$

Proof: Induction on the construction of $\chi . \dashv$

Proposition 2 Let $\models_{L T L} \chi$. Then

$$
\models_{L T L}\left[\varphi_{1} / p_{1}, \ldots, \varphi_{n} / p_{n}\right] \chi
$$

Exercises

Exercise 1 Prove the validity of the following formulas:
$\diamond \varphi \Leftrightarrow(\mathrm{TU} \varphi), \square \varphi \Leftrightarrow \neg \diamond \neg \varphi$
$\neg \circ \varphi \Leftrightarrow \circ \neg \varphi, \circ(\varphi \vee \psi) \Leftrightarrow \circ \varphi \vee \circ \psi, \circ(\varphi \wedge \psi) \Leftrightarrow \circ \varphi \wedge \circ \psi$
$\diamond(\varphi \vee \psi) \Leftrightarrow \diamond \varphi \vee \diamond \psi, \square(\varphi \wedge \psi) \Leftrightarrow \square \varphi \wedge \square \psi$
$\diamond \diamond \varphi \Leftrightarrow \diamond \varphi, \square \square \varphi \Leftrightarrow \square \varphi$
$\circ(\varphi \Rightarrow \psi) \Rightarrow(\circ \varphi \Rightarrow \circ \psi), \square(\varphi \Rightarrow \psi) \Rightarrow(\square \varphi \Rightarrow \square \psi)$
$\square \varphi \Rightarrow \varphi \wedge \circ \square \varphi$
$\square(\varphi \Rightarrow \circ \varphi) \Rightarrow(\varphi \Rightarrow \square \varphi)$
$(\varphi \mathrm{U} \psi) \Leftrightarrow \psi \vee(\varphi \wedge \circ(\varphi \mathrm{U} \psi))$

Exercises

Exercise 2 Let $\varphi, \psi_{i}, \chi_{i}, i=1, \ldots, n$, be arbitrary formulas. Prove that

$$
\models_{L T L} \bigwedge_{i=1}^{n} \square\left(\psi_{i} \Leftrightarrow \chi_{i}\right) \Rightarrow\left(\left[\psi_{1} / p_{1}, \ldots, \psi_{n} / p_{n}\right] \varphi \Leftrightarrow\left[\chi_{1} / p_{1}, \ldots, \chi_{n} / p_{n}\right] \varphi\right) .
$$

Exercises

Consider the derived operators (.W.) and (.R.):

$$
(\varphi \mathrm{W} \psi) \rightleftharpoons(\varphi \mathrm{U} \psi) \vee \square \varphi, \quad(\varphi \mathrm{R} \psi) \rightleftharpoons(\varphi \mathrm{U}(\psi \wedge \varphi))
$$

Exercise 3 Write clauses that define \models for formulas built using (.W.) and (.R.). The clauses should not refer to the meaning of \models for other temporal operators.

Exercise 4 Show that (.U.) can be regarded as an abbreviation in systems of $L T L$ with (.W.) or (.R.) as a basic temporal operator instead of (.U.).

Exercise 5 Prove that, using (.W.) along with (.U.), every $L T L$ formula can be transformed into an equivalent one in which \neg occurs only immediately before propositional variables.

Exercises

Definition 2 The formulas $\alpha_{1}, \ldots, \alpha_{n}$ form a full system if $\models \neg\left(\alpha_{i} \wedge \alpha_{j}\right)$ for $1 \leq i<j \leq n$ and $\models \bigvee_{i=1}^{n} \alpha_{i}$.

Exercise 6 Prove that every $L T L$ formula has an equivalent one of the form

$$
\bigvee_{i} \alpha_{i} \wedge \circ \beta_{i}
$$

where α_{i} are purely propositional and form a full system. No restrictions are imposed on the form of the β_{i} s.

A clausal normal form for $L T L$

First proposed by Michael Fisher; useful in proof by temporal resolution:

$$
\xi \wedge \square \bigwedge_{i}\left(\pi_{i} \Rightarrow \varphi_{i}\right)
$$

ξ - purely propositional
π_{i} - conjunctions of possibly negated propositional variables
φ_{i} - disjunctions of p , op and $\diamond p$.
Definition 3 Given vocabularies \mathbf{L} and $\mathbf{L}^{\prime}, \mathbf{L} \subseteq \mathbf{L}^{\prime}$, model σ^{\prime} for \mathbf{L}^{\prime} extends model σ for \mathbf{L} if

$$
\sigma^{\prime}(i) \cap \mathbf{L}=\sigma(i) \text { for all } i<\omega
$$

Theorem 1 For every formula φ there exists a formula ψ in the normal form s . t. $\operatorname{Var}(\varphi) \subseteq \operatorname{Var}(\psi)$ and every linear model σ for the vocabulary $\operatorname{Var}(\varphi)$ such that $\sigma, 0 \models \varphi$ can be uniquely extended to a model for $\operatorname{Var}(\psi)$ such that $\sigma^{\prime}, 0 \models \psi$.

A clausal normal form for $L T L$ - the proof

Add fresh p and use the transformations

$$
[\circ \alpha / p] \varphi \rightarrow \varphi \wedge \square(p \Leftrightarrow \circ \alpha) \text { and }[(\alpha \cup \beta) / p] \varphi \rightarrow \varphi \wedge \square(p \Leftrightarrow(\alpha \cup \beta))
$$

bottom up to eliminate nested \circ and (.U.) and reach

$$
\xi \wedge \square \bigwedge_{i}\left(p_{i} \Leftrightarrow \eta_{i}\right)
$$

with η_{i} being (.U.)- and o-formulas with propositional operands.

A clausal normal form for $L T L$ - the proof

$$
p \Leftrightarrow(\alpha \mathrm{U} \beta) \text { is equivalent to } p \Leftrightarrow(\beta \vee(\alpha \wedge \circ p)) \wedge \diamond \beta \text {, }
$$

which is in turn equivalent to

$$
(p \Rightarrow \beta \vee \alpha) \wedge(p \Rightarrow \beta \vee \circ p) \wedge p \Rightarrow \diamond \beta) \wedge(\beta \Rightarrow p) \wedge(\alpha \wedge \circ p \Rightarrow p \vee \square \neg \beta)
$$

To eliminate $\square \neg \beta$, we replace

$$
(\alpha \wedge \circ p \Rightarrow p \vee \square \neg \beta) \text { by }(\alpha \wedge \circ p \Rightarrow p \vee q) \wedge(q \Leftrightarrow \neg \beta \wedge \circ q) .
$$

Exercise 7 Find the normal form conjunctive members for $p \Leftrightarrow \circ \alpha$.

Since fresh propositional variables p are only added in defining clauses of the form $\square(p \Leftrightarrow \ldots)$, extended satisfying models are determined uniquely.

The expressive power of just \circ and

Restrict the syntax to

$$
\varphi::=\perp|p| \varphi \Rightarrow \varphi|\circ \varphi| \diamond \varphi
$$

Exercise 8 Prove that every formula with the above syntax can be transformed into an equivalent one with no occurrences of \perp, \Rightarrow or \diamond in the scope of \circ.

Hence we can restrict the syntax to
$\varphi::=\perp|\psi| \varphi \Rightarrow \varphi|\circ \varphi| \diamond \varphi$
$\psi::=p \mid \circ \psi$
without (further) loss of expressive power.

Just \circ and \diamond concluded

Let $\mathbf{L}=\{p, q\}, n<\omega$. Consider

$$
\sigma=\underbrace{\{p\} \ldots\{p\}}_{2 n-1 \text { times }}\{p, q\}(\underbrace{\{p\} \ldots\{p\}}_{n-1 \text { times }} \emptyset \underbrace{\{p\} \ldots\{p\}}_{n-1 \text { times }}\{p, q\})^{\omega}
$$

Proposition 3 Let φ have less than $n-1$ occurrences of \circ. Then

$$
\sigma, 0 \models \varphi \text { iff } \sigma, 2 n \models \varphi \text {. }
$$

Exercise 9 Prove the above proposition.

However,

$$
\sigma, 0 \models(p \cup q) \text { whereas } \sigma, 2 n \not \models(p \cup q) \text {. }
$$

Kripke models for $L T L$. Model-checking $L T L$ properties Decidability and the small model property for $L T L$

Systems with multiple behaviours

Linear LTL models $\sigma: \omega \rightarrow \mathcal{P}(\mathbf{L})$ encode individual behaviours.
Systems can have many behaviours. Possible reasons for non-determinism:

1. The system receives data from the envirnoment.
2. The system is part of some bigger system, but is being modelled separately. Without the complementing behaviour of the other parts, the behaviour of the considered part remains underspecified.
3. The system is obtained by abstraction (simplification) of a more complex system in order to become tractable. Parts of its state which are involved in making choices for its behaviour have been abstracted away.

Kripke models

Kripke frame: $\langle W, R, I\rangle$

$$
\begin{aligned}
& W \neq \emptyset \text { - a set of states (possible worlds) } \\
& R \subseteq W \times W \text { - a transition relation } \\
& I \subseteq W, I \neq \emptyset \text { - a set of initial states }
\end{aligned}
$$

We require R to be serial: $\forall w^{\prime} \exists w^{\prime \prime} R\left(w^{\prime}, w^{\prime \prime}\right)$.
Kripke model for a vocabulary $\mathbf{L}:\langle W, R, I, V\rangle$
W, R and I as in Kripke frames
$V: W \rightarrow \mathcal{P}(\mathbf{L})$ - a valuation of the variables from \mathbf{L}.
A linear model σ can be viewed as the Kripke model

$$
\langle\omega, \prec,\{0\}, \sigma\rangle
$$

Behaviours in Kripke models

$M=\langle W, R, I, V\rangle-$ a Kripke model for \mathbf{L}.
$s=s_{0} s_{1} \ldots s_{n} \ldots \in W^{\omega}$ is a behaviour in M, if

$$
s_{0} \in I \text { and } R\left(s_{i}, s_{i+1}\right) \text { for all } i<\omega .
$$

A linear $L T L$ model σ_{s} corresponding to s :
$\left(\sigma_{s}\right)_{i}=V\left(s_{i}\right)$ for all $i<\omega$.
Definition 4φ is satisfiable in M if M has a behaviour s s.t. $\sigma_{s}, 0 \models \varphi$.

If M is clear from the context, we write

$$
s, k \models \ldots \text { instead of } \sigma_{s}, k \models \ldots
$$

Overview of the model-checking algorithm

In a linear model σ we have the mapping $i \rightarrow\{\varphi \in \mathbf{L}: \sigma, i \models \varphi\}$
No mapping of the form $w \rightarrow\{\varphi \in \mathbf{L}: M, w \models \varphi\}$ is possible for Kripke models.
$w \rightarrow\{\psi: M, s \models \psi$ for s which start at $w\}$ is impossible too:

$$
\psi=o p, w R w_{0}, w R w_{1}, p \in V\left(w_{0}\right), p \notin V\left(w_{1}\right)
$$

Solution:
Let $\operatorname{Cl}(\varphi)$ be the formulas "relevant" to calculating $\varphi \cdot \mathrm{Cl}(\varphi)$ includes $\operatorname{Subf}(\varphi)$ and some other formulas.
"Expand" M to a bigger model M_{φ} where:
the same behaviours as in M can be observed; all s starting at $w=s_{0}$ satisfy the same o-formulas from $\mathrm{Cl}(\varphi)$.

$\mathrm{Cl}($.$) - the Fischer-Ladner closure in L T L$

Γ - a finite set of $L T L$ formulas.
The Fischer-Ladner closure of Γ, written $\mathrm{Cl}(\Gamma)$, is the least Δ s.t.
$\Gamma \subseteq \Delta ;$
$\varphi \Rightarrow \psi \in \Delta \rightarrow \varphi, \psi \in \Delta ;$
$\varphi \in \Delta \rightarrow \varphi \Rightarrow \perp \in \Delta$, unless φ is a negation itself;
$\circ \varphi \in \Delta \rightarrow \varphi \in \Delta ;$
$(\varphi \mathrm{U} \psi) \in \Delta \rightarrow \varphi, \psi, \circ(\varphi \mathrm{U} \psi) \in \Delta$.
We abbreviate $\mathrm{Cl}(\{\varphi\})$ to $\mathrm{Cl}(\varphi)$.

Fischer-Ladner closure in $L T L$

Proposition $4|\mathrm{Cl}(\varphi)| \leq 4|\varphi|$.

Proof:

$\operatorname{Subf}(\varphi)$ - the subformulas of φ, including φ itself.
$|\operatorname{Subf}(\varphi)| \leq|\varphi|$.
Let

$$
\Phi_{0}=\operatorname{Subf}(\varphi) \cup\{o(\psi \cup \chi):(\psi \cup \chi) \in \operatorname{Subf}(\varphi)\} .
$$

Then

$$
\mathrm{Cl}(\varphi)=\Phi_{0} \cup\left\{\neg \psi: \psi \in \Phi_{0}, \psi \text { is not a negation itself }\right\} .
$$

\dashv

Corollary 1 If Γ is a finite set of formulas, then $\mathrm{Cl}(\Gamma)$ is finite too.

The model M_{φ} : atoms

We fix $\mathbf{L}, \varphi, M=\langle W, R, I, V\rangle$ for \mathbf{L}. We assume $\mathbf{L}=\operatorname{Var}(\varphi)$.
Atom $-\langle w, \Delta\rangle \in W \times \mathcal{P}(\mathrm{Cl}(\varphi))$:

$$
\begin{aligned}
& \Delta \cap \mathbf{L}=V(w) ; \quad \perp \notin \Delta ; \\
& \psi \Rightarrow \chi \in \Delta \text { iff either } \psi \notin \Delta \text { or } \chi \in \Delta ; \\
& (\psi \cup \chi) \in \Delta \text { iff either } \chi \in \Delta \text { or } \psi, \circ(\psi \cup \chi) \in \Delta .
\end{aligned}
$$

Δ is a maximal subset of $\mathrm{Cl}(\varphi)$ which is appoximately consistent wrt temporal operators and agrees with w on atomic propositions.

Exercises on atoms

$$
M=\langle W, R, I, V\rangle
$$

Atom $-\langle w, \Delta\rangle \in W \times \mathcal{P}(\operatorname{Cl}(\varphi))$:

$$
\begin{aligned}
& \Delta \cap \mathbf{L}=V(w) ; \quad \perp \notin \Delta ; \\
& \psi \Rightarrow \chi \in \Delta \text { iff either } \psi \notin \Delta \text { or } \chi \in \Delta ; \\
& (\psi \mathbf{U} \chi) \in \Delta \text { iff either } \chi \in \Delta \text { or } \psi, \circ(\psi \mathbf{U} \chi) \in \Delta .
\end{aligned}
$$

Exercise 10 Let s be a behaviour in M and $i<\omega$. Prove that $\left\langle s_{i},\left\{\psi \in \mathrm{Cl}(\varphi): \sigma_{s}, i \models \psi\right\}\right\rangle$ is an atom.

Exercise 11 Let $\left\langle w^{\prime}, \Delta^{\prime}\right\rangle$ and $\left\langle w^{\prime \prime}, \Delta^{\prime \prime}\right\rangle$ be atoms. Prove that if $w^{\prime}=w^{\prime \prime}$ and Δ^{\prime} and $\Delta^{\prime \prime}$ contain the same formulas of the form $\circ \psi$, then $\Delta^{\prime}=\Delta^{\prime \prime}$, that is, the two atoms are the same.

The model M_{φ} : initial approximation M_{φ}^{0}

$M_{\varphi}^{0}=\left\langle W_{\varphi}^{0}, R_{\varphi}^{0}, I_{\varphi}^{0}, V_{\varphi}^{0}\right\rangle$ for \mathbf{L}.
W_{φ}^{0} consists of all the atoms;

$$
\begin{aligned}
& V_{\varphi}^{0}(\langle w, \Delta\rangle)=V(w) \text { for all }\langle w, \Delta\rangle \in W_{\varphi}^{0} \\
& I_{\varphi}^{0}=\left\{\langle w, \Delta\rangle \in W_{\varphi}^{0}: w \in I\right\} \\
& \left\langle w^{\prime}, \Delta^{\prime}\right\rangle R_{\varphi}^{0}\left\langle w^{\prime \prime}, \Delta^{\prime \prime}\right\rangle \text { iff } w^{\prime} R w^{\prime \prime} \text { and }\left\{\varphi: \circ \varphi \in \Delta^{\prime}\right\} \subseteq \Delta^{\prime \prime} .
\end{aligned}
$$

R_{φ}^{0} is not guaranteed to be serial:

$$
\left(\forall x \in W_{\varphi}^{0}\right)\left(\exists y \in W_{\varphi}^{0}\right) R_{\varphi}^{0}(x, y)
$$

This is so because, if, e.g., $\circ p, \circ \neg p \in \Delta$, then obviously $\langle w, \Delta\rangle$ has no R_{φ}^{0}-successor.

The model M_{φ}

$M_{\varphi}^{0}=\left\langle W_{\varphi}, R_{\varphi}, I_{\varphi}, V_{\varphi}\right\rangle$
W_{φ} - the greatest subset of W_{φ}^{0} s.t.

$$
\left(\forall x \in W_{\varphi}\right)\left(\exists y \in W_{\varphi}\right) R_{\varphi}^{0}(x, y)
$$

W_{φ} is obtained from W_{φ}^{0} by removing the states with no R_{φ}^{0}-successor.
Exercise 12 Prove that it is impossible to get all the states removed from W_{φ}^{0} this way. Hint: states of the form $\left\langle s_{i},\left\{\psi \in \operatorname{Cl}(\varphi): \sigma_{s}, i \models \psi\right\}\right\rangle$ where s is a behaviour in M and $i<\omega$ cannot be removed this way.

$$
V_{\varphi}=\left.V_{\varphi}^{0}\right|_{W_{\varphi}}, \quad I_{\varphi}=I_{\varphi}^{0} \cap W_{\varphi}, \quad R_{\varphi}=R_{\varphi}^{0} \cap W_{\varphi} \times W_{\varphi}
$$

Proposition $5\left|W_{\varphi}\right| \leq\left|W_{\varphi}^{0}\right| \leq 2^{|\mathrm{Cl}(\varphi)|}|W|$.
Exercise 13 Give a more accurate upper bound for $\left|W_{\varphi}\right|$ using Exercise 11.

The correspondence between M and M_{φ}

Proposition 6 Let s be a behaviour in M. Let

$$
\Delta_{i}=\left\{\psi \in \mathrm{Cl}(\varphi): \sigma_{s}, i \models \psi\right\}, i<\omega .
$$

Then $\left\langle s_{0}, \Delta_{0}\right\rangle\left\langle s_{1}, \Delta_{1}\right\rangle \ldots\left\langle s_{n}, \Delta_{n}\right\rangle \ldots$
is a behaviour in M_{φ} and

$$
\sigma_{s}, i \models \psi \text { is equivalent to }\left\langle s_{0}, \Delta_{0}\right\rangle\left\langle s_{1}, \Delta_{1}\right\rangle \ldots\left\langle s_{n}, \Delta_{n}\right\rangle \ldots, i \models \psi
$$

for all $\psi \in \mathrm{Cl}(\varphi)$ and all $i<\omega$.
Furthermore, for all $i<\omega$,

$$
\text { if }(\psi \cup \chi) \in \Delta_{i} \text {, then there exists a } j<\omega \text { such that } \chi \in \Delta_{i+j} .
$$

Proof: Direct check. \dashv

The correspondence between M and M_{φ}

Proposition 7 Let $\left\langle s_{0}, \Delta_{0}\right\rangle\left\langle s_{1}, \Delta_{1}\right\rangle \ldots\left\langle s_{n}, \Delta_{n}\right\rangle \ldots$
be a behaviour in M_{φ} and let

$$
\begin{equation*}
\text { if }(\psi \cup \chi) \in \Delta_{i} \text {, then there exists a } j<\omega \text { such that } \chi \in \Delta_{i+j} \text {. } \tag{1}
\end{equation*}
$$

hold for all $i<\omega$. Then s is a behaviour in M, and for all $i \in \omega$ and $\psi \in \operatorname{Cl}(\varphi), \psi \in \Delta_{i}$ is equivalent to both

$$
s, i \models \psi \text { and }\left\langle s_{0}, \Delta_{0}\right\rangle\left\langle s_{1}, \Delta_{1}\right\rangle \ldots\left\langle s_{n}, \Delta_{n}\right\rangle \ldots, i \models \psi .
$$

Proof: Direct check by induction on the construction of φ. \dashv
Summary: Behaviours in M correspond to behaviours in M_{φ} which satisfy the condition (1).

Strongly connected components (SCC) in Kripke models

$M=\langle W, R, I, V\rangle, R^{*}$ - the reflexive and transitive closure of R.
$W^{\prime} \subseteq W$ is a strongly connected component (SCC), if $W^{\prime} \times W^{\prime} \subseteq R^{*}$.
Proposition 8 Let $|W|<\omega$ and let s be a behaviour in M. Then there exists an $i<\omega$ such that $\left\{s_{i+j}: j<\omega\right\}$ is an SCC.

Proposition 9 Let $W^{\prime} \subseteq W_{\varphi}$ be an SCC in M_{φ} s. t. for all $\langle w, \Delta\rangle \in W^{\prime}$ and all $(\psi \cup \chi) \in \mathrm{Cl}(\varphi)$

$$
\langle w, \Delta\rangle \in W^{\prime} \text { and }(\psi \cup \chi) \in \Delta, \text { imply } \chi \in \Delta^{\prime} \text { for some }\left\langle w^{\prime}, \Delta^{\prime}\right\rangle \in W^{\prime}
$$

Let $\left\langle w_{0}, \Delta_{0}\right\rangle \ldots\left\langle w_{k}, \Delta_{k}\right\rangle$ be a behaviour prefix in $M_{\varphi}, \varphi \in \Delta_{0}$ and $\left\langle w_{k}, \Delta_{k}\right\rangle \in W^{\prime}$.

Then φ is satisfiable at M. A satisfying behaviour for φ in M can be obtained by concatenating $w_{0} \ldots w_{k}$ with any loop in R_{φ} that goes through all the members of W^{\prime}.

Strongly connected components (SCC) in Kripke models

Conversely, if s is a behaviour in M, then the corresponding behaviour

$$
\left\langle s_{0}, \Delta_{0}\right\rangle\left\langle s_{1}, \Delta_{1}\right\rangle \ldots\left\langle s_{n}, \Delta_{n}\right\rangle \ldots
$$

in M_{φ} can be partitioned into a finite prefix

$$
\left\langle s_{0}, \Delta_{0}\right\rangle\left\langle s_{1}, \Delta_{1}\right\rangle \ldots\left\langle s_{j}, \Delta_{j}\right\rangle
$$

and an SCC

$$
W^{\prime}=\left\{\left\langle s_{i}, \Delta_{i}\right\rangle: j \leq i\right\}
$$

which satisfies the condition

$$
\langle w, \Delta\rangle \in W^{\prime} \text { and }(\psi \cup \chi) \in \Delta, \text { imply } \chi \in \Delta^{\prime} \text { for some }\left\langle w^{\prime}, \Delta^{\prime}\right\rangle \in W^{\prime}
$$

for all $\langle w, \Delta\rangle \in W^{\prime}$ and all $(\psi \cup \chi) \in \mathrm{Cl}(\varphi)$.

The size of M_{φ}

N_{φ} - the number of the sets $\Delta \subseteq \mathrm{Cl}(\varphi)$ s.t. $\langle w, \Delta\rangle$ is an atom for some $w \in W$.
M_{φ} has at most $N_{\varphi}|W|$ states.

A Δ contains either ψ or an equivalent to $\neg \psi$ for every $\psi \in \mathrm{Cl}(\varphi)$.

Hence, since $|\mathrm{Cl}(\varphi)| \leq 4|\varphi|, N_{\varphi} \leq 2^{2|\varphi|}$.

Consequently,

$$
\left|W_{\varphi}\right| \leq 2^{2|\varphi|}|W|
$$

The small (finite) model property for LTL: Synopsis

Satisfiability of $L T L$ formulas without regard of a particular model.

If an $L T L$ formula is satisfiable at all, then it is satisfiable at a finite Kripke model of size that is exponential in the length of the formula.
$L T L$ is satisfiable iff it is satisfiable at a linear model in which, from a certain state on, the same finite sequence of states is repeated infinitely many times.

The equivalence between satisfiability of individual formulas in general and in finite models is known as the small (finite) model property in modal logic.

We first show that if a formula φ is satisfiable, then it is satisfiable in a concrete model which is built using the vocabulary of the formula $\operatorname{Var}(\varphi)$.

Simulations

$M_{i}=\left\langle W_{i}, R_{i}, I_{i}, V_{i}\right\rangle, i=1,2$ - Kripke models for the same \mathbf{L}.
$S \subseteq W_{1} \times W_{2}$ is a simulation of M_{1} into M_{2} if:
for every $w_{1} \in W_{1}$ there exists a $w_{2} \in W_{2}$ such that $w_{1} S w_{2}$;
if $w_{1} S w_{2}$, then $V_{1}\left(w_{1}\right)=V_{2}\left(w_{2}\right)$;
if $w_{1} S w_{2}$ and $w_{1} \in I_{1}$, then $w_{2} \in I_{2}$;
if $w_{1} S w_{2}$ and $w_{1} R_{1} w_{1}^{\prime}$, then there is a $w_{2}^{\prime} \in W_{2}$ s.t. $w_{2} R_{2} w_{2}^{\prime}$ and $w_{1}^{\prime} S w_{2}^{\prime}$.

Proposition 10 Let S be a simulation of M_{1} into M_{2} and let $\varphi \in \mathbf{L}$ be satisfiable in M_{1}. Then it is satisfiable in M_{2} too.

Proof: Let $\sigma_{s}, 0 \models \varphi$ in M_{1}. We construct $s^{\prime} \in W_{2}^{\omega}$:

$$
s_{0}^{\prime} \in S\left(s_{0}\right) ; \quad s_{i+1}^{\prime} \in S\left(s_{i+1}\right) \cap R_{2}\left(s_{i}^{\prime}\right) .
$$

A direct check shows that $\sigma_{s^{\prime}}, 0 \models \varphi$. \dashv

Bisimulations

$M_{i}=\left\langle W_{i}, R_{i}, I_{i}, V_{i}\right\rangle, i=1,2$, Kripke models for the same \mathbf{L}.
S is a bisimulation between M_{1} and M_{2}, if
S is a simulation of M_{1} into M_{2} and
S^{-1} is a simulation of M_{2} into M_{1}.
M_{1} and M_{2} which have a bisimulation are called bisimilar.

Corollary 2 Bisimilar models satisfy the same formulas.

The model M_{L}

Fix a vocabulary \mathbf{L}
$M_{\mathbf{L}}=\left\langle W_{\mathbf{L}}, R_{\mathbf{L}}, I_{\mathbf{L}}, V_{\mathbf{L}}\right\rangle$ - a Kripke model for \mathbf{L} :
$W_{\mathbf{L}}=\mathcal{P}(\mathbf{L})$
$V_{\mathbf{L}}(s)=s$ for all $s \in W_{\mathbf{L}}$
$R_{\mathbf{L}}=W_{\mathbf{L}} \times W_{\mathbf{L}}$
$I_{\mathbf{L}}=W_{\mathbf{L}}$
Every sequence of states in $W_{\mathbf{L}}$ is a behaviour in $M_{\mathbf{L}}$.
$M=\langle W, R, I, V\rangle-$ an arbitrary model \mathbf{L}.
Let $S \subseteq W \times W_{\mathbf{L}}$, where $w S w^{\prime} \leftrightarrow w^{\prime}=V(w)$, is a simulation of M into $M_{\mathbf{L}}$.
Corollary 3 If φ is satisfiable, then it is satisfiable in $M_{\operatorname{Var}(\varphi)}$.
$\left|W_{\operatorname{Var}(\varphi)}\right|=2^{|\operatorname{Var}(\varphi)|}$.

The End

