
Types, Polymorphism, and
Type Reconstruction



Sources

This material is based on the following sources:

I Pierce, B.C., Types and Programming Languages. MIT Press,
2002.

I Kanellakis, P.C., Mairson, H.G. and Mitchell, J.C., Unification
and ML type reconstruction. In Computational Logic: Essays
in Honor of Alan Robinson, ed. J.-L. Lassez and G.D. Plotkin,
MIT Press, 1991, pages 444–478.

I Damas L., Milner, R., Principal type-schemes for functional
programs. Proceedings of the 9th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, ACM,
1982, pages 207–212.

Recommended further reading:

I Pierce, B.C., Turner D.N., Local type inference. ACM
Transactions on Programming Languages and Systems,
Volume 22 Issue 1, Jan. 2000, pages 1–44.



The Simply Typed
Lambda-Calculus



The simply typed lambda-calculus

The system we are about to define is commonly called the simply
typed lambda-calculus, or λ→ for short.

Unlike the untyped lambda-calculus, the “pure” form of λ→ (with
no primitive values or operations) is not very interesting; to talk
about λ→, we always begin with some set of “base types.”

I So, strictly speaking, there are many variants of λ→,
depending on the choice of base types.

I For now, we’ll work with a variant constructed over the
booleans.



Untyped lambda-calculus with booleans

t ::= terms
x variable
λx.t abstraction
t t application
true constant true
false constant false
if t then t else t conditional

v ::= values
λx.t abstraction value
true true value
false false value



“Simple Types”

T ::= types
Bool type of booleans
T→T types of functions

What are some examples?



Type Annotations

We now have a choice to make. Do we...

I annotate lambda-abstractions with the expected type of the
argument

λx:T1. t2

(as in most mainstream programming languages), or

I continue to write lambda-abstractions as before

λx. t2

and ask the typing rules to “guess” an appropriate annotation
(as in OCaml)?

Both are reasonable choices, but the first makes the job of defining
the typing rules simpler. Let’s take this choice for now.



Typing rules

true : Bool (T-True)

false : Bool (T-False)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

λx:T1.t2 : T1→T2
(T-Abs)

x:T ∈ Γ

Γ ` x : T
(T-Var)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)



Typing rules

true : Bool (T-True)

false : Bool (T-False)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

???

λx:T1.t2 : T1→T2
(T-Abs)

x:T ∈ Γ

Γ ` x : T
(T-Var)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)



Typing rules

true : Bool (T-True)

false : Bool (T-False)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

Γ, x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2
(T-Abs)

x:T ∈ Γ

Γ ` x : T
(T-Var)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)



Typing rules

Γ ` true : Bool (T-True)

Γ ` false : Bool (T-False)

Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T

Γ ` if t1 then t2 else t3 : T
(T-If)

Γ, x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2
(T-Abs)

x:T ∈ Γ

Γ ` x : T
(T-Var)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)



Typing Derivations

What derivations justify the following typing statements?

I ` (λx:Bool.x) true : Bool

I f:Bool→Bool `
f (if false then true else false) : Bool

I f:Bool→Bool `
λx:Bool. f (if x then false else x) : Bool→Bool



Properties of λ→

The fundamental property of the type system we have just defined
is soundness with respect to the operational semantics.

1. Progress: A closed, well-typed term is not stuck

If ` t : T, then either t is a value or else t −→ t′

for some t′.

2. Preservation: Types are preserved by one-step evaluation

If Γ ` t : T and t −→ t′, then Γ ` t′ : T.



Proving progress

I inversion lemma for typing relation

I canonical forms lemma

I progress theorem



Inversion

Lemma:

1. If Γ ` true : R, then R = Bool.

2. If Γ ` false : R, then R = Bool.

3. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and
Γ ` t2, t3 : R.

4. If Γ ` x : R, then x:R ∈ Γ.

5. If Γ ` λx:T1.t2 : R, then R = T1→R2 for some R2 with
Γ, x:T1 ` t2 : R2.

6. If Γ ` t1 t2 : R, then there is some type T11 such that
Γ ` t1 : T11→R and Γ ` t2 : T11.



Inversion

Lemma:

1. If Γ ` true : R, then R = Bool.

2. If Γ ` false : R, then R = Bool.

3. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and
Γ ` t2, t3 : R.

4. If Γ ` x : R, then

x:R ∈ Γ.

5. If Γ ` λx:T1.t2 : R, then R = T1→R2 for some R2 with
Γ, x:T1 ` t2 : R2.

6. If Γ ` t1 t2 : R, then there is some type T11 such that
Γ ` t1 : T11→R and Γ ` t2 : T11.



Inversion

Lemma:

1. If Γ ` true : R, then R = Bool.

2. If Γ ` false : R, then R = Bool.

3. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and
Γ ` t2, t3 : R.

4. If Γ ` x : R, then x:R ∈ Γ.

5. If Γ ` λx:T1.t2 : R, then R = T1→R2 for some R2 with
Γ, x:T1 ` t2 : R2.

6. If Γ ` t1 t2 : R, then there is some type T11 such that
Γ ` t1 : T11→R and Γ ` t2 : T11.



Inversion

Lemma:

1. If Γ ` true : R, then R = Bool.

2. If Γ ` false : R, then R = Bool.

3. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and
Γ ` t2, t3 : R.

4. If Γ ` x : R, then x:R ∈ Γ.

5. If Γ ` λx:T1.t2 : R, then

R = T1→R2 for some R2 with
Γ, x:T1 ` t2 : R2.

6. If Γ ` t1 t2 : R, then there is some type T11 such that
Γ ` t1 : T11→R and Γ ` t2 : T11.



Inversion

Lemma:

1. If Γ ` true : R, then R = Bool.

2. If Γ ` false : R, then R = Bool.

3. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and
Γ ` t2, t3 : R.

4. If Γ ` x : R, then x:R ∈ Γ.

5. If Γ ` λx:T1.t2 : R, then R = T1→R2 for some R2 with
Γ, x:T1 ` t2 : R2.

6. If Γ ` t1 t2 : R, then there is some type T11 such that
Γ ` t1 : T11→R and Γ ` t2 : T11.



Inversion

Lemma:

1. If Γ ` true : R, then R = Bool.

2. If Γ ` false : R, then R = Bool.

3. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and
Γ ` t2, t3 : R.

4. If Γ ` x : R, then x:R ∈ Γ.

5. If Γ ` λx:T1.t2 : R, then R = T1→R2 for some R2 with
Γ, x:T1 ` t2 : R2.

6. If Γ ` t1 t2 : R, then

there is some type T11 such that
Γ ` t1 : T11→R and Γ ` t2 : T11.



Inversion

Lemma:

1. If Γ ` true : R, then R = Bool.

2. If Γ ` false : R, then R = Bool.

3. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and
Γ ` t2, t3 : R.

4. If Γ ` x : R, then x:R ∈ Γ.

5. If Γ ` λx:T1.t2 : R, then R = T1→R2 for some R2 with
Γ, x:T1 ` t2 : R2.

6. If Γ ` t1 t2 : R, then there is some type T11 such that
Γ ` t1 : T11→R and Γ ` t2 : T11.



Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1→T2, then v has the form λx:T1.t2.



Canonical Forms

Lemma:

1. If v is a value of type Bool, then

v is either true or false.

2. If v is a value of type T1→T2, then v has the form λx:T1.t2.



Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1→T2, then v has the form λx:T1.t2.



Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1→T2, then

v has the form λx:T1.t2.



Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1→T2, then v has the form λx:T1.t2.



Progress

Theorem: Suppose t is a closed, well-typed term (that is, ` t : T

for some T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction

on typing derivations. The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.
Consider the case for application, where t = t1 t2 with
` t1 : T11→T12 and ` t2 : T11. By the induction hypothesis,
either t1 is a value or else it can make a step of evaluation, and
likewise t2. If t1 can take a step, then rule E-App1 applies to t.
If t1 is a value and t2 can take a step, then rule E-App2 applies.
Finally, if both t1 and t2 are values, then the canonical forms
lemma tells us that t1 has the form λx:T11.t12, and so rule
E-AppAbs applies to t.



Progress

Theorem: Suppose t is a closed, well-typed term (that is, ` t : T

for some T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on typing derivations.

The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.
Consider the case for application, where t = t1 t2 with
` t1 : T11→T12 and ` t2 : T11. By the induction hypothesis,
either t1 is a value or else it can make a step of evaluation, and
likewise t2. If t1 can take a step, then rule E-App1 applies to t.
If t1 is a value and t2 can take a step, then rule E-App2 applies.
Finally, if both t1 and t2 are values, then the canonical forms
lemma tells us that t1 has the form λx:T11.t12, and so rule
E-AppAbs applies to t.



Progress

Theorem: Suppose t is a closed, well-typed term (that is, ` t : T

for some T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on typing derivations. The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.

Consider the case for application, where t = t1 t2 with
` t1 : T11→T12 and ` t2 : T11. By the induction hypothesis,
either t1 is a value or else it can make a step of evaluation, and
likewise t2. If t1 can take a step, then rule E-App1 applies to t.
If t1 is a value and t2 can take a step, then rule E-App2 applies.
Finally, if both t1 and t2 are values, then the canonical forms
lemma tells us that t1 has the form λx:T11.t12, and so rule
E-AppAbs applies to t.



Progress

Theorem: Suppose t is a closed, well-typed term (that is, ` t : T

for some T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on typing derivations. The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.
Consider the case for application, where t = t1 t2 with
` t1 : T11→T12 and ` t2 : T11.

By the induction hypothesis,
either t1 is a value or else it can make a step of evaluation, and
likewise t2. If t1 can take a step, then rule E-App1 applies to t.
If t1 is a value and t2 can take a step, then rule E-App2 applies.
Finally, if both t1 and t2 are values, then the canonical forms
lemma tells us that t1 has the form λx:T11.t12, and so rule
E-AppAbs applies to t.



Progress

Theorem: Suppose t is a closed, well-typed term (that is, ` t : T

for some T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on typing derivations. The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.
Consider the case for application, where t = t1 t2 with
` t1 : T11→T12 and ` t2 : T11. By the induction hypothesis,
either t1 is a value or else it can make a step of evaluation, and
likewise t2.

If t1 can take a step, then rule E-App1 applies to t.
If t1 is a value and t2 can take a step, then rule E-App2 applies.
Finally, if both t1 and t2 are values, then the canonical forms
lemma tells us that t1 has the form λx:T11.t12, and so rule
E-AppAbs applies to t.



Progress

Theorem: Suppose t is a closed, well-typed term (that is, ` t : T

for some T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on typing derivations. The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.
Consider the case for application, where t = t1 t2 with
` t1 : T11→T12 and ` t2 : T11. By the induction hypothesis,
either t1 is a value or else it can make a step of evaluation, and
likewise t2. If t1 can take a step, then rule E-App1 applies to t.
If t1 is a value and t2 can take a step, then rule E-App2 applies.
Finally, if both t1 and t2 are values, then the canonical forms
lemma tells us that t1 has the form λx:T11.t12, and so rule
E-AppAbs applies to t.



Preservation for STLC



Preservation for STLC

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction

on typing derivations.
Case T-App: Given t = t1 t2

Γ `t1 : T11→T12
Γ `t2 : T11
T = T12

Show Γ ` t′ : T12
By the inversion lemma for evaluation, there are three subcases...



Preservation for STLC

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction on typing derivations.

Which case is the hard one??

Case T-App: Given t = t1 t2
Γ `t1 : T11→T12
Γ `t2 : T11
T = T12

Show Γ ` t′ : T12
By the inversion lemma for evaluation, there are three subcases...



Preservation for STLC

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction on typing derivations.
Case T-App: Given t = t1 t2

Γ `t1 : T11→T12
Γ `t2 : T11
T = T12

Show Γ ` t′ : T12

By the inversion lemma for evaluation, there are three subcases...



Preservation for STLC

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction on typing derivations.
Case T-App: Given t = t1 t2

Γ `t1 : T11→T12
Γ `t2 : T11
T = T12

Show Γ ` t′ : T12
By the inversion lemma for evaluation, there are three subcases...



The “Substitution Lemma”

Lemma: Types are preserved under substitition.

That is, if Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: ...



The “Substitution Lemma”

Lemma: Types are preserved under substitition.

That is, if Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: ...



Weakening and Permutation

Two other lemmas will be useful.

Weakening tells us that we can add assumptions to the context
without losing any true typing statements.

Lemma: If Γ ` t : T and x /∈ dom(Γ), then Γ, x:S ` t : T.

Moreover, the latter derivation has the same depth as the former.

Permutation tells us that the order of assumptions in (the list) Γ
does not matter.

Lemma: If Γ ` t : T and ∆ is a permutation of Γ, then ∆ ` t : T.

Moreover, the latter derivation has the same depth as the former.



Weakening and Permutation

Two other lemmas will be useful.

Weakening tells us that we can add assumptions to the context
without losing any true typing statements.

Lemma: If Γ ` t : T and x /∈ dom(Γ), then Γ, x:S ` t : T.

Moreover, the latter derivation has the same depth as the former.

Permutation tells us that the order of assumptions in (the list) Γ
does not matter.

Lemma: If Γ ` t : T and ∆ is a permutation of Γ, then ∆ ` t : T.

Moreover, the latter derivation has the same depth as the former.



Weakening and Permutation

Two other lemmas will be useful.

Weakening tells us that we can add assumptions to the context
without losing any true typing statements.

Lemma: If Γ ` t : T and x /∈ dom(Γ), then Γ, x:S ` t : T.

Moreover, the latter derivation has the same depth as the former.

Permutation tells us that the order of assumptions in (the list) Γ
does not matter.

Lemma: If Γ ` t : T and ∆ is a permutation of Γ, then ∆ ` t : T.

Moreover, the latter derivation has the same depth as the former.



The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

I.e., “Types are preserved under substitition.”

Proof: By induction on the derivation of Γ, x:S ` t : T. Proceed
by cases on the final typing rule used in the derivation.



The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: By induction on the derivation of Γ, x:S ` t : T. Proceed
by cases on the final typing rule used in the derivation.



The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: By induction on the derivation of Γ, x:S ` t : T. Proceed
by cases on the final typing rule used in the derivation.



The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: By induction on the derivation of Γ, x:S ` t : T. Proceed
by cases on the final typing rule used in the derivation.

Case T-App: t = t1 t2
Γ, x:S ` t1 : T2→T1
Γ, x:S ` t2 : T2
T = T1

By the induction hypothesis, Γ ` [x 7→ s]t1 : T2→T1 and
Γ ` [x 7→ s]t2 : T2. By T-App, Γ ` [x 7→ s]t1 [x 7→ s]t2 : T, i.e.,
Γ ` [x 7→ s](t1 t2) : T.



The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: By induction on the derivation of Γ, x:S ` t : T. Proceed
by cases on the final typing rule used in the derivation.

Case T-Var: t = z

with z:T ∈ (Γ, x:S)

There are two sub-cases to consider, depending on whether z is x

or another variable. If z = x, then [x 7→ s]z = s. The required
result is then Γ ` s : S, which is among the assumptions of the
lemma. Otherwise, [x 7→ s]z = z, and the desired result is
immediate.



The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: By induction on the derivation of Γ, x:S ` t : T. Proceed
by cases on the final typing rule used in the derivation.

Case T-Abs: t = λy:T2.t1 T = T2→T1
Γ, x:S, y:T2 ` t1 : T1

By our conventions on choice of bound variable names, we may
assume x 6= y and y /∈ FV(s). Using permutation on the given
subderivation, we obtain Γ, y:T2, x:S ` t1 : T1. Using weakening
on the other given derivation (Γ ` s : S), we obtain
Γ, y:T2 ` s : S. Now, by the induction hypothesis,
Γ, y:T2 ` [x 7→ s]t1 : T1. By T-Abs,
Γ ` λy:T2. [x 7→ s]t1 : T2→T1, i.e. (by the definition of
substitution), Γ ` [x 7→ s]λy:T2. t1 : T2→T1.



Summary: Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Lemmas to prove:

I Weakening

I Permutation

I Substitution preserves types

I Reduction preserves types (i.e., preservation)



Review: Type Systems

To define and verify a type system, you must:

1. Define types

2. Specify typing rules

3. Prove soundness: progress and preservation


	Types, Polymorphism, and Type Reconstruction
	The Simply Typed Lambda-Calculus
	Preservation for STLC

