ACM ICPC World Finals 2009

Solution sketches

Disclaimer These are unofficial descriptions of possible ways to solve the problems of the ACM
ICPC World Finals 2009. Any error in this text is my error. Should you find such an error, I would
be happy to hear about it at austrin@kth. se.

Also, note that these sketches are just that—sketches. They are not intended to give a complete
solution, but rather to outline some approach that can be used to solve the problem. If some of the
terminology or algorithms mentioned below are not familiar to you, your favorite search engine should
be able to help.

Finally, I want to stress that while I'm the one who has written this document, I do not take credit
for the ideas behind these solutions—they come from many different people. In particular, thanks to
Derek Kisman for catching some errors in an earlier version of this document.

— Per Austrin

Problem A: A Careful Approach

Since the number of planes is at most 8, an optimal solution can be found by simply try-
ing all 8! = 40320 possible orders for the planes to land. When trying a specific ordering,
the largest possible landing window can be computed by binary searching over the maxi-
mum possible window and then greedily checking whether a certain window length can be
achieved. Something which may be easy to miss in this problem is that it can be the case that
the landing time of a plane should be a non-integral number of seconds.

Problem B: My Bad

This problem essentially consists of two parts: evaluating circuits and finding flawed
gates. Evaluating circuits can be done in a straight-forward way, once the somewhat tedious
input format has been parsed. To find the flawed gate in the case that the circuit is flawed,
one can simply check each gate for each possible error. If more than one possible explanation
for the flaw is found, the error can not be completely determined.

Problem C: The Return of Carl

First, suppose that the sequence of faces that Carl visits on his path is given. In this case,
the path length can be found by laying out the triangles in 2-dimensional Cartesian space,
connected in the sequence they are visited. The length of the path is then simply given by
the length of the line segment from the starting point’s location in the starting face, to the
destination point’s location in the destination face. One may object that this is only true
provided that the line segment stays inside the laid out triangles, and that, when laid out in
the plane, the triangles will not overlap. However, it turns out that, first of all, the triangles
will not overlap, and second, if the line segment does not stay inside the triangles, there will



in fact be a different way of laying out the triangles such that the line segment stays inside
the triangles and becomes shorter.

Now, we are not given the sequence of faces visited, but because the number of faces is
so small, one can simply try all possible such sequences.

There are a lot of messy implementation details involved in getting this right. For in-
stance, one has to be able to find the location of a point in a triangle given its azimuth and
zenith angles, and when laying out the triangles in the plane one needs to keep track of
whether a move from one face to another constitutes a “left” turn or a “right” turn.

Problem D: Conduit Packing

There are several ways of solving this problem, ranging from complicated solutions
whose correctness is easy to prove, to somewhat easier solutions whose correctness is more
difficult to prove.

A natural starting point is to binary search for the minimum possible radius r of the outer
circle. To check whether radius r is achievable, one can do as follows: start by placing the
outer circle, and then try to place the small circles inside it, one by one. When placing a
new circle, one can assume without loss of generality that there exists a circle which should
touch two of the already placed circles (or the outer circles in case this is the only one placed
so far). When all circles have been placed, one can check that none of them intersect to see
if the placement succeeded. Trying all possible ways of placing the circles (with only four
inner circles, there are only a few hundred different such ways), one can determine whether
radius r is possible.

Problem E: Fare and Balanced

This problem may at first look like some sort of max flow problem, but even if the large
size of the graph does not scare you away from this approach, I am not aware of any way of
modeling the problem this way.

Consider instead the following approach. Let U(u, v) be true if every path from intersec-
tion u to intersection v has a unique cost. If U(1, N) is true it is clear that no tolls need to be
added, so assume from now on that U(1, N) is not true. Now, suppose there is some vertex v
such that both U(1,v) and U(v, N) is false. In this case, no solution can possibly exist, since
such a solution would have to incur a toll both on some road “before” v and on some road
“after” v in order to ensure that all paths have unique costs.

Let us then suppose that no such vertex v exists, i.e., that either U(1,v) or U(v, N) is true
for every v. In this case, a solution can be constructed as follows: Let us say that an edge
(u,v,c) from u to v of cost c is pivotal if it has the property that U(1, u) is true but U(1,v) is
false. Pivotal edges have the following nice properties:

e The fact that U(1,1) is true but U(1, N) is false, together with the fact that if U(1,u) is
false and there is an edge from u to v, then U(1, v) is also false implies that every route
from 1 to N contains exactly one pivotal edge.

e The fact that U(1,v) is false implies that U(v, N) is true.
Let C(1, N) denote the maximum length of a path from 1 to N Now consider adding a toll
of C(1,N) — C(1,u) — C(v, N) — c to every pivotal edge (u,v,c), if this number is positive

2



(note that it can not be negative). By the two properties above, it is now easily shown that
every route from 1 to N has at most one toll and a total cost of exactly C(1, N).

To make an efficient solution out of this, note that the only quantities we actually need are
those of the form U(1,v), U(v, N), C(1,v) and C(v, N), and all such values can be computed
in linear time using dynamic programming.

Problem F: Deer-Proof Fence

Let us first consider the special case of using a single fence. To compute the fence length
needed, one computes the convex hull of the set of trees. It is then not hard to see that the
minimum total fence length will be the total length of the perimeter of the convex hull, plus
the circumference of a circle of radius M.

To finish the problem we now need to find a good way of partioning the set of trees into
disjoint parts, each of which will be surrounded by a single fence (the perimeter of which
can be computed as described above). Because of the small number of trees, an optimal such
partition can be computed in a brute-force manner. In order to make it fast enough, one
may need to use dynamic programming to remember, for a given set S of trees, what the
minimum fence length for S is.

Problem G: House of Cards

The main challenge in this problem is to build a convenient representation of the current
game state, for computing the scores of the players and the possible next moves. With this
hurdle out of the way, the problem can be solved using a standard min-max search, along
with alpha-beta pruning to make the search fast enough.

Problem H: The Ministers’ Major Mess

The solution is based on realising that a minister can have at most one unsatisfied vote
(or in the case of k = 1 or k = 2, a minister must have all votes satisfied). This can be
expressed by k - (k — 1) implications (if the decision on vote i is opposite to the minister’s
opinion, then the decision on vote j must be according to the minister’s opinion, for all i # j).
Alternatively, it can be expressed as a 2-CNF formula (for each pair of two votes, at least one
must be satisfied). Either way;, this gives an efficient way of determining whether a solution
exists, as 2-SAT is efficiently solvable.

To find out all values which are uniquely determined, the easiest way is to compute the
transitive closure of the implications mentioned above, and then apply all known values. A
variable is known if it is included in a k = 1 or k = 2 vote, or if it is implied by its negation.

Problem I: Struts and Springs

The first part of this problem is to determine the tree hierarchy of the windows. This is fairly
easy: the parent of a window Wj is the smallest window W, such that W; is contained in W,
(if such a window exists).

The second, more tedious part, is to handle resize operations. The horizontal and vertical
dimensions can be handled separately and in the same way. Suppose some window W has

3



its outer window’s width changed by As. Let L be the total current length of the horizontal
springs that control W (there are between one and three such springs). Then, a spring of
length I gets resized to length I’ = I - (1 + As/L). If the device controlling the width of W
is a spring, the windows inside W must now be updated since W changed width. If the
device controlling the width is a strut, the windows inside W are unchanged, except that
their absolute position with respect to the screen may have changed because W or one of its
parents may moved.

Problem J: Subway Timing

The problem is probably most easily solved by binary search for the answer. However,
checking whether it is possible to achieve a certain answer X is a bit tricky.

There are a few different ways of checking this, ranging from quite complicated dynamic
programming solutions to the more elegant direct solution described below. An important
parameter in the runtime of all these solutions is what the maximum value of X can be. It is
a nice (but surprisingly difficult) exercise to prove that, no matter what the size of the tree is,
X does not have to be larger than 118 (the significance of this number is of course that it is
59 - 2, and that 59 is the maximum possible rounding error on a single edge).

Root the tree arbitrarily, and consider some vertex v of the tree. Let us say that an interval
[a, b] is permissible for v if the edges in the subtree rooted at v can be rounded in such a way
that:

e Every path in the subtree has an error of at most X.
e Every path in the subtree which ends in v has an error which lies in the interval [a, b].

Note that a permissible interval must have a < 0 and b > 0. Furthermore, let us say that an
interval [a, b] is redundant for v if there is some b’ < b such that [a, '] is permissible.

Now, checking whether it is possible to achieve a maximum error of X is equivalent to
checking whether there exists some permissible error for the root of the tree. We will do this
by computing the set of all non-redundant permissible intervals for each node v. Fix some
node v, let ¢ be its number of children, and for i between 0 and ¢, let T; denote the subtree
rooted at v but including only the first i children of v. Suppose [4,b] is a non-redundant
permissible interval for T;_;, and that [, b’] is a non-redundant permissible interval for the
subtree rooted at the i'th child of v, and that the error for the edge from v to its i’th child
can be chosen as e (there are always one or two possible values for e). Then if a 4 a’ 4 ¢ and
b+ b' + e both are of absolute value at most X, [min(a, a’ 4 ¢), max(b, b’ + e)] is a permissible
interval for T;. All non-redundant permissible intervals for T; can be constructed this way,
but also some redundant ones. In order to keep the list of intervals short (of order X rather
than order X?), one should prune away the redundant ones.

Problem K: Suffix-Replacement Grammars

Let L be the length of the starting and target strings, and consider a directed graph G =
(V,E) on strings of length L, where there is an edge from a string x to a string y if x can
be transformed to y using one of the suffix-replacement rules. The problem asks for the
shortest path from S to T in this graph—however, the graph has 52 vertices and hence
finding a shortest path by a standard BFS is not feasible.

4



What saves us is the fact that the graph in question has a very special structure. Consider
a path from S to T. Some of the transformation rules used involve suffixes of length L, and
the remaining transformation rules used involve shorter suffixes. The basic idea is to pre-
compute shortest paths in the subgraph of G which only uses transformation rules involving
shorter suffixes.

Specifically, let G; be the analogue of the graph G defined above on strings of length |
(note that the edges of this graph correspond to the transformation rules involving suffixes
of length at most I), and let D;(x, y) be the length of a shortest path from a string x to a string
y (both of length I) in G;. Consider a weighted directed graph H; consisting of strings of
length [, where the edges are as follows:

e There is an edge from x to y of cost 1 if there is a transformation rule transforming x to

y

e There is an edge from x to y of cost D;_1(x’, ) if the first two charactes of x and y are
equal and «’, ' denote the suffixes of x and y obtained by removing the first character.

Then, the shortest path lengths in H; are exactly the same as those in G;. In other words,
Dj(x,y) is given by the length of a shortest path from x to y in H;. So, one (seemingly
awkward) way of computing the shortest path from S to T'in G (i.e., D1.(S, T)) is to iteratively
compute the shortest path lengths in H; for / from 1 to L (since the definition of H; involve
the shortest path lengts in H;_,).

Now, how does this help? The number of vertices of H is still 52/! Recall that the quantity
that we are actually interested in is D1 (S, T). Note that to compute this, the only vertices
of H; which are relevant, apart from S and T themselves, are those which occur as either
lefthand or righthand side of some transformation rule. More generally, unwinding the
definitions, one sees that the only vertices in H; (i.e., the only strings of length /) that one
has to consider are those which are suffixes of one of the 2R + 2 input strings. With this good
bound on the effective sizes of the graphs, computing all the relevant shortest paths lengths
in H; can be done using e.g. Floyd-Warshall. A somewhat tricky point in this problem is that
the length of a path can be exponentially large in the length of a string, so it may be the case
that an answer does not fit in a 32-bit integer.



