
ACM ICPC World Finals 2013
Solution sketches

Disclaimer This is an unofficial analysis of some possible ways to solve the problems of the ACM
ICPC World Finals 2013. The writeups for problems B and I are written by Jakub “Onufry” Woj-
taszczyk. Should an error be found, we will blame each other for the cause, but I would be happy to hear
about it at austrin@kth.se.

Also, note that these sketches are just that—sketches. They are not intended to give a complete
solution, but rather to outline some approach that can be used to solve the problem. If some of the
terminology or algorithms mentioned below are not familiar to you, your favorite search engine should
be able to help.

— Per Austrin

Summary

My guesstimated order for the problems to be solved was AFJDCHBKIEG The actual order in
which the problems were solved was FDAJCHEIKB, with G left unsolved. In terms of number
of teams that ended up solving each problem, the numbers were:

Problem A B C D E F G H I J K
Solved 76 2 51 62 5 107 0 66 12 46 3
Submissions 219 34 169 380 50 273 35 160 37 273 9

In total there were 430 Accepted submissions, 815 Wrong Answer submissions, 315 Time
Limit Exceeded submissions and 79 Run Time Errors. The most popular language was C++ by
a wide margin: 1347 submissions compared to 323 for Java. There were no C submissions.

Congratulations to St. Petersburg State University of IT, Mechanics and Optics, the 2013
ICPC World Champions for their awesome performance! They were very very close to being
the first team ever to solve all the problems at a World Finals. This is how close they were: the
best of their many attempts to solve the last problem (Map Tiles) were only stopped due to a
few extra cases that we added shortly before the contest (on those cases, their code used more
than 5x the time limit). Maybe the following pictures give an indication of the excitement in
the judge’s room during the last few minutes of the contest.

This looks promising... So close!

In case you are wondering what those last three cases where, they are depicted on the last page
of this document (if I remember correctly the submissions failed all these three).
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Subnormal behavior. The heroes of the day in the judging room were the University of
Tokyo with their work on problem B (Hey, Better Bettor). Their initial solution was fast enough
(but a close call) on the hardest cases but then timed out (with a wide margin) on a seemingly
simple test case. This was very confusing to us, because the code was very simple, and looked
like it should run exactly the same instructions with exactly the same memory access patterns,
regardless of the input case. This caused a lot of head-scratching and headache and occupied
the better half of the judges and the Kattis group for quite a while. Fortunately the Tokyo team
rescued us from our worries by figuring out how to fix their code and got the first accepted
solution to the problem. The issue turned out to be the following: in their solution they were

precomputing all the powers 1, p
1−p ,

(
p

1−p

)2
,
(

p
1−p

)3
, . . . up to some number. After a while,

the numbers became very small but non-zero, and for some values of p they reached long
sequences of subnormal floating-point numbers. Unfortunately, calculations on subnormal
floating-point numbers can be really slow. Adding an if statement that zeroed out the number
if it was less than 10−100, their solution became 10 times faster. A good lesson to learn!

A note about solution sizes: below the size of the smallest judge and team solutions for
each problem is stated. It should be mentioned that these numbers are just there to give an
indication of the order of magnitude. The judge solutions were not written to be minimal and
it is trivial to make them shorter by removing spacing, renaming variables, and so on. And of
course the same goes for the code written by the teams during the contest!

Problem A: Self-Assembly

Shortest judge solution: 774 bytes. Shortest team solution (during contest): 678 bytes.

This was one of the simplest problems, though I underestimated how intimidating it looks.
The main idea is to realize that because both rotations and reflections of pieces are allowed,
the geometry of the problem is completely irrelevant. That is, it suffices to check if there is an
infinite chain of pieces P1, P2, . . . such that Pi can be connected to Pi+1. If such a chain exists then
using rotations and reflections it can always be laid out in such a way that only the adjacent
pieces touch each other (e.g. you can make it so that you always go upwards or to the right).
If such a chain doesn’t exist then clearly the answer is “bounded”.

This reduces the problem to checking for cycles in a graph that consists of the n ≤ 40 000
pieces. This is however still too much, but there is one small additional trick: only the connec-
tions matter, so you can consider the graph consisting only of 2 · 26 nodes A+, A−, . . . , Z+, Z−.

Problem B: Hey, Better Bettor

Writeup by Onufry

Shortest judge solution: 538 bytes. Shortest team solution (during contest): 1635 bytes.

This was one of my favorite problems in this contest — non-trivial, but with surprisingly little
code once you got it, and additionally having “implicit” limits (in the sense that the precision
with which x and p are the constraints, but the time complexity isn’t really easy to express in
terms of the big-O notation).
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The first key to solving this problem is noticing that your next move should not depend
on the history, but just the amount of money you currently have, as history gives you no extra
information. Thus, the strategy can be described simply by defining two numbers — how
much do you have to lose to quit, and how much do you have to win to quit. Let’s denote the
first number L and the second W. This means that at the end of the game you will always have
either won W or lost (1− x)L dollars, and the only question left is what is the probability of
the first event (depending on the choice of W and L).

Denote the chance of winning in the end if at the moment you have D dollars by P(D).
Obviously, P(W) = 1 and P(L) = 0 (well, except for the very special case of W = L = 0,
which means we don’t play at all, and the expected win is obviously zero; we ignore this case
from now on). For any D between L and W we have P(D) = p · P(D + 1) + (1− p) · P(D− 1).
This can be easily transformed to P(D + 1) = 1

p P(D)− 1−p
p P(D− 1) — a recursive sequence

definition. Solving such recursive equations is a well-known problem, and in this case we get

P(D) = α + β

(
1− p

p

)D

.

We now have to choose α and β to fit the boundary conditions of P(L) = 0 and P(W) = 1. This
is just a system of two linear equations, and after solving them we get:

β =
1

rW − rL ; α =
−rL

rW − rL ,

where r = 1−p
p . We are interested in P(0), which is α + β = 1−rL

rW−rL .
So, for a given L and W we are able to determine the probability of winning, and thus

— the expected value of the gain. Thus, we can check all reasonable values of L and W and
choose the best pair. The last question remaining is “so what are the reasonable values of L
and W, anyway”? The programmer’s approach to this problem is to simply take the worst
case (it both seems obvious and is true that the larger p and the larger x, the larger this range
is going to be, so the worst case is p = 0.4999, x = 0.9999), incrementally increase the range,
and check at what point does it stop increasing the expected value. The range we get this way
is L = 20528 and W = 2498 (which means it’s OK to just check all the possibilities). Formally,
one also needs to prove that the expected value will not go up after a period of decreasing —
an argument involving the convexity of the expected value in this problem which we’ll leave
as an exercise.

Problem C: Surely You Congest

Shortest judge solution: 1712 bytes. Shortest team solution (during contest): 1870 bytes.

First, we need to figure out which streets can possibly be used (and in which direction), i.e.,
those which are part of some shortest path to the downtown node. This is standard and can be
done by running Dijkstra’s algorithm from the downtown node. Writing d(u) for the distance
from the downtown for intersection u, an edge (u, v, t) can be used from u to t if and only if
d(u) = d(v) + t.

Checking this for all edges gives a directed acyclic graph consisting of all edges that can be
used by the commuters. Next, we observe that two commuters that are at two nodes that have
a different distance to downtown can never interfere with each other. This means that we can
group the commuter based on their distance to downtown, and process each group separately.
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Processing such a group of commuters is again a fairly standard task, namely finding edge-
disjoint paths. Add a dummy node s and connect it to all the starting nodes of the commuters
in the group (with multiplicities, so you allow parallel edges). Then, the maximum number
of commuters that can go simultaneously within this group equals the maximum number of
edge-disjoint paths from s to downtown, which equals the max-flow from s to downtown if
you put unit capacities on all the (directed) edges.

Problem D: Factors

Shortest judge solution: 1241 bytes. Shortest team solution (during contest): 841 bytes.

This problem is not very hard but requires a small leap of faith (or good number-theoretic
intuition).

Given a number k with prime factorization pe1
1 pe2

2 . . . pet
t , the first observation is that the

number of arrangements f (k) of the prime factors is the multinomial number (e1+...+et
e1,e2,...,et

) =
(e1+...+et)!

e1!e2!...et !
. Given the numbers e1, . . . , et, this is easily computed (though some care has to be

taken to avoid overflow).
Note that permuting the exponents ei or changing the values of the primes pi does not

change the value of f (k). Since we are looking for the smallest k with the given value of f (k),
this implies that we may without loss of generality restrict attention to numbers of the form
e1 ≥ e2 ≥ . . . ≥ et and that pi is the i’th prime (i.e., p1 = 2, p2 = 3, p3 = 5, and so on).

In other words, we can try to generate all numbers k that are of the form k = 2e13e25e3 . . .
satisfying e1 ≥ e2 ≥ e3 ≥ . . . and 1 < k < 263. It turns out that there are exactly 43606 such
numbers, so this can be done quickly. For each such number we compute f (k) and check if it is
less than 263, and then construct a lookup table which for each possible value of f (k) (it turns
out there are 19274 of them) gives the smallest preimage k.

Apart from overflows, there is only one corner case, namely n = 1, for which the answer
is k = 2 (since the problem requires k > 1). Fortunately, this case was covered as the first
sample data. Unfortunately, many teams didn’t seem to notice this, and submitted solutions
that failed on the sample data...

Problem E: Harvard

Shortest judge solution: 2926 bytes. Shortest team solution (during contest): 2843 bytes.

This was a pretty hard problem, not because its algorithmically deep but just because it’s a bit
messy. The main idea is to try all possible assignments of variables to banks, with the following
optimizations.

1. We can always assume that bank 0 is full, because referencing variables allocated to bank
0 is always free.

2. Once bank-0 is allocated, consider the sub-program obtained by removing all the ref-
erences to bank-0 variables. For each pair of remaining variables i and j, let Cij be the
number of times a reference to variable i is followed by a reference to variable j when ex-
ecuting the program (which can be counted pretty easily). Then given a bank assignment
to the remaining variables, the total number of BSR instructions that need to be executed
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is simply the sum over Cij for all i, j that are allocated to different banks. This gives a
way to very quickly evaluate the quality of a bank assignment, without going through
the entire program.

3. Banks 1 and up are symmetric, so one should remove this symmetry by e.g. only gener-
ating assignments where the smallest variable in bank 1 is smaller than the smallest one
in bank 2 which is smaller than the smallest one in bank 3, and so on.

4. If some bank only contains r variables, than all other banks should contain at least s−
r + 1 variables, because otherwise two banks could be merged which always decreases
the cost of the bank allocation.

With optimizations 1, 3, and 4 and at most 13 variables, it turns out that there are in the
worst case around 3 million bank assignments to try. With optimization 2, each such bank
assignment can be quickly evaluated.

Problem F: Low Power

Shortest judge solution: 541 bytes. Shortest team solution (during contest): 517 bytes.

This problem is also pretty easy. We describe a way to determine if a given target difference d
is possible to achieve; finding the minimum is then a simple matter of binary search.

Sort the inputs so that p1 ≤ p2 ≤ . . . p2nk. First observe that we may without loss of
generality assume that in an optimal solution, the smallest outputs in each pair of chips will
be of the form pi, pi+1 (so that the power output difference is pi+1 − pi).

Let us say that the first battery of a machine is the one with smallest power in the machine.
Note that if the first battery of a machine is pi then by observation above we can assume that
the power difference of that machine is pi+1 − pi.

Now consider the machines sorted in increasing order of power of their first battery. Clearly,
the first machine has power difference p2 − p1. For the second machine, the first battery can
be any one of p3, . . . , p2k+1. We then greedily choose the first i∗ ≥ 3 such that pi∗+1 − pi∗ ≤ d,
and use this for the second battery (if no such i∗ ≤ 2k + 1 exists, there is no solution). Then
we look at the third machine. The first battery of this can be either of pi∗+2, . . . , p4k+1, and we
again greedily choose the first one resulting in a power output smaller than d. We continue
this process until all batteries have been assigned.

Problem G: Map Tiles

Shortest judge solution: 3798 bytes. Shortest team solution (during contest): N/A.
This was probably the hardest problem in the set (at least it was the one I struggled the most
with). The basic idea, which is completely standard, is to simply try “all” possible grid place-
ments and see which one gives the best result.

Let us write m ≤ 10 for the maximum number of grid tiles in any row/column of the grid
(well, in some cases 11 tiles might be needed but never mind).

To execute this idea, we first have to find a reasonably small set of candidate grid place-
ments. Consider an optimal grid placement. By shifting it to the left as far as possible, we may
assume that one of the following two cases occur.
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Case 1: a vertex of the polygon lies on a vertical line L of the grid. In this case, consider shifting
the polygon upwards, keeping the vertex on the vertical line. By a similar argument, one
of the following two happens:

Case 1a: a vertex of the polygon lies on a horizontal line of the grid. There are only
n2 grid placements of this type: specifying which vertex lies on a vertical line and
which vertex lies on a horizontal line completely specifies the grid.

Case 1b: a vertex of the grid lies on an edge e of the polygon (and the edge is not vertical).
Suppose this grid vertex is t steps horizontally away from L. Then the grid vertex
can be found by moving L horizontally a distance of t · xs and intersecting it with
the polygon edge. Trying all possible values of the polygon vertex that lies on L
(n choices), the polygon edge e (n choices), and the offset t (m choices), this gives a
total of at most n2m candidate placements.

Case 2: a vertex of the grid lies on an edge of the polygon. Consider shifting the grid along
the edge of the polygon (so that the vertex of the grid remains on that edge) as far as
possible. Again, there are two possible outcomes:

Case 2a: a vertex of the polygon lies on a horizontal or vertical line of the grid. This case
is analogous to case 1b (but possibly with a horizontal instead of a vertical line).

Case 2b: another vertex of the grid lies on some edge of the polygon, and this second
polygon edge is not parallel to the first one. This case is somewhat similar to cases 1b
and 2a, but now we need to guess both a vertical and a horizontal offset and then do
intersection of the two polygon edges. This gives a total of at most n2m2 candidate
placements. The three test cases illustrated on the last page of this document were
designed to trigger as many candidates of this form as possible.

This gives a set of O(n2m2) candidate grid placements. It turns out that many of these
candidates are the same, and one should take care to remove duplicates. I don’t have a good
estimate for how much this saves, but on the judge data it tends to be around a factor 3-5,
which might be sorely needed depending on how one solves the second part of the problem,
described next. In the worst cases we had found, there are always less than 50 000 candidate
grid placements after removing duplicates.

Given a candidate grid placement, we then need to figure out how many grid tiles it uses.
The simplest way to do it would be to simply check for each grid tile whether it intersects the
polygon. This is however too slow (time Ω(m2n) with pretty lousy constants), so something
faster is needed. I went for a pretty messy flood-fill variant. The basic idea is to first trace
through the polygon and mark the tiles that it passes through (in time O(mn) with pretty
reasonable constants) and then do flood-fill to discover the rest of the tiles. Unfortunately this
simple idea needs a bit of refinement to work correctly since one has to deal with polygon
edges that run along the grid lines. This can be dealt with by also including the grid lines and
grid vertices in the graph of tiles that we are flood-filling and with some careful coding one
gets a correct (well, at least it passes the judge data) but somewhat sluggish solution.

A different (and faster!) approach is to do something reminiscent of a point-in-polygon
test. For each row of tiles, find all x-coordinates where the polygon enters/exits the top of
the row and all x-coordinates where it enters/exits the bottom of the row. Those tiles where
the polygon either goes into the interior of the tile or has entered/exit the top/bottom an odd
number of times will be used.
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Problem H: Matr�xka

Shortest judge solution: 1396 bytes. Shortest team solution (during contest): 1531 bytes.

Let us write x0, . . . , xn−1 for the sizes, S(i, j) for the minimum number of operations needed to
assemble the dolls in positions i, i + 1, . . . , j− 1 to a single group (not necessarily consisting of
consecutive dolls), and M(i) for the minimum number of operations to assemble the dolls in
positions i, i + 1, . . . , n − 1 into complete sets (consisting of consecutive dolls). Finally let us
say that an interval (i, j) is ok if xi, . . . , xj−1 is a permutation of the integers from 1 to (j− i).

What we seek is then M(0). We can write the following recurrence for M(i), with base case
M(n) = 0.

M(i) = min
j∈{i+1,...n}
(i, j) is ok

S(i, j) + M(j).

Thus with access to S(i, j), computing the M(·) function can be done in O(n2) time using
dynamic programming.

Computing the S(·, ·) values is another dynamic programming exercise. The optimal way
of combining the dolls in the interval has as last operation the combination of a group consist-
ing of the dolls from i to k− 1 with a group consisting of the dolls from k to j− 1 for some k
between i + 1 and j− 1 (inclusive), so we can write the following recursion when j ≥ i + 2 (the
base case when j < i + 2 is left as an exercise):

S(i, j) = min
i<k<j

S(i, k) + S(k, j) + C(i, k, j),

where C(i, k, j) is the cost of combining a group [xi, . . . , xk−1] with the group [xk, . . . , xj−1]. The
cost C(i, k, j) can be computed as follows: if the group that contains the smallest dolls contains
the t smallest dolls among xi, . . . , xj−1, then C(i, k, j) = j− i− t (because we have to open all
but those t smallest dolls in order to combine the two groups).

If implemented naively, this leads to an O(n4) solution which is too slow, but with a little
care the recursion for S(·, ·) can be implemented to give an O(n3) solution.

Problem I: Pirate Chest

Writeup by Onufry

Shortest judge solution: 1443 bytes. Shortest team solution (during contest): 1224 bytes.

This proved to be one of the tougher problems in the competition. The most naive solution to
this problem would take Ω(n6) time. With very little effort, this can be improved to a Θ(n4)
solution, but this is still too slow. Fortunately, yet another factor of n can be shaved off in the
running time.

It is instructive to first consider a 1-dimensional variant of the problem. Given an array
x0, . . . , xn−1, and a subsequence [j, k) of it (that is, xj, . . . , xk−1), we are interested in the values
V(k, j) := (k− j) ·minj≤i<k xi. In particular, we are interested in sequences that maximize this
value.
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Consider a subsequence [k, j), assume that xi is the minimal value of the elements of this
subsequence. If V(k, j) is a candidate to be the largest value, this means xk−1 < xi and xj < xi
— otherwise we could extend the interval to get a higher V value. So now, for each i, we will
calculate the longest subsequence that has its minimum at xi.

To do this, we will do a single run through the xi sequence and a use stack. We will go
through the sequence, and for each element xi we will first pop all elements that are larger or
equal to it from the stack, and then push xi onto the stack. This way, the elements on the stack
will always be in increasing order (since we never add an element that’s smaller or equal to
the one before it). When we pop an element xi from the stack, we can actually calculate the
longest segment with the minimum at xi. Since we’re popping xi, the element we’re inserting
(call it xk) is necessarily smaller than xi; and since we didn’t pop it so far, xk is the first element
smaller than xi. Similarly, the element directly preceding xi in the stack (call it xj) has to be the
last element smaller than xi — if there was something between them, it wouldn’t have been
popped. Thus, when we pop xi from the stack, we can add xi · (k− j− 1) as a candidate for the
largest V(k, j) value. Thus, in O(n) time, we can get all candidate values for the largest V(k, j).

Now to solving the full problem. For a fixed column c, and each 1 ≤ r, t ≤ m, we can
calculate minr≤s<txc,s in O(m2) time, in a number of ways (like DP, incrementally increasing
interval length). Let’s do it for all columns, in O(m2n).

Now, fix the vertical dimension of the chest d, and fix the top row z in which the chest
begins. Then we are interested in the highest value of d · (k− j) ·minz≤s<z+d minj≤i<k xi,s. We
have already precalculated what the lowest value of xi,s is for any fixed i over z ≤ s < z + d,
let’s call it m(i) (it depends on z and d as well, but we’re treating these as fixed). So, we’re
interested in d · (k − j) ·minz≤s<z+d m(i) — but this is exactly the one-dimensional problem
we know how to solve in linear time! Thus, we solve it for all z and d values, and obtain an
O(mn max(m, n)) algorithm for the whole problem.

Problem J: Pollution Solution

Shortest judge solution: 1913 bytes. Shortest team solution (during contest): 1755 bytes.

Recall that one possible way of computing the areas of a closed polygon p1, . . . , pn = p1 is to
sum up the signed areas of the triangles (0, 0), pi, pi+1 for every line segment pi, pi+1. Under-
standing this, one can of compute the area of pollution by simply taking all those n triangles,
intersecting them with the semicircle, and again summing up their areas.

In other words, we just need to figure out how to compute the (signed) area of a triangle
(0, 0), pi, pi+1, intersected with a circle, with center at the origin. To do this, we find the inter-
sections between the line segment (pi, pi+1) with the circle, and then do a little case analysis:
the intersection of the triangle with the circle consists of some smaller triangles and some circle
sectors (or possibly just the original triangle or one big circle sectors). My solution uses a case
analysis based on whether there are 0, 1, or 2 intersection points with the semicircle – drawing
some pictures make it pretty clear what is going on.
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Problem K: Up a Tree

Shortest judge solution: 2165 bytes. Shortest team solution (during contest): 4180 bytes.

This problem is conceptually easy but surprisingly tedious to code if you are not careful. There
are only ( 6

2,2,2) = 90 possible ways to put the pre/in/post calls, so we simply go through them
all and check each one.

Checking if an assignment of calls is possible and finding the smallest tree can be done
using dynamic programming. A state consists of three substrings of the inputs of equal length,
each tagged as being the output of prePrint, inPrint, or postPrint (so a naive estimate
for the number of states would be 33n4 though the actual number is much smaller). To find
the smallest tree that could yield these three substrings as observed outputs, we guess the size
of the left subtree. Such a guess is either contradictory, or splits each of the strings into two
substrings representing the two subtrees. For instance, if the string “ABCDEFGH” was printed
by prePrint and we guess that the left subtree has 3 nodes, then the root node is “A”, the
observed output for the left subtree is “BCD” (and it is the observed output of the routine that
we are currently trying as the first recursive call in the prePrint routine) and the observed
output for the right subtree is “EFGH” (and it is the observed output of the routine that we are
currently trying as the second recursive call in the prePrint routine). If in addition we had
the string “BCDFAEGH” as the output of the inPrint, we would have a contradiction, since
in that case if the left subtree had size 3 the root node would have to be “F”.
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The last three test cases for Map Tiles
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