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Note This was produced as an internal working document of the ICPC World
Finals 2017 judges. I’ve made it public since several people expressed an interest
in it. This proof conveys very little intuition, and if someone has a proof that
is more combinatorial, more intiuitive, or just plain simpler, I would be really
interested in seeing it — in that case feel free to contact me at austrin@kth.se.

1 Basic setup

Notation:

e A denotes the first difference operator, i.e., for any function f : Z — R we
define Af to be the function Af(n) = f(n) — f(n —1).

e For integer s, [s] denotes {1,...,s}.

Let the random variable X be a uniformly random infinite string over R,P,S.
Let P = PP, ... P; be a pattern of length ¢, and write Mp (i) for the event that
P occurs at position ¢ > 1 in X.

What we are interested in is to understand the quantity

U MP(i)]

i=1

Pr

and how it depends on P (this quantity is the probability that P appears in a
random string of length n + ¢ — 1).
The overlap set of P is the set

S:{T‘G [@—1]:P2T+1:P§g,r}§ [5—1]

We can compute this from the KMP array quickly. Another way of thinking
about it is that it is the set of non-trivial r:s so that when we append the last
r letters of P to P, the resulting string ends with P.

Definition 1. For S C [¢ — 1] define

fsmy = PG N0 Sy g
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with initial values fs(n) =0 for n <0.
Here fs(< ) is short-hand for the prefix sum Y ;_, fs(i)

Lemma 2. If S is the overlap set of P then

fs(n) = Pr lU Mp(i)]

i=1

Proof. Let g(n) be the probability that X has an occurence of P in position 1

and no other occurences in positions 2 to n. Our goal is to prove that fg(n) =

>, g(i) (because we can view g(i) is the probability that the last occurence

of P in positions 1...n happens at position n — i) or equivalently that g(n) =
We have

1 <n-—1{ —1
32 Sf 31
i€S
The first term is the probability of P occurring at position 1 in X.
For j € {1,...n — 1}, the probability of the event “P occurs at position 1,
and at position j + 1, and at no positions after j 4+ 1”7 equals
@ ifj<?,jes
Q(T;[*J) ifj>¢
0 otherwise

These events are disjoint for different values of j and are precisely the events
we need to subtract from 1/3¢ to obtain g(n).
A quick inspection then shows that (1) equals Afg(n). O

The function fg is well-defined and seemingly well-behaved for any set S C
[¢ — 1], but ultimately we will only prove our end result for overlap sets. It is
likely true for all S but there are a few places where overlap sets allow us to
take short-cuts that would require more work for arbitrary S.

2 Some simple observations

Lemma 3. For any S, fs(n) is a (weakly) monotone function, i.e., Afs(n) >0
for all n.

This is trivial for overlap sets, but it is also easy to prove for any S by
induction using the recurrence.

Lemma 4. For every overlap set S and n it holds that

Afs(n) > 2 Afs(n 1)

This Lemma is probably true for all sets, not just overlap sets, but it’s easier
to prove for overlap sets using the combinatorial interpretation:



Proof. Note that Afg(n) equals the probability that the pattern occurs at po-
sition 1 but not at any of the positions 2,...,n. This probability does not
go down by more than a factor 2/3 when increasing the length, since there is a
probability 2/3 that last symbol added does not match the last symbol of P. I

Lemma 5. If an overlap set S contains i, then it contains all multiples of © up
to £ — 1. In particular, if S £ [ — 1] then 1 € S.

This is obviously not true for arbitrary sets.

Proof. If adding the last 4 letters of P to itself yields a string ending in P, then
adding the last ¢ letters again obviously also yields a string ending in P, and so
on. O

3 Main result

Theorem 6. Let S and T be two overlap sets, such that
min(T\ S)=r min(S\7T) >r

i.e., when writing the elements in sorted order, T is lexicographically smaller
than S, and the first item where they differ is r.
Then for all n we have fs(n) > fr(n) with equality if and only if n < r.

Proof. Let D(n) = fs(n)— fr(n). By the recurrence definition of f, we see that
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From this it is easy to see that D(n) = 0 for n < r, and that D(r + 1) =
37" fs(1) = 377 (the precise value doesn’t really matter, just that it is posi-
tive).

We will prove by induction that D(n) > 2D(n—1). Since D(r+1) > 0 this
shows that D(n) > 0 for all n > r 4 1.

Assume that this claim holds up to n —1 (clearly, it holds for the base cases,
ie, up tor+1).

We now compute

ADmy= 3 Afr=i Ang: —i) D(T;E— v AD(; —4)
i€T\S i€S\T pyey s

(2)



Note that since r € T'\ S we have (using Lemma 3)

Z Ang; — i) > AfT(?:: —r) (3)
ie€T\S

Furthermore, we have by Lemma 4 that Afr(n —1i) < (3/2)"""Afr(n —r) for
all 7 > r, and since all elements of S\ T are greater than r we get

Z Angiz—i) < Afp(n—r) Z (3/2)14
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(4)

Plugging (3) and (4) into (2) they cancel each other out and we are left with

AD(n) > _Lng; b _ 3 7AD(; ) (5)
€S

By the induction hypothesis we have that D(n—i—1) > 0 implying AD(n—
i) < D(n — i) and so we get

D(n—1¢ D(n—1 D(n—1 . D(n-—i
Ap(yz D=0 5\ De=i) g D=, §h Dl
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By Lemma 5! and the fact that r € S, it follows that 1 € S hence min(S) > 2.
Furthermore, the induction hypothesis also implies D(n—i) < D(n—1)-(3/2)i"!
and we get

i—o

~

M8

=—-D(n—-1)

1 1
5~ 3P —1

[SUR )

7

||
N

Finally we get

D(n) =D(n—1)+AD(n) > D(n—1)- (1 —1/3) = %D(n ~1)

1Here we use that S is an overlap set. We really shouldn’t have to, but this was the first
argument [ came up with.



