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Abstract

We continue the recent line of work on the connection be-
tween semidefinite programming-based approximation al-
gorithms and the Unique Games Conjecture. Given any
boolean 2-CSP (or more generally, any nonnegative ob-
jective function on two boolean variables), we show how
to reduce the search for a good inapproximability result to
a certain numeric minimization problem. The key objects
in our analysis are the vector triples arising when doing
clause-by-clause analysis of algorithms based on semidefi-
nite programming. Given a weighted set of such triples of
a certain restricted type, which are “hard” to round in a
certain sense, we obtain a Unique Games-based inapprox-
imability matching this “hardness” of rounding the set of
vector triples. Conversely, any instance together with an
SDP solution can be viewed as a set of vector triples, and we
show that we can always find an assignment to the instance
which is at least as good as the “hardness” of rounding the
corresponding set of vector triples. We conjecture that the
restricted type required for the hardness result is in fact no
restriction, which would imply that these upper and lower
bounds match exactly. This conjecture is supported by all
existing results for specific 2-CSPs.

As an application, we show that MAX 2-AND is hard to
approximate within 0.87435. This improves upon the best
previous hardness of αGW + ε ≈ 0.87856, and comes very
close to matching the approximation ratio of the best algo-
rithm known, 0.87401. It also establishes that balanced in-
stances of MAX 2-AND, i.e., instances in which each vari-
able occurs positively and negatively equally often, are not
the hardest to approximate, as these can be approximated
within a factor αGW .

1 Introduction

Predicates on two boolean variables are fundamental in
the study of constraint satisfaction problems. Given a set of
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constraints, each being a formula on two boolean variables,
it is an easy task to find an assignment satisfying all con-
straints, if such an assignment exists. However, determin-
ing the maximum possible number of simultaneously satis-
fied constraints is well-known to be NP-hard. This problem
is known as the MAX 2-CSP problem. It also has some
very interesting special cases, the two most well-studied
of which are the MAX CUT problem and the MAX 2-SAT

problem. In the MAX CUT problem, each constraint is of
the form xi ⊕ xj , i.e., it is true if exactly one of the inputs
are true. In the MAX 2-SAT problem, each constraint is of
the form li∨lj , i.e., a disjunction on two literals, each literal
being either a variable or a negated variable.

Given that the problem is NP-hard, much research has
been focused on approximating the maximum number of
satisfied constraints to within some factor α. An algorithm
achieves approximation ratio α if the solution found by the
algorithm is guaranteed to have value at least α times the
optimum. We also allow for randomized algorithms, in
which we require that the expected value (over the random-
ness of the algorithm) of the solution found by the algo-
rithm is α times the optimum. The arguably most trivial
approximation algorithm is to simply pick a random assign-
ment to the variables. For the general MAX 2-CSP prob-
lem, this algorithm achieves an approximation ratio of 1/4.
For the special cases of MAX CUT and MAX 2-SAT, it
achieves ratios of 1/2 and 3/4, respectively. For several
decades, no substantial improvements were made over this
result, until a seminal paper by Goemans and Williamson
[15], where they constructed a 0.7960-approximation algo-
rithm for MAX 2-CSP, and 0.87856-approximation algo-
rithms for MAX CUT and MAX 2-SAT. To do so, they re-
laxed the combinatorial problem at hand to a semidefinite
programming problem, to which an optimal solution can be
found with high precision, and then used a very clever tech-
nique to “round” the solution of the semidefinite program-
ming back to a discrete solution for the original problem.
This approach has since been succesfully applied to sev-
eral other hard combinatorial optimization problems, yield-
ing significant improvements over existing approximation
algorithms. Examples include coloring graphs using as few



colors as possible [19, 6, 16, 2], MAX BISECTION [14] and
quadratic programming over the boolean hypercube [8].

Some of the results by Goemans and Williamson were
subsequently improved by Feige and Goemans [12], who
strengthened the semidefinite relaxation using certain trian-
gle inequalities, and considered more complicated rounding
methods than [15]. They obtained 0.931-approximation for
MAX 2-SAT, and 0.859-approximation for MAX 2-CSP.
These results were further improved by Matuura and Matsui
[26, 27], who obtained 0.935-approximation for MAX 2-
SAT and 0.863-approximation for MAX 2-CSP. Shortly
thereafter, Lewin et al. [25] obtained further improvements,
getting a 0.94016-approximation algorithm for MAX 2-SAT

and a 0.87401-approximation algorithm for MAX 2-CSP,
and these stand as the current best algorithms. It should be
pointed out that these last two ratios arise as the minima of
two complex numeric optimization problems, and, as far as
we are aware, it has not yet been proved formally that these
are the actual ratios, though there seems to be very little
doubt that this is indeed the case.

Meanwhile, the study of inapproximability has seen a lot
of progress, emanating from the discovery of the celebrated
PCP theorem [4, 3]. In particular, Håstad [17] showed that
the generalizations of MAX 2-SAT and MAX CUT from 2 to
3 variables, MAX 3-SAT and MAX 3-LIN-MOD2,1 are NP-
hard to approximate within factors 7/8+ ε and 1/2+ ε, re-
spectively. This surprisingly demonstrates that the random
assignment algorithm is the best possible for these prob-
lems, assuming P �= NP . On the other hand, MAX 3-CSP
can be approximated to within a factor 1/2 [34] which is
tight by the result for MAX 3-LIN-MOD2.

For optimization problems with constraints acting on
two variables, however, strong inapproximability results
have been more elusive. The best NP-hardness results for
MAX 2-CSP, MAX 2-SAT, and MAX CUT are 9/10 + ε ≈
0.900, 21/22+ ε ≈ 0.955, and 16/17+ ε ≈ 0.941, respec-
tively [33, 17]. The most promising approach to obtaining
strong results for these problems is the so-called Unique
Games Conjecture (UGC), introduced by Khot [20]. The
UGC has established itself as one of the most important
open problems in theoretical computer science, because of
the many strong inapproximability results that follow from
it. Examples of such results include 2−ε hardness for VER-
TEX COVER [23], superconstant hardness for SPARSEST

CUT [9, 24] and MULTICUT [9], hardness of approximating
MAX INDEPENDENT SET within d/poly(log d) in degree-
d graphs [31], and approximation resistance2 for random
predicates [18].

For MAX 2-CSP problems, Khot et al. [21] showed that
the UGC implies αGW + ε hardness for MAX CUT, where

1Linear equations mod 2, where every equation has 3 variables.
2A predicate is approximation resistant if it is hard to do approximate

the corresponding MAX CSP problem better than a random assignment.

αGW ≈ 0.87856 is the performance ratio of the original
Goemans-Williamson algorithm, and in [5], we showed that
the UGC implies αLLZ+ε hardness for MAX 2-SAT, where
αLLZ ≈ 0.94016 is the performance ratio of the algorithm
of Lewin et al. (modulo the slight possibility that the per-
formance ratio of their algorithm is smaller than indicated
by existing analyses). It is interesting that the hardness ra-
tios yielded by the Unique Games Conjecture exactly match
these somewhat “odd” constants obtained from the complex
numeric optimization problems arising from the SDP-based
algorithms.

There are several other cases where the best inapprox-
imability result, based on the UGC, matches the best ap-
proximation algorithm, based on a semidefinite program-
ming approach. Examples include the MAX k-CSP prob-
lem [7, 31] and MAX CUT-GAIN [8, 22] (which is essen-
tially a version of the MAX CUT problem where unsatis-
fied constraints give negative contribution rather than zero).
This line of results is not a coincidence: in most cases, the
choice of optimal parameters for the so called long code test
(which is at the heart of the hardness result) are derived by
analyzing worst-case scenarios for the semidefinite relax-
ation of the problem.

1.1 Our Contribution

In this paper, we continue to explore this tight connec-
tion between semidefinite programming relaxations and the
UGC. We consider a generalization of predicates on two
variables to what we call fuzzy predicates. A fuzzy predi-
cate P on two variables is a function P : {true, false}2 →
[0, 1], rather than to {0, 1} as would be the case with a
regular predicate. We investigate the approximability of
the MAX CSP(P ) problem. Following the paradigm intro-
duced by Goemans and Williamson, we relax this problem
to a semidefinite programming problem. We then consider
the following approach for rounding the relaxed solution to
a boolean solution: given the SDP solution, we pick the
“best” rounding from a certain class of randomized round-
ing methods (based on skewed random hyperplanes), where
“best” is in the sense of giving a boolean assignment with
maximum possible expected value. Informally, let α(P ) de-
note the approximation ratio yielded by such an approach.
We then have the following theorem.

Theorem 1.1. For any fuzzy predicate P and ε > 0,
the MAX CSP(P ) problem can be approximated within
α(P )− ε in polynomial time.

The reason that we lose an additive ε is that we are not,
in general, able to find the best rounding function, but we
can come arbitarily close.

Then, we turn our attention to hardness of approxima-
tion. Here, we are able to take instances which are hard



to round, in the sense that the best rounding (as described
above) is not very good, and translate them into a Unique
Games-based hardness result. There is, however, a caveat:
in order for the analysis to work, the instance needs to sat-
isfy a certain “positivity” condition. Again, informally, let
β(P ) denote the approximation ratio when restricted to in-
stances satisfying this condition. We then have

Theorem 1.2. If the Unique Games Conjecture is true, then
for any fuzzy predicate P and ε > 0, the MAX CSP(P )
problem is NP-hard to approximate within β(P ) + ε.

Both α(P ) and β(P ) are the solutions to a certain nu-
meric minimization problem. The function being mini-
mized is the same function in both cases, the only difference
is that in α(P ), the minimization is over a larger domain,
and thus, we could potentially have α(P ) < β(P ). How-
ever, there are strong indications that the minimum for α(P )
is in fact obtained within the domain of β(P ), in which
case they would be equal and Theorems 1.1 and 1.2 would
be tight.

Conjecture 1.3. For any fuzzy predicate P , we have
α(P ) = β(P ).

Because of the difficulty of actually computing the ap-
proximation ratios α(P ) and β(P ), it may seem to be
somewhat difficult to compare these results to previous re-
sults. However, previous algorithms and hardness results
for MAX CUT, MAX 2-SAT, and MAX 2-CSP can all be
obtained as special cases of Theorems 1.1 and 1.2. In par-
ticular, for P (x1, x2) = x1 ⊕ x2, the XOR predicate, it can
be shown that α(P ) = β(P ) = αGW .

We are also able to use Theorem 1.2 to obtain new re-
sults, in the form of an improved hardness of approximation
for the MAX 2-AND problem, in which every constraint is
an AND of two literals. This also implies improved hard-
ness for the MAX 2-CSP problem – as is well-known, the
MAX k-CSP problem and the MAX k-AND problem are
equally hard to approximate for every k (folklore, or see
e.g. [32]).

Theorem 1.4. For the predicate P (x1, x2) = x1 ∧ x2, we
have β(P ) ≤ 0.87435.

This comes very close to matching the 0.87401-
approximation algorithm of Lewin et al. It also demon-
strates that balanced instances, i.e., instances in which each
variable occurs positively and negatively equally often, are
not the hardest to approximate, as these can be approxi-
mated within αGW ≈ 0.87856 [21].

Finally, as a by-product of our results, we obtain some
insight regarding the possibilites of obtaining improved re-
sults by strengthening the semidefinite program with more
constraints. Traditionally, the only constraints which have

been useful in the design of MAX 2-CSP algorithms are tri-
angle inequalities of a certain form (namely, those involving
the vector v0, coding the value false). It turns out that, for
very natural reasons, these are exactly the inequalities that
need to be satisfied in order for the hardness result to carry
through. In other words, assuming Conjecture 1.3 is true, it
is UG-hard to do better than what can be achieved by adding
only these triangle inequalities, and thus, it is unlikely that
improvements can be made by adding additional inequali-
ties (while still using polynomial time).

1.2 Techniques and Related Work

The main new ingredients of this paper are the general-
izations of the various quantities used in previous results. In
e.g. the case of MAX 2-SAT [5], one only had to consider
one single angle, giving rise to two configurations of a very
special form, something which made the calculations a lot
easier. In this paper, on the other hand, we can have an arbi-
trary number of angles (and this is of course the reason why
it is very difficult to actually compute the approximation ra-
tios obtained), and the “positivity” condition needed here is
significantly less restrictive than the special form used for
MAX 2-SAT.

The proof of Theorem 1.2 follows the same path as pre-
vious proofs for specific predicates [21, 5], using the Major-
ity Is Stablest theorem [29]. The main difference here is that
we need a generalization of the “correlation under noise”
quantities involved, to functions on different probability dis-
tributions. The proof of Theorem 1.1 primarily builds upon
the work of [25] for MAX 2-SAT and MAX DI-CUT, the
main difference being that a rounding function is chosen
based on the semidefinite solution rather than beforehand,
using a discretization technique to make the search a good
rounding function feasible.

2 Preliminaries

We associate the boolean values true and false with −1
and 1, respectively. Thus, a disjunction x ∨ y is true if x =
−1 or y = −1, and a conjunction x ∧ y is true if x = y =
−1. We denote by Sn = { v ∈ Rn+1 : ||v|| = 1 } the
n-dimensional unit sphere.

We denote by Φ(x) = 1√
2π

∫ x
−∞ e−t

2/2dt the standard

normal distribution function, and by Φ−1 the inverse of Φ.
For ρ, µ1, µ2 ∈ [−1, 1], we define

Γρ(µ1, µ2) = Pr[X1 ≤ t1 ∧X2 ≤ t2], (1)

where ti = Φ−1
(

1−µi

2

)
and where X1, X2 ∈ N(0, 1) with

covariance ρ. In other words, Γρ is just the bivariate normal
distribution function with a transformation on the input.



2.1 Constraint Satisfaction Problems

A predicate P on two boolean variables is a function
P : {−1, 1}2 → {0, 1}. We generalize this to the notion of
fuzzy predicates.

Definition 2.1. A fuzzy predicate P on two boolean vari-
ables is a function P : {−1, 1}2 → [0, 1].

Note that, with general objective functions from
{−1, 1}2 to R in mind, the upper bound is without loss of
generality, since we can always scale down any nonnega-
tive objective function so that it takes values in [0, 1] and
thus becomes a fuzzy predicate.

Definition 2.2. An instance Ψ of the MAX CSP(P ) prob-
lem, for a fuzzy predicate P , consists of a set of clauses
and a weight function wt. Each clause ψ is a pair of lit-
erals (l1, l2) (a literal is either a variable or a negation of
a variable), and the weight function associates with each
clause ψ a nonnegative weight wt(ψ). We abuse notation
slightly by identifying Ψ with both the instance and the set
of clauses. Given an assignment x = (x1, . . . , xn) to the
variables occurring in Ψ, and a clause ψ = (s1xi, s2xj)
(where s1, s2 ∈ {−1, 1}), we denote the restriction of x to
ψ by x|ψ = (s1xi, s2xj). The value of an assignment x to
the variables occuring in Ψ is then given by

ValΨ(x) =
∑
ψ∈Ψ

wt(ψ)P (x|ψ), (2)

and the value of Ψ is the maximum possible value of an
assignment

Val(Ψ) = max
x

ValΨ(x). (3)

For convenience, we will assume (without loss of gen-
erality) that the weights are normalized so that wt(·) is
just a probability distribution on the clauses, i.e., that∑
ψ∈Ψ wt(ψ) = 1 (so 0 ≤ Val(Ψ) ≤ 1).

Definition 2.3. The MAX CSP+(P ) problem is the special
case of MAX CSP(P ) where there are no negated literals
(i.e. each clause is a pair of variables).

An example of the MAX CSP(P ) problem which is of
special interest for us is the MAX 2-AND problem, which is
obtained by letting P be the predicate which is 1 if both of
the inputs are true, and 0 otherwise. A well-known example
of the MAX CSP+(P ) problem is the MAX CUT problem,
which is obtained by letting P be the predicate which is 1 if
the inputs are different, and 0 if they are equal.

Any fuzzy predicate P can be arithmetized as
P (x1, x2) = P̂0 + P̂1x1 + P̂2x2 + P̂3x1x2, for some con-
stants P̂0, P̂1, P̂2 and P̂3. Thus, the MAX CSP(P ) prob-
lem can be viewed as a certain special case of the integer
quadratic programming problem. Throughout the remain-
der of this paper, we fix some arbitrary fuzzy predicate P
and its corresponding coefficients P̂0 . . . P̂3.

2.2 The Unique Games Conjecture

Definition 2.4. An instance

X = (V,E,wt, [L], {σve , σwe }e={v,w}∈E)

of UNIQUE LABEL COVER is defined as follows: given is
a weighted graph G = (V,E) (which may have multiple
edges) with weight function wt : E → [0, 1], a set [L]
of allowed labels, and for each edge e = {v, w} ∈ E

two permutations σve , σ
w
e ∈ SL such that σwe = (σve )

−1,
i.e., they are each other’s inverse. We say that a function
 : V → [L], called a labelling of the vertices, satisfies
an edge e = {v, w} if σve ( (v)) =  (w), or equivalently,
if σwe ( (w)) =  (v). The value of  is the total weight of
edges satisfied by it, i.e.,

ValX( ) =
∑
e

� satisfies e

wt(e) (4)

The value of X is the maximum fraction of satisfied edges
for any labelling, i.e.,

Val(X) = max
�

ValX( ). (5)

Khot’s Unique Games Conjecture (UGC) asserts that it
is NP-hard to distinguish between UNIQUE LABEL COVER

instances which are almost completely satisfiable, from
those where we cannot satisfy more than a small fraction
of the constraints.

Conjecture 2.5 (Unique Games Conjecture [20]). For ev-
ery η > 0, γ > 0, there is a constant L > 0 such that,
given a UNIQUE LABEL COVER instance X with label set
[L], it is NP-hard to distinguish between Val(X) ≤ γ and
Val(X) ≥ 1− η.

2.3 Influence and Correlation Under
Noise

As in previous results [21, 5], the key ingredient in the
proof of our hardness result is (a generalization of) the so-
called Majority Is Stablest Theorem [29]. In this section,
we describe this result and the exact formulation we use.

For q ∈ (0, 1), we denote by µnq the probability distribu-
tion on {−1, 1}n where each bit is set to −1 with probabil-
ity q, independently, and we let Bnq be the probability space(
{−1, 1}n, µnq

)
. We write a function f : Bnq → R in terms

of its Fourier coefficients, viz

f(x) =
∑
S⊆[n]

f̂SU
S
q (x),

where the coefficients f̂S = Ex∈Bn
q
[f(x)USq (x)] are the

Fourier coefficients of the function f . Here, USq : Bnq → R



is defined by USq (x) =
∏
i∈S Uq(xi) where

Uq(xi) =




−
√

1−q
q if xi = −1√

q
1−q if xi = 1

.

Definition 2.6. The long code of an integer i ∈ [n] is the
function f : {−1, 1}n → {−1, 1} defined by f(x) = xi.

Definition 2.7. The influence of the variable i on the func-
tion f : Bnq → R is

Infi(f) = E
x

[
Var
xi

[f(x) |x1, . . . , xi−1, xi+1, . . . , xn]
]

(6)

The influence of the variable i is a measure of how much
the variable i is able to change the value of f once we have
fixed the other n − 1 variables randomly (according to the
distribution µn−1

q ). This quantity has a particularly nice for-
mulation in terms of the Fourier coefficients, where we have
the following well-known fact

Infi(f) =
∑
S⊆[n]
i∈S

f̂2
S . (7)

Motivated by this formulation, we define the slightly
stronger concept of low-degree influence, crucial to our ap-
plication.

Definition 2.8. For k ∈ N, the low-degree influence of the
variable i on the function f : Bnq → R is

Inf≤ki (f) =
∑
S⊆[n]
i∈S

|S|≤k

f̂2
S . (8)

A nice property of the low-degree influence is the fact
that for functions into [−1, 1],

∑
i Inf

≤k
i (f) ≤ k, imply-

ing that the number of variables having low-degree influ-
ence more than, say, τ , must be small (think of k and τ
as constants not depending on the number of variables n).
Very informally, one can think of the low-degree influence
as a measure of how close the function f is to depending
on only a few variables, i.e., for the case of boolean-valued
functions, how close f is to being the long code of i (or its
negation). Note that a long code is the extreme case of a
function with large low-degree influence, in the sense that it
has one variable with Inf≤1

i (f) = 1, and all other variables
having influence 0.

Next, we introduce the correlation under ρ̃-noise be-
tween two functions f : Bnq1 → R and g : Bnq2 → R.
For functions into {−1, 1}, the correlation under noise mea-
sures how likely f and g are to take the same value on two
random inputs with a certain correlation. For f = g, this is
simply the well-studied noise stability of f .

xi yi Probability

1 1 1+ξ1+ξ2+ρ
4

1 −1 1+ξ1−ξ2−ρ
4

−1 1 1−ξ1+ξ2−ρ
4

−1 −1 1−ξ1−ξ2+ρ
4

Table 1. Distribution of x and y

Definition 2.9. The correlation under ρ̃-noise between f :
Bnq1 → R and g : Bnq2 → R is given by

Sρ̃(f, g) = E
x,y

[f(x)g(y)], (9)

where the i:th bits of x and y are according to the distri-
bution in Table 1 (independently of the other bits). Here
ξj := 1 − 2qj are the expected values of the bits of x and
y, and ρ is such that ρ̃ = ρ−ξ1ξ2√

1−ξ21
√

1−ξ22
. In other words,

each bit of x is picked independently with expected value
ξ1, each bit of y is picked independently with expected
value ξ2, and the i:th bits xi and yi have expected value
E[xiyi] = ρ.

In terms of the Fourier representation, it can be shown
(see full version of this paper) that

Sρ̃(f, g) =
∑
S⊆[n]

ρ̃|S|f̂S ĝS . (10)

For proving hardness of MAX CUT, Khot et al. [21]
made a conjecture called Majority Is Stablest, essentially
stating that any boolean function with noise stability signif-
icantly higher than the majority function must have a vari-
able with large low-degree influence (and thus in a vague
sense be similar to a Long Code). Majority Is Stablest
was subsequently proved by Mossel et al. [29], using a
very powerful invariance principle which, essentially, al-
lows for considering the corresponding problem over Gaus-
sian space instead. Subsequently, this type of invariance,
and therefore also this way of extracting influential vari-
ables by studying correlation under noise, has been shown
to apply in very general settings [11, 28].

For our result, we use the following formulation.

Theorem 2.10. Let ε > 0, q1, q2 ∈ (0, 1) and ρ ∈ (−1, 1).
Then there are τ > 0, k ∈ N such that for all functions f :
Bnq1 → [−1, 1], g : Bnq2 → [−1, 1] satisfying E[f ] = µf ,

E[g] = µg , and min(Inf≤ki (f), Inf≤ki (g)) ≤ τ for all i, we
have

Sρ(f, g) ≥ 4Γ−|ρ|(µf , µg) + µf + µg − 1− ε

Sρ(f, g) ≤ 4Γ|ρ|(µf , µg) + µf + µg − 1− ε.



In the terminology of [11], the setting of Theorem 2.10
corresponds to the case of a reversible noise operator, rather
than a symmetric one as was studied there. It is known that
the results also hold in the reversible case [10] (and in fact
even in the non-reversible case [28]), but for completeness,
a proof of Theorem 2.10 (following the same lines as the
proof of [11]) can be found in the full version of this paper.

3 Semidefinite Relaxation

For solving integer quadratic programming over the hy-
percube, where each variable is restricted to ±1, the stan-
dard approach is to first homogenize the program by in-
troducing a variable x0 which is supposed to represent the
value false and then replace each term xi by x0xi. We
then relax each variable xi ∈ {−1, 1} = S0 with a vec-
tor vi ∈ Sn (i.e. a unit vector in Rn+1), so that each term
xixj becomes the scalar product vi · vj .

In addition, we add the following inequality constraints
to the program for all triples of vectors vi, vj , vk.

vi · vj + vj · vk + vi · vk ≥ −1
−vi · vj + vj · vk − vi · vk ≥ −1
vi · vj − vj · vk − vi · vk ≥ −1

−vi · vj − vj · vk + vi · vk ≥ −1

(11)

These are equivalent to triangle inequalities of the form
||vi − vj ||2 + ||vj − vk||2 ≥ ||vi − vk||2, which clearly
hold for the case that all vectors lie in a zero-dimensional
subspace of Sn (so this is still a relaxation of the original in-
teger program), but is not necessarily true otherwise. There
are of course many other valid inequalities which could also
be added, considering k-tuples of variables rather than just
triples. In particular, adding all valid constraints makes the
optimum for the semidefinite program equal the discrete op-
timum [13] (but there are an exponential number of con-
straints to consider). Such higher-order constraints have not
received much attention, and from what is known today, it
seems that the only ones which actually help are the triangle
inequalities. In particular, the only inequalities which have
been used when analyzing the performance of approxima-
tion algorithms, are those of the triangle inequalities which
involve the vector v0. The results of this paper shed some
light on why this is the case – these are exactly the inequal-
ities we need in order for the hardness of approximation to
work out. Thus, assuming Conjecture 1.3 and the Unique
Games Conjecture, it is unlikely that adding other valid in-
equalities (while still being able to solve the SDP in poly-
nomial time) will help achieve a better approximation ratio,
as that would imply P = NP .

In general, we cannot find the exact optimum of a
semidefinite program. It is however possible to find the op-
timum to within an additive error of ε in time polynomial
in log 1/ε [1]. We ignore this small point for notational

convenience and assume that we can solve the semidefinite
program exactly.

Given a vector solution {vi}ni=0, the relaxed value of a
clause ψ ∈ Ψ depends only on the three (possibly negated)
scalar products v0 · vi, v0 · vj , and vi · vj , where xi and xj
are the two variables occuring in ψ. Most of the time, we
do not care about the actual vectors, but only be interested
in these triples of scalar products.

Definition 3.1. A scalar product configuration θ, or just a
configuration for short, is a triple of real numbers (ξ1, ξ2, ρ)
satisfying

ξ1 + ξ2 + ρ ≥ −1
ξ1 − ξ2 − ρ ≥ −1

−ξ1 + ξ2 − ρ ≥ −1
−ξ1 − ξ2 + ρ ≥ −1 (12)

A family of configurations Θ is a finite set X =
{θ1, . . . , θk} of configurations, endowed with a probability
distribution P . We routinely abuse notation by identifying
Θ both with the set X and the probability space (X,P ).

A configuration can be viewed as representing three vec-
tors v0, v1, v2, where v0 · vi = ξi, and v1 · v2 = ρ. Note
that the inequalities in Equation (12) then correspond ex-
actly to those of the triangle inequalities (11) which involve
v0. It can also be shown that these inequalities ensures the
existence of vectors v0, v1, v2 with the corresponding scalar
products.

Definition 3.2. The relaxed value of a configuration θ =
(ξ1, ξ2, ρ) is given by

Prelax(θ) = Prelax(ξ1, ξ2, ρ) = P̂0 + P̂1ξ1 + P̂2ξ2 + P̂3ρ

Analogously to the notation x|ψ for discrete solutions,
we denote by v|ψ = (s1v0 · vi, s2v0 · vj , s1s2vi · vj) the
configuration arising from the clause ψ = (s1xi, s2xj) for
the vector solution v = {vi}ni=0. The relaxed value of the
clause ψ is then simply given by Prelax(v|ψ).

Often we view the solution to the SDP as just the family
of configurations Θ = { v|ψ |ψ ∈ Ψ } with the probability
distribution where Prθ∈Θ[θ = v|ψ] = wt(ψ). The relaxed
value of an assignment of vectors {vi}ni=0 is then given by

SDP-ValΨ({vi}) =
∑
ψ∈Ψ

wt(ψ)Prelax(v|ψ)

= E
θ∈Θ

[Prelax(θ)]. (13)

Given a vector solution {vi}, one natural attempt at an
approximation algorithm is to set xi true with probability
1−ξi

2 (where ξi = vi · v0), independently—the intuition be-
ing that the linear term ξi gives an indication of “how true”
xi should be. This assignment has the same expected value
on the linear terms as the vector solution, and the expected
value of a quadratic term xixj is ξiξj . However, typically



there is some correlation between the vectors vi and vj , so
that the scalar product vi · vj contributes more than ξiξj to
the objective function. To quantify this, write the vector vi
as

vi = ξiv0 +
√
1− ξ2

i ṽi, (14)

where ξi = vi · v0, and ṽi is the part of vi orthogonal to v0,
normalized to a unit vector (if ξi = ±1, we define ṽi to be
a unit vector orthogonal to all other vectors vj). Then, we
can rewrite the quadratic term vi · vj as

vi · vj = ξiξj +
√
1− ξ2

i

√
1− ξ2

j ṽi · ṽj . (15)

As it turns out, the relevant parameter when analyzing the
quadratic terms is the scalar product ṽi · ṽj , i.e. how much
better we do than if the variables would have been indepen-
dent (scaled by an appropriate factor). Motivated by this,
we make the following definition.

Definition 3.3. The advantage ρ̃(θ) of a configuration θ =
(ξ1, ξ2, ρ) is

ρ̃(θ) =
ρ − ξ1ξ2√

1− ξ2
1

√
1− ξ2

2

. (16)

In the case that ξ1 = ±1 or ξ2 = ±1, we define ρ̃(θ) = 0.

Note that, in the notation above, the advantage is exactly
the scalar product ṽi · ṽj . We are now ready to define the
“positivity condition”, alluded to in Section 1.1.

Definition 3.4. A configuration θ = (ξ1, ξ2, ρ) is positive
if P̂3 · ρ̃(θ) ≥ 0.

Intuitively, positive configurations should be more diffi-
cult to handle, since they are the configurations where we
need to do something better than just setting the variables
independently in order to get a good approximation ratio.

What Goemans and Williamson [15] originally did to
round the vectors back to boolean variables, was to pick
a random hyperplane through the origin, and decide the
value of the variables based on whether their vectors are
on the same side of the hyperplane as v0 or not. Feige and
Goemans [12] suggested several generalizations of this ap-
proach, using preprocessing (e.g. first rotating the vectors)
and/or more elaborate choices of hyperplanes. In particular,
consider a rounding scheme where we pick a random vector
r ∈ Rn+1 and then set the variable xi to true if

r · ṽi ≤ T (v0 · vi) (17)

for some threshold function T : [−1, 1] → R. This scheme
(and more general ones) was first analyzed by Lewin et al.
[25].

To describe the performance ratio yielded by this
scheme, we begin by setting up some notation.

Definition 3.5. A rounding function is a continuous func-
tion R : [−1, 1] → [−1, 1] which is odd, i.e. satisfies
R(ξ) = −R(−ξ). We denote by R the set of all such func-
tions.

The reason that we require a rounding function to be odd
is that a negated literal −xi should be treated the opposite
way as xi. A rounding R is in one-to-one corresponce with
a threshold function T as described above by the simple
relation R(x) = 1 − 2Φ(T (x)), where Φ is the normal dis-
tribution function (it will turn out to be more convenient to
describe the rounding in terms of R rather than in terms of
T ).

Definition 3.6. The rounded value of a configuration θ with
respect to a rounding function R ∈ R is

Pround(θ,R) =
Prelax

(
R(ξ1), R(ξ2),

4Γρ̃(θ)(R(ξ1), R(ξ2)) +R(ξ1) +R(ξ2)− 1
)
.

This seemingly arbitrary definition is motivated by the
following lemma (which essentially traces back to Lewin et
al. [25], though they never made it explicit).

Lemma 3.7. There is a polynomial-time algorithm which,
given a MAX CSP(P ) instance Ψ, a semidefinite solution
{vi}ni=0 to Ψ, and a (polynomial-time computable) round-
ing function R ∈ R, finds an assignment to Ψ with expected
value

E
θ∈Θ

[Pround(θ,R)] , (18)

A proof can be found in the full version of this paper. The
rounding procedure used is exactly the kind of threshold
rounding described above, which is the class of roundings
which Lewin et al. [25] called T HRESH−. The rounding
function R specifies an arbitrary rounding procedure from
T HRESH−.3

A statement similar to Lemma 3.7 holds for
MAX CSP+(P ), the difference being that, since there
are no longer any negated literals, we can change the defi-
nition of a rounding function slightly and not require it to
be odd (which could potentially give us a better algorithm).
Motivated by Lemma 3.7, we make the following sequence
of definitions

Definition 3.8. The approximation ratio of a rounding R
for a family of configurations Θ is given by

αP (Θ, R) =
Eθ∈Θ [Pround(θ,R)]

Eθ∈Θ [Prelax(θ)]
(19)

3In the notation of [25], we have S(x) = T (x)
√

1 − x2, or equiva-
lently, R(x) = 1 − 2Φ(S(x)/

√
1 − x2).



Definition 3.9. The approximation ratio of a family of con-
figurations Θ is given by

αP (Θ) = max
R∈R

αP (Θ, R). (20)

Definition 3.10. The approximation ratios of P for fami-
lies of k configurations and families of k positive configu-
rations, respectively, are given by (recall the definition of a
positive configuration from Definition 3.4)

αP (k) = min
|Θ|=k

αP (Θ) (21)

βP (k) = min
|Θ|=k

every θ ∈ Θ is positive

αP (Θ) (22)

We would like to point out that we do not require that
the family of configurations Θ can be derived from an
SDP solution to some MAX CSP(P ) instance Ψ – we
only require that each configuration in Θ satisfies the in-
equalities in Equation (12). In other words, we have a
lot more freedom when searching for a Θ which makes
αP (k) or βP (k) small, than we would have when search-
ing for MAX CSP(P ) instances and corresponding vector
solutions.

Finally, we define

α(P ) = lim
k→∞

αP (k), β(P ) = lim
k→∞

βP (k). (23)

These are the approximation ratios arising in Theorems 1.1
and 1.2. Ideally, of course, we would like to prove hard-
ness of approximating MAX CSP(P ) within α(P ) rather
than β(P ), getting rid of the requirement that every θ ∈ Θ
must be positive. The reason that we need it shows up when
we do the proof of soundness for the PCP constructed in
Section 5, and we have not been able to get around this.
However, as we state in Conjecture 1.3, we do not believe
that this restriction affects the approximation ratio achieved:
by the intuition above, positive configurations seem to be
the ones that are hard to round, so restricting our attention
to such configurations should not be a problem. And indeed,
the configurations we use to show hardness for MAX 2-
AND are all positive, as are all configurations which have
appeared in previous proofs of hardness for 2-CSPs (e.g.
for MAX CUT and MAX 2-SAT).

4 The Approximation Algorithm

The approximation algorithm for MAX CSP(P )
(Theorem 1.1) is based on the following theorem.

Theorem 4.1. For any ε > 0, the value of a MAX CSP(P )
instance on k clauses can be approximated within αP (k)−ε
in time polynomial in k.

A proof is given in the full version of this paper. Note
that this theorem immediately implies Theorem 1.1 since
αP (k) ≥ α(P ). We remark that the exact value of αP (k)
is virtually impossible to compute for large k, making it
somewhat hard to compare Theorem 4.1 with existing re-
sults. However, for MAX CUT, MAX 2-SAT and MAX 2-
AND, it is not hard to prove that α(P ) is at least the perfor-
mance ratio of existing algorithms.

We remark that the running time of the algorithm has a
quite bad dependency on ε; it scales as (1/ε)Ω(1/ε2).

5 The PCP Reduction

Theorem 1.2 immediately follows from the following
Theorem 5.1 below. Taking k large enough so that βP (k) ≤
β(P ) + ε and invoking Theorem 5.1 gives hardness of ap-
proximating MAX CSP(P ) within β(P ) + 2ε.

Theorem 5.1. Assuming the Unique Games Conjecture, it
is NP-hard to approximate MAX CSP(P ) within βP (k)+ ε
for any ε > 0 and k ∈ N.

We prove Theorem 5.1 by constructing a PCP verifier
which checks a supposed long coding of a good assign-
ment to a UNIQUE LABEL COVER instance, and decides
whether to accept or reject based on the evaluation of the
predicate P on certain bits of these long codes. The ver-
ifier is parametrized by a family of k positive configura-
tions Θ = {θ1, . . . , θk} and a probability distribution on Θ.
Again, we point out that the requirement that the configura-
tions of Θ are positive is by necessity rather than by choice,
and if we could get rid of it, the hardness of approximation
yielded would exactly match the approximation ratio from
Theorem 1.1. The set Θ corresponds to a set of vector con-
figurations for the semidefinite relaxation of MAX CSP(P ).
When proving soundness, i.e., in the case that there is no
good assignment to the UNIQUE LABEL COVER instance,
we prove that the best strategy for the prover corresponds
to choosing a good rounding function R for the family of
configurations Θ. Choosing a set of configurations which
are hard to round, we obtain the desired result.

Since we can negate variables freely, we will assume that
the purported long codes are folded over true4 (by select-
ing, for each pair (x,−x) of inputs one representative, say
x, and then look up the value at −x by reading the value at
x and negating the answer). Intuitively, this ensures that
the prover’s rounding function is odd, i.e. that R(ξ) =
−R(−ξ). For a permutation σ ∈ SL and a bitstring
x ∈ {−1, 1}L, we denote by σx ∈ {−1, 1}L the string
x permuted according to σ, i.e., σx = xσ(1)xσ(2) . . . xσ(L).
The verifier is given in Algorithm 1.

4A function f : Bn
q → R is said to be folded over true if f(−x) =

−f(x) for all x.



Algorithm 1: The verifier VΘ

VΘ(X , Σ = {fv}v∈V )
(1) Pick a random configuration θ = (ξ1, ξ2, ρ) ∈

Θ according to the distribution on Θ.
(2) Pick a random v ∈ V .
(3) Pick e1 = {v, w1} and e2 = {v, w2} randomly

from E(v).
(4) Pick x1, x2 ∈ {−1, 1}L such that each bit of

xi is picked independently with expected value
ξi and that the j:th bits of x1 and x2 are ρ-
correlated for j = 1, . . . , L.

(5) For i = 1, 2, let bi = fwi(σvei
xi) (folded over

true).
(6) Accept with probability P (b1, b2).

The completeness and soundness of VΘ are as follows
(proofs can be found in the full version of this paper).

Lemma 5.2 (Completeness). If Val(X) ≥ 1−η, then there
is a proof Σ such that

Pr[VΘ(X,Σ) accepts] ≥ (1− 2η) E
θ∈Θ

[Prelax(θ)] (24)

Lemma 5.3 (Soundness). For every ε > 0 there is a γ > 0
such that if Val(X) ≤ γ, then for any proof Σ, we have

Pr[VΘ(X,Σ) accepts] ≤ max
R∈R

E
θ∈Θ

[Pround(θ,R)] + ε.

(25)

Combining the two lemmas and picking η small enough,
we get that it is Unique Games-hard to approximate
MAX CSP(P ) within

max
R∈R

Eθ∈Θ[Pround(θ,R)]
Eθ∈Θ[Prelax(θ)]

+O(ε) = αP (Θ)+O(ε) . (26)

Picking a Θ with |Θ| = k that minimizes αP (Θ), we obtain
Theorem 5.1.

6 Application to MAX 2-AND

Using the machinery developed in Sections 3 and 5, we
are able to obtain an upper bound of β(P ) ≤ 0.87435 for
the case when P (x1, x2) = x1 ∧ x2, i.e., the MAX 2-AND

problem, establishing Theorem 1.4. We do this by exhibit-
ing a set Θ of k = 4 (positive) configurations on 2 distinct
non-zero ξ-values (and a probability distribution on the el-
ements of Θ), such that αP (Θ) < 0.87435. The set of
configurationsΘ = {θ1, θ2, θ3, θ4} is given in Table 2. The
values of ξA and ξB are

ξA = 0.31988
ξB = 0.04876.

Configuration Probability
(0, −ξA, 1− ξA) 0.52850
(0, ξA, 1− ξA) 0.05928
(ξA, −ξB, 1− ξA − ξB) 0.29085
(−ξA, ξB , 1− ξA − ξB) 0.12137

Table 2. Configurations used for MAX 2-AND

To compute the hardness factor given by this set of config-
urations, we must compute

αP (Θ) = max
R∈R

Eθ∈Θ[Pround(θ,R)]
Eθ∈Θ[Prelax(θ)]

. (27)

Since P (x1, x2) = 1−x1−x2+x1x2
4 we have that for θ =

(ξ1, ξ2, ρ),

Prelax(θ) =
1− ξ1 − ξ2 + ρ

4
Pround(θ,R) = Γρ̃(θ)(R(ξ1), R(ξ2)).

To specify such an R, it is enough to specify the val-
ues of R on the two angles ξA and ξB . Figure 1 gives
a contour plot of the right-hand side of Equation (27), as
a function of the values of R(ξA) and R(ξB). There are
two local maxima, one around the point (R(ξA), R(ξB)) ≈
(0.27846, 0.044376), and one around the point (1,−1).
Figure 2 gives a contour plot of the area around the first
point. This maximum turns out to be approximately
0.87434075. At the point (1,−1) (which is indeed the
other maximum), the approximation ratio is approximately
0.87434007. Thus, we have αP (Θ) ≤ 0.87435.

Note that in general, given a Θ (and a probability dis-
tribution on its elements), the very problem of computing
αP (Θ) is a difficult numeric optimization problem. How-
ever, for the Θ we use, the number of distinct ξ-values used
is small, so that computing αP (Θ) in this case is a numeric
optimization problem in 2 variables, which we are able to
handle.

Using only one non-zero ξ-value one can obtain a bound
of 0.87451, i.e., only slightly worse than the best bound we
have been able to achieve using two ξ-values. Details about
this can be found in the full version of this paper. It seems
likely that additional improvements can be made by using
more and more ξ-values, though these improvements will be
quite small. Indeed, using larger Θ we are able to improve
upon Theorem 1.4, but the improvements we have been able
to make are minute (of order 10−5), and it becomes a lot
more difficult to verify them.

7 Concluding Remarks

We remark that it is a fairly straightforward task to
adapt these results to the MAX CSP+(P ) problem, obtain-
ing statements analogous to Theorems 1.1 and 1.2. The only
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difference is that we drop the requirement that a rounding
function has to be odd (since we cannot fold the long codes
over true anymore, we would not be able to enforce such a
constraint). However, in doing so, we also lose the possibil-
ity to force a rounding function R to satisfy R(0) = 0. The
configurations that we use for proving hardness of MAX 2-
AND rely heavily on this property, and it is for this reason
that those results do not apply to the MAX DI-CUT problem
directly. In other words, we are not able to obtain a state-
ment similar to Theorem 1.4 for the MAX DI-CUT problem.
Whether this is because the MAX DI-CUT problem is eas-
ier to approximate than MAX 2-AND, or whether we just
have to spend some more time searching for a “bad” set of
configurations, we do not know, but we conjecture that the
latter is true and that they are equally hard. However, to-
day we do not even know whether balanced instances of the
MAX DI-CUT problem are the hardest or not.

If P is monotone, the MAX CSP+(P ) problem is triv-
ially solvable, so there are cases where MAX CSP+(P ) is
easier than MAX CSP(P ). Lacking results on MAX DI-
CUT, it would be interesting to determine whether there are
other examples than these trivial ones. A good candidate
would probably be an “almost monotone” P (recall that P
is real-valued.).

Recently, O’Donnell and Wu have done a complete anal-
ysis of the “approximability curve” of the MAX CUT prob-
lem, exhibiting an algorithm, integrality gap, and UGC-
based hardness result which all match [30]. It will be inter-
esting to see whether their results can be extended to other
MAX 2-CSP problems.
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