
0-Order Affordances through CAD-Model Recognition
and 6DOF Pose Estimation

Aitor Aldoma and Markus Vincze
ACIN - Vienna University of Technology

aldoma@tuwien.ac.at

Radu Bogdan Rusu
Willow Garage

Abstract— In this paper, we propose to analyze the interac-
tion opportunities between a robotic agent and the environ-
ment through object recognition and 6DOF pose estimation.
We introduce the concept of 0-order affordance representing
affordances that dependent solely on the object of interest and
its configuration in the scene. For object recognition, we propose
a semi-global 3D feature: the Clustered Viewpoint Feature
Histogram (CVFH), that can be trained on CAD models and yet
deliver excellent recognition results when recognizing objects
from a single view point with a depth sensor like the Microsoft
Kinect and together with the Camera’s Roll Histogram (CRH)
delivers a full 6-DOF pose estimation. Because the pose of
the models in the scene is completely estimated, we are also
able to perceive hidden 0-order affordances - affordances that
are not directly perceivable in the current configuration - by
using the stable poses of an object to decide if the affordance
is usable or not. We present recognition results and pose
estimation results on a preliminary set of objects showing better
performance than state-of-the-art methods and demonstrate as
well the applicability of stable poses to detect hidden 0-order
affordances.

I. INTRODUCTION AND RELATED WORK

From a robotic perspective being able to understand a
scene and moreover, understanding which are the interaction
possibilities that are provided in a specific environment, are
a key capability for a task-guided robotic agent. What an
environment affords depends strongly on two factors: the
objects and their configuration in the scene and second,
the interaction capabilities embodied on a specific agent.
The combination of both factors is coined under the term
affordance in the literature [1].

Directly perceiving affordances or interaction chances
from a partial view or an image of a scene is an extremely
difficult task. Several authors have already pursuit this goal
by learning affordances directly on color images or depth
images [2], [3]. The main disadvantage of such approaches
are the underlying low level features on which the learning
is based. 2D features or color information are not always
adequate to learn geometrical attributes of objects that are in
the end those voting for a specific affordance. Some years
ago, other authors tried building functional 3D databases
of objects to describe which are the functions provided by
specific object / categories [4], however, the link between
these databases and the real world was missing and the
databases were independent of the agent.

Herein, we propose to handle the high complexity of the
interaction opportunities between a scene and an agent by

analyzing affordances at three different levels. We define
0-order affordances to be those that depend solely on the
object. They can be understood as the intended functionalitiy
of an object (e.g., a mug affords liquid-containment and a
sphere affords rollable). 1st-order affordances are possible
interactions between the objects and the capabilities of the
robot (e.g., grasping an object if the agent embodiment
has a gripper and the object is graspable by the specific
embodiment). Finally, 2nd-order affordances describe those
appearing when the agent embodiment has been extended by
grasping an object in the scene (e.g., stacking an object onto
another after the first object has been grasped).

In the scope of the paper, we focus on 0-order affordances.
Although 0−order affordances are independent of the agent,
they do depend on the configuration or pose of the objects in
a scene (e.g., a mug affords liquid-containment if standing
upright but not otherwise). We call 0-order affordances that
depend on the pose of an object, hidden 0-order affordances,
as the specific object configuration might hide them to the
agent.

Instead of perceiving affordances directly from the scene,
we propose to perceive them through object recognition.
Given a partial view of a scene, we recognize the objects in
it against a CAD model database and estimate their 6DOF
pose. In a training stage, 0-order affordances are labeled on
the training CAD models. If an object presents hidden 0-
order affordances, the stable poses of the objects are labeled
as having the specific affordance hidden or not when found
in that configuration. Upon successful recognition and pose
estimation, the model affordances are retrieved. If hidden 0-
order affordances are present, the object pose needs to be
checked against the stable poses of the object to retrieve if
the specific affordances are hidden or not for the current
configuration.

Our main idea is to transform the problem of detecting
affordances to an object recognition problem and use the
stable poses of the recognized CAD model to retrieve hidden
and non-hidden affordances. Moreover, by perceiving affor-
dances through recognition of CAD models, affordances on
new objects can be directly learnt at the CAD model level
where the whole geometry is available and if desired other
attributes like weight, material, etc. can also be included in
this representation.



II. 0-ORDER AFFORDANCES

0-order affordances are independent of the agent and its
capabilities and depend only on the object and its pose in
the environment. While certain objects might fulfill certain
affordances in all possible environment configurations, many
others might only do so in a specific pose configuration.
Note that for simplification, we consider the environment
to be composed only by the object of interest and a planar
surface where the object is positioned. For example, a 0-order
affordance of a sphere is rollable. However, in a cluttered
environment where the sphere is surrounded by other static
objects, the sphere would not be able to roll. This kind of
affordance perception would require a deeper analysis of the
environment and represents future work.

A. Training stage

Given a set of object affordances A and an object set O0

we start by creating object - affordance relationships given
by a human operator. We have a CAD model representation
of each of the object in the starting set. An object o ∈ O0 is
displayed to the operator together with the list of affordances
A and the the operator decides which are afforded by the
object. The operator decides also if any of the affordances
might be hidden when the object is found in the environment
of a robot. If yes, the operator is shown the object in different
stable poses and for each of them, the operator decides if the
affordance is hidden or not (see Fig. 1).

The set A of 0-order affordances in the scope of the paper
is:

• rollable: the object can roll if pushed.
• containment: the object can contain other objects.
• liquid-containment: the object can contain liquids.
• unstable: the stability of the pose is compromised if

pushed.
• stackable-onto: objects can be stacked onto the object.
Note that 0-order affordances might be pruned afterwards

when higher orders affordances are analyzed depending on
the embodiment of the agent or the specific task to be
fulfilled. If the agent is unable to push: rollable or unstable
0-order affordances will be ignored when analyzing 1-order
affordances. Affordances like containment or stackable-onto
are analyzed when 2-order affordances are considered as they
depend on the object being manipulated by the agent - the
manipulated object must fit into the objects with the 0-order
containment affordance. Thus, 0-order affordances represent
an initial set of interaction opportunities and the amount of
interaction opportunities decreases while going through the
higher level affordances.

B. Computing stable poses

The stable poses of an object are those where the object
pose is supposed to remain unchanged if not moved. As
noticed in [5], the stable planes of a model are a subset
of the tangent planes enclosing a model - the planar faces
of the convex hull. The triangle faces of the convex hull
can be grouped in planar faces by performing a hierarchical

Fig. 1. Screenshot of the labeling tool. In the upper part, the user is given
a CAD model to label which 0-order affordances are provided and when
pressing hidden, the window in lower part pops up where the user decides
for each stable pose if the affordance is hidden or not.

clustering [6]. The final planar faces represent the tangent
planes Π that need to be further analyzed for stability.

Consider π ∈ Π, the model is rotated in such a way that
the normal of π matches the y-axis of the world coordinates
and translated to stand on π. Let cH(s) be the 2D convex
hull of the points supporting the plane. π is a stable plane if
the projection of the center of mass of the object lies inside
cH(s).

Highly symmetrical shapes like bottles, glasses or boxes,
have many different stable planes, that do not provide
additional information. In other words, the geometry of the
objects when standing on those planes is exactly the same. To
ease labeling, these non-informative stable planes are deleted
and only one of them is included in the final set.

The model is projected onto π and the projected points are
aligned using CPCA to the canonical axes. The 3D model is
rotated accordingly around the plane’s normal. Before π is
added to the final set of stable planes, the model in the current
pose is compared against the poses of the previous stable
planes by checking how many points in the current pose do
not have a neighbour within a threshold in previous computed
poses. π is added to the final set if the same geometry is not
found in the stable poses. By applying this simple check,
the final number of stable planes is greatly reduced for these
symmetrical shapes. For example, a cube ends having one
single stable plane instead of 6, a cylinder 2 instead of N >>

2 (N depends on how fine the 3D model is discretized), etc.

III. RECOGNITION AND 6DOF POSE ESTIMATION

This section focuses on the recognition and pose esti-
mation of the objects on a given scene. Because of its
efficiency and good performance shown in [7], we decide
to build on the VFH descriptor and modify it accordingly to
obtain a semi-global descriptor (CVFH) that fits our needs of



allowing training on synthetic data and yet performing well
on real data. The VFH descriptor is a compound histogram
representing four different angular distributions of surface
normals (see [7] for a complete description). Let pc and nc be
the centroids of all surface points and their normals of a given
object partial view in the camera coordinate system (with
||nc|| = 1). Then (ui, vi,wi) defines a Darboux coordinate
frame for each point pi :

ui = nc

vi =
pi − pc

||pi − pc||
× ui

wi = ui × vi

(1)

The normal angular deviations cos(αi), cos(βi), cos(φi)
and θi for each point pi and its normal ni are given by:

cos(αi) = vi · ni
cos(βi) = ni ·

pc
||pc||

cos(φi) = ui ·
pi − pc

||pi − pc||
θi = atan2(wi · ni, ui · ni)

(2)

For cos(αi), cos(φi) and θi histograms with 45 bins each
are computed and a histogram of 128 bins for cos(βi), thus
the VFH descriptor has 263 dimensions. Using the centroid
and average normals over the partial view (pc and nc) to
build the Darboux coordinate system, makes VFH sensitive
to missing parts of the object caused by partial occlusions,
segmentation or sensor artifacts (see Figure 2).

Fig. 2. Example of an incomplete surface due to limitations of the sensor.
For instance, surfaces that are at a steep angle relative to the sensor as well
as parts that are close to object borders contain more noise and even miss
depth estimates.

These effects can result in unstable estimations of the
object points and normals centroid (pc and nc from Eq. 1),
thus affecting the resulting VFH and making it unsuitable to
match against the corresponding synthetic view that will not
present these artifacts.

A. The Clustered Viewpoint Feature Histogram
The main idea behind CVFH is to take advantage of the

object parts that can be robustly estimated by the depth
sensor and use them to build the Darboux coordinate system
while still using the whole partial view to compute the
descriptor.

Formally, we propose to describe a partial view of an
object, represented by a set of points P , as a set H of
Clustered Viewpoint Feature Histograms. The cardinality of
H is the same as the cardinality of S , where S is the set of
stable regions found on P using the procedure defined in the
upcoming Section III-B.

Taking si ∈ S with si ⊆ P , we can define a Darboux
coordinate system D = (ui, vi,wi) like in Eq. 1 but in this
case pc and nc represent the euclidean centroid and normal
centroid of si and not of the whole partial view P . Given D
and using Eq. 2, the normal angular deviations for all points
in P can be computed.

Let then (α,φ, θ,β) represent the normal angular devi-
ations already binned in (45,45,45,128) bins, the CVFH
histogram hi ∈ H is defined as the following concatenation:

(α,φ, θ,SDC,β) (3)

where SDC represents the Shape Distribution Component
of CVFH computed as follows:

SDC =
(pc − pi)

2

max((pc − pi)
2)

(4)

The number of bins used for this component is again 45
thus making a total size of 308 for CVFH. This component
allows to differentiate surfaces that have very similar nor-
mal distributions and sizes but their points are distributed
differently.

To avoid scale invariance, each bin in CVFH counts the
absolute number of points falling in that bin. To reduce am-
biguities, we first construct a voxel grid over our point cloud
data with a fixed voxel size (5mm for all our experiments
which reduces the number of points to be processed and yet
does not smooth fine structures), and reduce the cloud to
the set of voxel centroids. Because the actual size of the
object is given by the 3D sensor, the amount of points for
a given view will be the same no matter what the distance
to the camera is. Avoiding the normalization step allows us
to distinguish between objects of different size but identical
shape. It also makes the descriptor more robust to missing
parts of the object, as this will only influence local parts
of the descriptor. Normalizing the histogram by the total
number of points would increase the bin height under the
presence of occlusion.

The advantages of CVFH are two-fold: (i) the coordinate
system is more likely to resemble the one obtained from the
synthetic view making the descriptor more stable and (ii)
because the set of CVFHs represent a multivariate description
of the partial view, we can better handle occlusions as long
as at least one of the stable region is visible. Please note that
the CVFH histograms in H are independent from each other



and not complementary as they describe the same geometry
but encode them differently. To understand how CVFH is
used for recognition, we refer the reader to Section IV-B.

B. Stable regions clustering

To overcome the instability caused by missing object parts
and local noise artifacts, we first identify stable regions in a
partial view obtained by the depth sensor. To do so, we apply
a smooth region growing algorithm on the points obtained
from a partial view of an object after removing points with
high curvature (caused by noise, object edges or non-planar
patches).

Each new region is initialized with a random point. A
point pi with normal ni is added to a region Ck if the region
contains a point pj with normal nj in the direct neigbourhood
of pi with a similar normal, i.e., the following constraint is
fulfilled:

∃pj ∈ Ck : ||pi − pj || < td ∧ ni · nj > tn (5)

For all our experiments, td is set to three times the voxel
grid size and tn to cos(10◦). For each stable region, a CVFH
descriptor is computed as outlined in the previous section.
The number of stable regions for a specific partial view
defines the cardinality of the descriptor set H.

C. Camera roll histogram and 6DOF pose

Most descriptors based on views of an object like VFH,
CVFH, CAP-SIFT [8] are unable to deliver a complete 6-
DOF pose. Due to this invariance of CVFH with respect
to rotations about the view direction of the camera (roll),
the object and viewpoint recognition is determined up to an
unknown rotation. To determine the correct orientation of the
object, we introduce a new descriptor that is not invariant to
the roll angle. To avoid a higher dimensionality in the overall
descriptor by extending it, which would noticeably decrease
the performance of the object/viewpoint recognition, we use
a final optimization step to find the correct roll angle. Since
the computation of the roll angle is only done for the best N
candidates from the CVFH matching step and furthermore
is efficient to calculate, the overall performance is hardly
affected.

For each CVFH descriptor in H, an additional histogram
is computed - the camera’s roll histogram (CRH). We project
the normals at each point onto a plane that is orthogonal to
the vector given by the camera center and the centroid of the
stable region used to compute CVFH. For the projection, we
compute a rotation-axis v and a rotation angle θ using the
following equation:

v =
pc × z

||pc||
θ = − arcsin (||v||)

(6)

that transforms the CVFH centroid pc to coincide with the
camera’s z-axis. Since we use an orthographic projection, the
projected normals are given by the first two components of
the transformed normals.

The CRH is then computed by taking the angle of the
projected normal relative to the up-view vector of the camera
on the plane. The histogram contains 90 bins giving an
angular resolution of 4 degrees. The number of bins for the
CRH is selected from our empirical evaluations to provide
a reasonable trade-off between efficiency and accuracy. Due
to noise in the input data, we weight the projected normals
by their magnitudes. This removes most of the equally
distributed noise in the histogram, resulting from unstable
projections of normals that are almost parallel to the roll
axis of the camera.

In order to estimate the object’s rotation around the roll
axis, we need to find an orientation where the two roll
histograms match best according to a metric. This can be
considered a correlation maximization problem. Therefore,
we apply a Discrete Fourier Transform for both histograms,
and multiply the complex coefficients of the database view
with the complex conjugate coefficients, and perform the
inverse transform to compute the cross power spectrum R.
The peaks of this spectrum appear at rotation angles that
align the two histograms well.

There are cases where the power spectrum of two CRHs
can have multiple peaks due to different kinds of symmetries.
Also, partial occlusions or sensor noise might deteriorate the
CRH, so it is generally not sufficient to rely solely on the
maximal peak in R.

In order to select a set of orientations that can be pruned
in a subsequent test, we select a minimum threshold tp

for peaks, and add peaks with higher magnitude to the
set. We start with the highest peak, adding peaks if their
corresponding rotation angles do not fall within a certain
distance band tb of any of the previously added peaks.
This ensures that the set of orientations does not contain
multiple entries for very similar alignments, but captures
local maxima that are distributed over the whole set of
rotations, if they indicate a good alignment.

In our experiments, we set tb = 12◦ and chose a relatively
high value for tp in order to keep the size of the rotation set
small. We found a value of tp = 0.9 ∗ max(R) to yield a
low number of peaks - typically up to 5 peaks.

IV. DETECTING 0-ORDER AFFORDANCES

This section focuses on two aspects: (i) the recognition
module that matches the trained CAD models to a pointcloud
obtained by a depth sensor like the Kinect and (ii) the
detection of the 0-order affordances once the recognition and
pose estimation has succeeded.

A. Object recognition - training
Each CAD model is rendered from different viewpoints

to obtain a partial point cloud of the object seen from the
viewpoint that is used to train the view-based descriptor
(CVFH) that is used for recognition and pose estimation. We
use 42 viewpoints around the object obtained by tesselating
an icosahedron once.

Indistinguishable views that belong to the same object, like
those obtained from symmetric objects such as cylinders or



bowls, are considered just once to avoid indistinguishable
information in the database.

B. Object recognition + pose estimation - detection
The recognition stage runs on a raw point cloud from a

depth sensor, which in our case is the Kinect. We proceed
first with a segmentation of the scene using dominant plane
extraction and Euclidean segmentation on the remaining
points [9]. The segmented groups of points represent the
objects to be recognized. Independently for each object in
the scene:

1) Compute a set of CVFH descriptors (H) and CRHs.
Please note, that each CVFH descriptors is paired with
a camera roll histogram.

2) For each CVFH in H , a nearest neighbor (NN) search
is performed to find the N closest CVFH descriptors in
the training set, giving a set of views from the trained
objects.

3) As we have performed as many NN-searches as ele-
ments in H , the best N candidates according to the
metric given in Eq. (7) are selected.

4) For the resulting N view candidates the roll angle is
determined using the CRH matching and 6DOF pose
estimation (as detailed in Section III-C).

5) After aligning the views using the pose and roll infor-
mation gathered so far, an additional ICP [10] step is
used to refine the alignment.

6) Finally the N best view candidates are sorted using the
number of inliers from the last iteration of ICP using
a distance threshold of twice the voxel grid size.

Because of its efficiency, we use the FLANN library [11]
to perform the nearest neighbor search.

We have performed different empirical experiments to
determine which is the best metric for our needs. The major
problem with metrics like L1 and L2 is the sensitivity to
outliers. Dealing with partial occlusions implies that the his-
tograms will have outliers due to missing parts of the objects
even if the rest of the histogram is shaped correctly. Let A
and B be two CVFH descriptors, we propose the following
metric which favours overall likely shaped histograms and
distributes the outliers weight over the whole histogram:

d(A,B) = 1−
1 +

308�
i=1

min(Ai, Bi)

1 +
308�
i=1

max(Ai, Bi)

, (7)

Once the pose has been estimated and the best CAD model
has been selected, we are already able to provide the non-
hidden 0-order affordances for the specific object, e.g. the
stackable-onto affordance for a box that is independent of
its pose in the environment.

C. Hidden 0-order affordances
For those recognized objects that have hidden 0-order

affordances we need to evaluate if their pose in the environ-
ment makes any hidden 0-order affordance usable. Let M1

represent the object in camera coordinates after being aligned
using the procedure explained in Section IV-B and ndp the
normal of the dominant plane in the scene. Let M2 represent
the same object in object coordinates together with the set of
stable planes Π, where each π ∈ Π has been labeled to have
the specific 0-order affordance hidden or not hidden. The
problem can be then posed in the following way: Find πi ∈ Π
that best aligns M2 with M1 and check if the affordance at
the stable pose based on πi is hidden. We use the method
presented in [5] to align M2 and M1 (assumed to stand on
the plane with normal ndp). Because the method is based on
stable planes, the best alignment gives a certain πi from M2

and by looking at the labeled information from πi we know
if in the current configuration the hidden 0-order affordance
is indeed hidden or usable. Note that in our representation,
a hidden 0-order affordance is a boolean variable and we
do not consider poses where the object might partially fulfill
the affordances. In the case that the pose retrieved by the
procedure in Section IV-B does not represent a stable pose,
the system will consider all pose dependant affordances to
be hidden. Even so, the following section IV-D applies as
well for this cases as long as the retrieved pose is correct.

D. Using hidden 0-order affordances to give manipulation
hints

If the agent is looking for a specific affordance needed
to fulfill a certain task that it is not available in the current
configuration, we can give manipulation hints after detecting
that the specific affordance is hidden (see Fig. 3). Let ps be
the current pose where the affordance is hidden and pf any
other stable pose where the specific affordance is not hidden.
The manipulation hint consists of a constrained grasp that
leaves the support surface of pf free so that the object can
be released in the desired pose and a path for the robot hand
that brings the object from ps to pf while using the proposed
constrained grasp.

V. EXPERIMENTAL EVALUATION

We performed a preliminary evaluation on a set of 6
objects containing a cylinder, a ball, a book, an opened
box, a mug and a bowl together with the set of affordances
presented before. There are two factors to evaluate:

1) Is the object correctly recognized and its pose correctly
estimated?

2) If 1) succeeds, are we able to identify the stable
pose properly so that hidden 0-order affordances are
correctly retrieved?

To evaluate these factors, 8 different scenes (like the one in
Fig. 3) are captured, each of them containing several objects
from our training set and we visually inspect the recognition
results together with pose estimation, which are summarized
in Table I. The same scenes are also recognized using VFH
and we show how CVFH outperforms VFH for recognition
of CAD models on real scenes obtained with the Kinect.
For both recognition methods, the same post-processing is
done. Table I also shows recognition and pose estimation
results according to the number of post-processed nearest



Recognition and pose estimation rates
CVFH VFH

#NN processed 5 10 5 10
Scene 1 2/2 2/2 2/2 2/2
Scene 2 1/2 2/2 1/2 1/2
Scene 3 3/3 3/3 3/3 3/3
Scene 4 4/4 4/4 3/4 3/4
Scene 5 3/4 4/4 2/4 3/4
Scene 6 4/5 5/5 3/5 4/5
Scene 7 4/5 5/5 3/5 3/5
Scene 8 5/6 6/6 4/6 5/6

Total: 26/31 31/31 21/31 24/31
Percentage: 83.9 % 100 % 67.7 % 77.4 %

TABLE I
RECOGNITION AND POSE ESTIMATION RATES FOR DIFFERENT SCENES.
#NN PROCESSED REPRESENTS THE NUMBER OF NEAREST NEIGHBORS

THAT ARE POST-PROCESSED.

neighbours as detailed in Section IV-B. We perform a total
31 recognitions and Table I shows how CVFH outperforms
VFH. It is interesting to note that the post-processing of the
N (N being 5 and 10 for the experiments) nearest neighbours
is always able to retrieve the good match if available.

The hidden 0-order affordances were always correctly
retrieved for each positive recognition demonstrating the
usability of the stable planes alignment method to deliver
the correct stable pose.

VI. CONCLUSIONS AND FUTURE WORK

We have presented how hidden and non-hidden 0-order
affordances can be perceived from a single viewpoint through
object recognition, using stable object poses and labeled
information on the training models. Moreover, we argue that
abstracting affordances to a 3D CAD model representation
opens the possibility to learn affordances on new objects
using 3D features that are ported to the real world through
recognition and should be more effective than current ap-
proaches that directly try to learn affordances using 2D
features.

Future work includes dealing with a bigger set of 0-
order affordances and objects, learning affordances using a
supervised learning strategy on new CAD models and the
integration of manipulation hints together with 1- and 2-
order affordances in the grasping pipeline to solve specific
manipulation tasks.
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A Hybrid Approach For Object Reconstruction & Recognition

Nizar Sallem and Michel Devy

Abstract— Object reconstruction and recognition often con-
stitute the underlying techniques employed in robotics manip-
ulation. They are two major topics that keep motivating the
computer vision community. Availability of RGB-D sensors at
reasonable costs can achieve a milestone in providing a common
framework for achieving both requests. The synchronized 3D
and 2D stream enable for a new approach that produces a
unified model suitable for reconstructing and recognizing a
priori unknown objects to be manipulated later. In this paper
we present an hybrid approach that takes benefits of 3D and
2D data to achieve faster reconstruction while providing strong
keys for recognition.

I. INTRODUCTION

While object reconstruction deals with retrieving object

geometrical information such as volume and shape, object

recognition deals with identification of an object in a scene

and further determining its positioning. These topics are

differently addressed according to the object representation.

In the following we give a summary of object reconstruction

using 2D data and 3D data.

A. Reconstruction from 2D data
2D reconstruction can be categorized in 3 groups:

• multiview geometry: the object is seen with one or

several cameras from one or several positions. Then us-

ing matching techniques 3D positions of corresponding

pixels are computed knowing the intrinsic and extrinsic

parameters of the cameras ;

• setero reconstruction: the object is seen in two cameras

or more and then applying some correlation the 3D

points are recovered ;

• composite approach: the authors use multiview com-

bined to stereo bench to achieve the reconstruction.

The multiview geometry has one major advantage : it only

requires one camera and an initial guess of the intrinsics

and extrinsics. The achieved reconstruction is sparse and

suffer from the lack of features to match. The second issue

can be addressed using some pattern projection. The stereo

reconstruction achieves better reconstruction and the output

model is a dense one. Still it requires at least two cameras.

The composite approach allows for several point of view

(POV) and thus the entire object can be reconstructed.

B. Reconstruction from 3D data
The object of interest is shot from several POVs or several

devices are placed around it to take several shots at the

same time and then a consolidation method - most likely

This work was supported by the ANR project ASSIST.

Nizar Sallem and Michel Devy are with LAAS-CNRS Université de

Toulouse nksallem@laas.fr michel@laas.fr

Iterative Closest Point (ICP) - is applied either afterward or

incrementally to obtain the reconstructed model. The output

model is precise but ICP is an expensive algorithm. Another

issue is the semantic poorness of the model. Indeed, the most

common output models are point cloud model and meshed

point cloud which don’t support appearance data.

C. The Proposed Approach
In this paper we propose an hybrid approach for recon-

struction based on 2D features detection and matching in

conjunction with 3D coordinates availability producing a

geometrical model with 2D interest features when available.

We then extend the PLY file format to handle both data.

Finally we demonstrate the performances of this hybrid

approach over basic pure 3D for object recognition.

II. BRIEF RGB-D SENSOR PRESENTATION

The RGB-D denomination in this article refers to a device

producing synchronized depth image and color image stream

such as Microsoft R�
kinect.

Fig. 1. RGB-D sample output of a scene

We are not focusing on implementation details, we just

point the fact that RGB-D sensor produces color image

and depth map such as ∀ pixel pi(u, v) of the color image
corresponds a 3D point Mi(X,Y, Z) that is set to infinity



out of the functioning range. Experimentally the functioning
range for the Kinect is [1m, 5m].

III. 2D RECONSTRUCTION AND RECOGNITION
WITH NATURAL INTEREST FEATURES

Interest features could be defined as sufficiently discrimi-
nant pixels in an image to represent their close neighborhood.
They were introduced by [5]. [4] presented HARRIS features
corresponding to strong intensity variation on the edges and
corners of an image. [7] introduced scale invariant features
(SIFT). [9] developed scale invariant and rotation invariant
features (SURF).

3D reconstruction can be achieved using natural 2D inter-
esting features by the mean of multiview geometry which
involves N perspective cameras or a single perspective
camera at N positions.

• detect some features on an image
• match those features against the previous one(s)
• each pair of < referencefeature,matchfeature > is

appended to a system solving (u, v) = M(X,Y, Z)
with M projection matrix.

Following are some detection result on the same image
using different detectors.

Fig. 2. Detection result on the same image using SIFT, SURF and STAR

A. Features Matching

Almost all the modern interest features detectors assign a
real number array to each point. The descriptor translates
signaletic and, or, geometrical information computed on
that point into numerical values. Comparing two interest
features for matching resolves then to computing the eu-
clidean distance that separates their descriptors. For a triplet
< f0, f1, f2 > described by < δ0, δ1, δ2 >, δi ∈ �D∀i,
then f1 is more likely to be matching f0 than f2 if �δ1 −
δ0� < �δ2 − δ0�. Numerical tools like FLANN [1] and
ANN [2] allow for such distance computations in reduced
time by approximating the numerical representation. Still,
euclidean distance computation doesn’t prevent from false
matching and outliers thus the matches are filtered more
through some other constraint - geometrical for instance. [14]
computes similarities between pairs and the one with the
largest number of voters s0 is said to be valid. All the pairs
that fall in the range of s0 are accounted as valid matches
and the others are discarded. Another approach that gives
similar result are the groups matching [3] where signaletic
and geometrical constraints are combined to achieve robust
pairing.

Our matching algorithm is similar to [14] except the
accounted geometric transformation and the voting mech-
anism. Consider two images with two sets of detected

features DR1 and DR2 then each DRi is indexed in a k-
d tree structure. (f1,j , δ1,j) → (f2,k, δ2,k), �δ1,j − δ2,k� =
DR2argmax�δ1,j−δ2,k�. f is further described by an angle
θ and a scale σ. Rather than an overall loop we gather these
two data 1. scale: σ2,k

σ1,j
and 2. rotation θ2,k − θ1,j in a 2D

histogram H to get the repartition of all affine transforma-
tions Aj . By thresholding H to its upper half as shown on
Fig. 3 we keep only the most present transformations and
through reprojection we get the valid pairs. On the Fig. 4
the initial matches are drawn in green and then overlayed in
red for valid ones. This techniques shows to be robust for
scale, rotation and arbitrary transformations changes.

Fig. 3. Built histogram of rotations and scales thresholds

Fig. 4. Matching result: initial matches in green and valid matches in red

The set of pairs < reference,match > detected respec-
tively on imagei and imagej is called matching result and
noted MRi,j .

B. Multiview Geometry
The fundamental matrix of a perspective camera 1 ties a

point P (X,Y, Z) in world coordinates to a pixel p(u, v) in
the image.
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Then for unknown P that projects into p1, p2, . . . pn we
can write a system that returns (X,Y, Z) given the camera[s]



intrinsic and extrinsics. The sparse structure of the system
allow serious improvements as in [6] and [8].

IV. 3D RECONSTRUCTION AND RECOGNITION

A. Reconstruction
3D reconstruction using 3D points use a totally distinct

approach where the main challenge is to consolidate several
views into one model. In [16], authors proposed a method for
registering 3D shapes. The original algorithm is summarized
in IV-A. With C(X,P ) = Y = {y}, y = d(�p,X) =
min��x− �p� the closest points operator.
Require: point sets P with NP points �pi from target and X

with NX points �xi from model, kmax maximum number
of iterations allowed and τ the convergence tolerance

Ensure: �q transformation from P to X

P0 ←P
q0 ←[1, 0, 0, 0, 0, 0, 0]t

k ←0
while k < kmax do

compute closest points Yk = C(Pk, X)
compute registration (�qk, dk) = Q(P0, Yk)
apply registration Pk+1 = �qk(P0)
if dk − dk+1 < τ then

return �qk

end if

end while

Original ICP algorithm
The original algorithm was further improved in different

locations:
• P and X selection;
• corespondents calculus: point to plan distance instead

of point to point, mahalanobis distance instead of eu-
clidean,. . . ;

• initial transform value: transform between P̂ and X̂

respectively means of P and X

• registration computations: quaternions, singular values
decomposition, non linear methods,. . . ;

• adding an outlier removing step using RANSAC,
LMEDS, . . . .

In [17], authors depict a taxonomy of ICP variants and
establish a comparison methodology noting the effect of each
criterion on convergence speed. They conclude that point to
plan metric is suitable for faster alignment and using k − d

tree to index point sets increases this speed.

B. Recognition
In [18], authors present Point Features Histograms (PFH)

as robust descriptor for 3D points. PFH represent the an-
gular variations between each pair of points normal in the
vicinity k of a point p. PFH was then improved to reduce
their complexity from Onk2 to Onk in [15] and named
Fast Point Feature Histograms (FPFH). FPFH translates the
relationship between a point and its k neighbors and its
neighborhood’s neighborhood. Their experiments show their
technique to be applicable for synthetic and real data and
robust to noise. In [19], Normal Aligned Feature (NARF) is

an interest feature extracted on depth maps. It corresponds
to points detected on the borders representing the highest
changes in surface at their local vicinity. Descriptor is formed
after a normal aligned range patch at the point on which
is overlayed a star pattern and each entry in the descriptor
corresponds to the number of surface change along that star
beam. These descriptors can be compared using the same
tools in III-A to achieve recognition.

V. HYBRID RECONSTRUCTION METHOD

In a past work [10] we achieved 3D reconstruction using a
camera fixed on a personal robot arm and the major drawback
was the poorness of the resulting geometrical model because
the natural features are not abundant in an image and if we
relax the detection then we loose the robustness of those
features and spend a lot of time in the matching step. On
another level the availability of an appearance model allowed
us to achieve recognition and localization tasks. When it
comes to use the 3D map generated by a RGB-D sensor
the registration was not always precise enough to produce
a good model and we lost all the recognition abilities. Our
challenge was to speed up reconstruction while producing an
appearance model of the whole object.

A. Speed Up Reconstruction

After a quick analyze it was evident that the the slowness
was due to the ICP. Indeed it is an iterative process that
involves:

1) nearest neighbor search: Onlog(p), n number of
points, p number of neighbors

2) transformation estimation: On, n number of pairs
repeated N times or till convergence is reached. One way to
reduce this cost is to “choose” the correspondence and thus
eliminate the nearest neighbor computation step which is the
most expensive. A good hint is given by the interest features
matching. If we use only pairs computed through 2D match-
ing then the process is at least imagewidthximageheight

lighter since the matching operates on 2D and ICP operated
on 3D. This raises an issue: what if number of pairs found is
not sufficient to achieve transform computation?, rather than
falling to an overall ICP we chose to use only the “extreme”
points. In fact, ICP can be seen as an averaging process and
the points with extreme coordinates are the most affecting
ones. Thus using the points that lie on the contour of the
object would achieve same result as using the whole data.
Now if for some reason none of the former succeed we can
always fall back to using all the available 3D data. This
behavior is summarized in V-A
Require: color image imgi, imgj ; 3D map mapi, mapj

Ensure: τ i, j 3D transform between imgi and imgj

DRi ← detect features in imgi

DRj ← detect features in imgj

MRi,j ← match DRi against DRj

n ← number of pairs in MRi,j

if n ≥ threshold then

success ← compute τi,j using the pairs of MRi,j



if not success then
success ← run ICP on the contours of imgi and

imgj
if not success then
success ← run ICP on mapi and mapj

end if
else
success ← run ICP on the contours of imgi and

imgj
if not success then
success ← run ICP on mapi and mapj
end if

end if
3D transform recovery algorithm

B. Appearance Model

As shown in V-A the first step of our algorithm is to detect

2D features on input images thus keeping track of those

computed features and saving them along with 3D data is

sufficient to ensure appearance model construction. Still we

needed an appropriate format to merge the data in. We chose

to extend the PLY data format the way shown on V-B.

TABLE I

CLASSIC PLY AND EXTEND PLY FILE CONTENT

PLY extended PLY

element camera element camera
camera properties camera properties

element features
feature properties

element vertex element vertex
vertex properties vertex properties + features list

element face element face
face properties face properties

C. Object Reconstruction

Achieving reconstruction in this hybrid approach require

a 3D map and 2D image series taken from several POV

not necessarily organized spatially. In order to integrate

these inputs we incrementally build a graph G where nodes

hold 2D detection data and 3D coordinates noted ηi <
image3Di , DRi > and edges hold the computed 3D trans-

form between images and the transformation error Aj,i <
τj,i, �j,i,MRj,i > between ηi and ηj Given image2Di and

image2Dj , ∀j �= i there exists 3 possibilities :

1) τj,i direct computation from pairs succeeds (blue edge

on Fig:V-C) ;

2) τj,i is computed via ICP (red edge on Fig.V-C) ;

3) no connection can be established.

At each step we try matching the new input against all

past ones and update G. There is no guaranty for G to be

complete nor for the result to be precise enough thus a post

processing need to be done to connect as much nodes as

possible and enhance computed transform when necessary.

In this refinement step we traverse the nodes, if no edge

between ηk and ηl or �k,l > �max then we apply on

i i

j

�0,1τ0,1

i

j

�0,1τ0,1

i

j

Fig. 5. 3 possibilities: direct computation, ICP, no success

< image3Dk and image3Dl . If the computation of τk,l is

successfully then we insert Ak,l.

Let us note G�
the refined graph. Reconstruction is ful-

filled if we find the path that relates the maximum of

nodes while minimizing the global transformation error =�
j,i=0

N �j,i, j �= i ∈ G�
. This turns to be Minimal Spanning

Tree problem that can be solved using Kruskal algorithm

[11].

VI. EXPERIMENTS AND RESULTS

For the experiment purpose we shoot a “Lego” box from

several POV using Microsoft R�
kinect. We use an auto-

mated GrabCut [12] that operates the first selection based on

foreground/background contrast. The image series is shown

on Fig. VI.

Fig. 6. Lego’s box image series

The graph obtained when all images are added is shown

on Fig. VI. Glegos shows three connected components where

the best reconstruction that could be achieved covers 5 nodes

from 8 < η1, η2, η3, η6, η7 >.

0 1 2 4

5 3 6

7

Fig. 7. Glegos: graph obtained incrementally adding “legos” box images

Refinement leads to Fig. VI. Several edges (drawn in blue

whereas old ones are drawn in black) were added to the

Glegos making it almost complete in 1 trial.
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Fig. 8. G�
legos: refinement of Glegos

Running Kruskal on G�
legos results on Fig. VI. The

weights on the edges represent �j, i the average transform
error in meters: �j, i =

�N
j,i=0 �xj − τj,ixi� with N the

number of samples retained for computing τj,i.

0

612

4 3

5

7

0.00010 0.00013

0.00020

0.00028

0.00070

0.00261

0.00326

Fig. 9. G� MST as computed by Kruskal

The reconstruction is done selecting a start node ηstart
and following the path to an end node end. When there is
only one outgoing edge Ai−1,i, image3Di = image3Di +
τi−1,iimage3Di−1 else we need to compress all the outgoing
edges : τk,i−1image3Dk + image3Di−1, ∀k �= i, ∃Aj,k. In
Fig. VI, selecting η2 as starting node and η3 as end node,
we need to compress η5, η4 and η7 in η4� . The new MST is

shown on Fig. VI.
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0.000280.00070

0.00261

0.00326

Fig. 10. MST after compression η4� = η4 + η5 + η7

VII. HYBRID REGISTRATION ALGORITHM
Our experiments shows that an hybrid approach is very

convenient for RGB-D data registering. We integrate the
transformation computation step in V-A into an iterative
closest point standard algorithm to compute an initial guess
of the transformation before further processing. This ap-
proach is quite similar to the SAC-IA (SAmple Consensus
Initial Alignment) proposed in [15] where authors use local
3D keypoints Point Feature Histograms (PFH) matching to
compute a first value for the desired transformation. The
algorithm is named A Synthethized Methode for Alginement
(ASMA) and is described in VII
Require: color image imgi, imgj ; 3D map mapi, mapj ;

2d detector D; 2d matcher M
Ensure: τ i, j 3D transform between mapi and mapj
DRi ← detect features in imgi
DRj ← detect features in imgj
MRi,j ← match DRi against DRj

n ← number of pairs in MRi,j

if n ≥ threshold then
success ← compute τi,j using the pairs of MRi,j

if not success then
success ← run ICP on the contours of imgi and
imgj
if not success then
success ← run ICP on mapi and mapj

end if
else

success ← run ICP on the contours of imgi and
imgj
if not success then
success ← run ICP on mapi and mapj
end if

end if
{apply RANSAC on the matched pairs}
RANSAC

A Synthetized Methode for Alignement

VIII. CONCLUSIONS AND FUTURE WORKS
A. Reconstruction Performance

We first start comparing our hybrid approach to a basic
ICP one. To do so we used the Lego’s image series and
the linear ICP class from PCL. In VIII-A we show average
execution times for both approaches on the same data set



while selecting different image input order each time. Exe-
cution time are measured on an Intel R� Core

TM
2 Duo CPU

P8600 @ 2.40GHz.

TABLE II
COMPARISON BETWEEN HYBRID APPROACH AND 3D ICP

hybrid 3D ICP
Adding Images

time (ms) 1260 65217
Graph Analysis

time (ms) 21804 X
MST Computing

time (ms) 13140 88
Total
36204 427829

Our approach performs about six times better when build-
ing initial graph this is due to:

1) we use only 2D data for detection and matching
2) we try to use 3D ICP only on contours
3) at worst case we are behaving just equal to the basic

approach with 3D ICP on full data.
The output graph of the 3D ICP method is shown on VIII-

A

0 1 2 4

5 3 6

7

Fig. 11. GICP : graph obtained with pure 3D ICP

Graph analysis step is the most consuming part of the
hybrid algorithm because it often falls to using 3D ICP to
connect graph’s components.

Finally the reconstruction purpose is better achieved with
hybrid approaches which uses 4 images than basic ICP which
achieves registration for only 3 images and this is due to the
effort we made connecting the graph.

Even with the handicapping step of graph analysis, the
hybrid approach performs 10 times faster than pure 3D
approach with initial requirement better achieved: use as
much input images as possible.

Reconstruction result is shown on VIII-A

B. Recognition Performance
To evaluate recognition performance a RGB-D output of

the Lego’s box was shot with the Kinect with an automated
GrabCut and taken as learning image VIII-B. Then we took
3 others shots with:

1) the Lego’s box is placed in front of a larger object
VIII-B;

Fig. 12. reconstructed Lego’s box point cloud and mesh

2) the Lego’s box is placed among other objects VIII-B;
3) the Lego’s box is twisted and placed alone VIII-B.

Fig. 13. recognition evaluation data set

VIII-B illustrates recognition process on the request
dataset. The 2D features based recognition score ρ is mea-
sured ρ = 1

N

�N
i=0

matchedfeatures

detectedfeatures
, N number of query

images. In our measurements ρ = 0.62.
For the 3D approach evaluation we applied the PPF

features detection and recognition [13] shipped with PCL
with a single model image from the data set. Unfortunately,
all our trials to recognize the Lego’s box failed.

The hybrid approach outperforms 3D one for object recog-
nition due to the richness of the signal information in the
2D images compared to the geometrical only information
provided by the depth map.

C. Conclusions
RGB-D sensors offer more than 3D data and taking into

account the richness of the images enhance drastically the
reconstruction and recognition performances of a computer
vision application. Hybrid approach shows to be faster
and more adapted for object recognition than basic 3D
approaches due to the lower dimensionality of its inputs and



Fig. 14. recognition performance of SURF based 2D matcher

the accuracy of geometrical + signaletic 2D discrimination
versus pure 3D geometric one.

D. Future Works
We are working at a full integration of our algorithm inside

the PCL and improving the performance at the graph analysis
step by selecting the most plausible pairs first and deleting
the weak edges to reduce the MST computing time.
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Can a 3D Classifier Be Trained Without Field Samples?
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Abstract— This paper presents a 3D classifier that is shown to

maintain performance whether trained with real sensor data

from the field or purely trained with 3D geometric models

(for example, computer aided design (CAD) models downloaded

from the internet). It is shown that the proposed 3D classifier

outperforms Spin Image and Fast Point Feature Histogram

(FPFH) based classifiers by up to 30%. The proposed classifier

is a global 3D template matching technique which exploits the

knowledge of the position of the ground for more accurate

alignment of the objects above. The experimental results suggest

that field samples may not be required in the training set of

alignment-based 3D classifiers, which potentially has major

implications on the way the training of 3D classifiers is

approached.

I. INTRODUCTION

This paper introduces an approach to 3D classification
which does not require field samples for training but only
3D models downloaded from the Internet (as illustrated in
Fig. 2). The approach bypasses feature extraction and directly
compares 3D shapes via geometric alignment. It is equivalent
to a 3D template matching process. Variants of the alignment
process are compared and it is shown that constraining
the alignment by using the knowledge of the location of
the ground provided by 3D segmentation [3] improves the
classification. A metric for shape comparison is proposed
and used as a second step in the classification process once
the alignment is performed. The alignment based classifiers
are compared to standard feature based classifiers and are
shown to provide significant improvements. Critically, it is
shown that the template set used in conjunction with the
alignment process can be entirely formed of 3D (CAD
like) models downloaded from the Internet, while achieving
performance on par with templates made of field samples
(from sensors). These experimental results potentially have
major implications on the way 3D classifiers are trained. It
suggests that field samples may not be required for training,
which is an intuitive result since the underlying 3D geometry
is independent from the 3D sensing device (provided the
sampling is sufficient to capture the main elements of the
object’s geometry). Prior 3D segmentation is assumed to be
given and can be generated using the techniques developed
in [3].

II. RELATED WORK

3D classification techniques can be organised into four
classes: (1) classification based on global features, as in [13]
for instance; (2) classification based on local features,
as in [8]; (3) classification based on Bag Of Features
(BOF) [10]; (4) classification by combining local descrip-
tions into a spatial structure representing the global topology
of an object [5].

The 3D classifiers tested in this study belong to the first
category: “Classification based on global features”. A key

difficulty encountered by local methods is that local features
are not necessarily unique to one class of object, which
causes ambiguity in matching. In contrast, by matching a
full object scan to a full template scan, various scales of
feature are implicitly considered at once. One drawback to
this approach occurs when attempting to match occluded
or partially observed objects and this is left for future
work. Note that given the segmentation techniques recently
proposed in [3], occlusions can be identified by fast ray-
tracing in the datastructure underlying the segmentation. This
provides a mechanism to assess whether the (segmented)
objects to be classified were occluded in the scene and as
a consequence whether the use of a global 3D classifier is
appropriate.

The use of web (CAD like) data for 3D feature based
classification has recently been investigated in [9]. An adap-
tation mechanism allows appropriate re-weighting of the web
data with respect to actual field samples during training.
Our approach does not consider adaptation techniques but
experimentally shows that training sets entirely formed of
web data can lead to improved performance while avoiding
the otherwise critical steps of (1) acquiring training samples
from the environment the classifier is to be tested in and
(2) labelling these samples. Synthetic 3D models have also
been used to train the body parts recognition system deployed
for human gesture tracking in gaming applications involving
the newly released Kinect sensor [14]. The authors showed
that such training data provides accurate recognition on
dense (Kinect generated) 3D data. The results presented in
this paper lead to similar conclusions for sparser (Velodyne
generated) 3D data.

The global matching of 3D models onto 3D models has
received a lot of attention [15]. However, to the best of our
knowledge, the alignment of sparse scans acquired in the
field to 3D models had not been investigated in the context
of 3D classification.

The approach proposed here builds on previous work [4]
which already investigated shape alignment for 3D classifi-
cation. This publication brings the following new elements
to the study: (1) four different types of alignment strategies
are tested and comapred against Spin Image and Fast Point
Feature Histogram (FPFH) based classifiers, (2) it is exper-
imentally demonstrated that template shapes obtained from
3D (CAD like) models found on the Internet can provide
equivalent performance and even in some cases improved
performance compared to using objects scanned in the field
as templates. In the long term, this will enable a user to
choose the classes to be identified by simply selecting 3D
models (from an online database for instance) which will
define a training set for the system. Also, this last result



suggests that field samples may not be required in training
data to perform alignment-based 3D classification, which
potentially has major implications on the way the training
of 3D classifiers is approached.

III. FEATURE BASED CLASSIFICATION

This section presents a set of global features whose
classification performance is then compared to the proposed
alignment based classifier.

A. Global PCA

Global PCA features were used as a benchmark since they
are amongst the simplest features. They represent the overall
three dimensional extent of an object point cloud. In the
implementation used here, the first two dimensions contain
the smallest and the largest eigenvalues of the point cloud
in x and y. The third dimension contains the variance of the
point cloud along the z axis. The z dimension of the sensor
frame is used as opposed the third eigenvalue of the full ob-
ject point cloud to capture the typical extrusion of objects in
urban environments. The z direction is defined as the normal
to the ground which is obtained from 3D segmentation [3].
Classification is based on K Nearest Neighbour (KNN).

B. Spin Images as Global Features

In previous work [4], the Spin Image feature [8] produced
the best classification results among the tested local descrip-
tors, on par with the alignment based classifiers. It is, as
a consequence, used here again for comparison; the main
difference being that the 3D point clouds are now sparser,
since they are generated from Velodyne scans, as opposed to
the dense Riegl scans in [4]. The Riegl scans used in previous
work contained about 1.7 million points, while a Velodyne
scan contains about 130,000 points for approximately similar
coverage, implying that a Velodyne scan is about one order
of magnitude sparser. To address the sparsity of the data
spin images are computed using a larger support than in
previous work (5m, see Sec. V-C). While Spin Images are
local features, this deployment effectively makes them global
features, as in [7]. A Spin Image is built by first creating a 3D
surface mesh in which each point is a vertex. Matching two
objects requires computing the description at each vertex of
the associated mesh. In our implementation the surface mesh
is obtained by exploiting the natural grid topology of the
range image, as in [11]. In addition, to speed up the process,
the description is computed only at a subset of randomly
sampled vertices. Classification is based on KNN, as in [8].

C. FPFH

The Fast Point Feature Histogram (FPFH) [13] is a local
feature designed for realtime applications, with an imple-
mentation in the ROS software library [6]. It requires surface
normals, which are computed as in [11]. At each local region,
a weighted histogram of surface normal variations are com-
puted. The distance between histograms is computed with the
histogram intersection kernel to find point correspondences
[13]. Classification is by KNN as before.

IV. CLASSIFICATION BY TEMPLATE ALIGNMENT

The approach for 3D classification developed in this
section was first introduced in previous work [4]. It is a
3D template matching process involving two main steps:
(1) 3D alignment, (2) computation of a distance metric
quantifying shape differences. These two steps are detailed
in the following sections.

A drawback of global (object size) alignment is related
to the potentially large number of templates required to
obtain good matches as the number of object classes con-
sidered increases. Future work will consider non-rigid ICP
techniques [2] which morph one object into another and as
a consequence allow improved matching between any two
objects. With such techniques, shape difference is quantified
as the amount of morphing required to transform one object
into another. This type of metric has the potential to lead
to a reduction of the template set to a few samples per
class, ideally only one per class, since good matches (prior
to morphing) are no longer required.

A. Alignment Methods

Four different alignment methods are tested in Sec. V. The
simplest one consists simply of shifting each point cloud to
its mean. The other alignment methods are variants of ICP.
In the first variant, the point clouds are shifted to their mean
and a full 6 DOF ICP is run. This will be referred to as ICP
3D. In the second variant the point clouds are also shifted
to their mean, but this time a 4 DOF ICP is run in which
the x, y, z and yaw components of the rigid transformation
are optimised. It will be referred to as ICP 2.5D. In the third
and last variant, the x and y coordinates of the point clouds’
centre of mass are shifted to 0 and the z component is shifted
so that ground height is zero. The ground height is obtained
from 3D segmentation [3]. A 3 DOF ICP is then run in
which the x, y and yaw components are optimised. It will
be referred to as ICP 2D. This last ICP variant leverages the
knowledge of the ground surface given by the segmentation
process as a way to constrain the ICP optimisation and avoid
some of the local minima.

Many other variants of ICP have been proposed, varying
aspects from point selection and matching to the minimisa-
tion strategy. As generalised by [12], most ICP implementa-
tions can be characterised by six aspects. Our design involves
the following choices: (1) selection: nearest neighbour search
in object clouds down-sampled by voxelisation; (2) match-
ing: L2 norm; (3) weighting: none; (4) rejection: none, since
segmentation has been been performed prior to applying a
classifier; (5) error metric: as in Eq. 1; (6) minimisation: non-
linear least square optimisation (based on Python’s Numpy
function numpy.leastsq).

B. Shape Similarity Metrics

Once alignment is performed, the two different metrics
presented below are used to quantify the difference in shape
between the two objects aligned.



1) ICP Residual Error: The first metric considered is the
value of the residual produced by ICP:

err
NTest

i 1

PTest
i PTemplate

nearest (1)

The subscript nearest refers to the nearest neighbour of
P Test
i in the template point cloud.
2) Symmetric Residual: The formulation above may arti-

ficially take on large or small values: for instance in the case
of a pole aligned to a wall, Eq. 1 will produce a small value
when the test shape is the pole but a large value when the
pole is the template. To avoid this artefact, Eq. 1 is extended
into a symmetric measure:

err
1

NTest

NTest

i 1

PTest
i PTemplate

nearest (2)

1
NTemplate

NTemplate

i 1

PTemplate
i PTest

nearest ,

The formulation is similar to the one proposed in previous
work [4], the difference being that each of the two terms is
now normalised by point counts. This makes it insensitive
to variations in sampling densities provided a number of
samples large enough to capture the main elements of
geometry in the shape1.

V. EXPERIMENTS

A. Annotated Velodyne Data

A visualisation of the manually labelled dataset is pre-
sented in Fig. 1. It was generated from a sequence of
Velodyne scans by applying the segmentation techniques
developed in [3]. When necessary, the segmentation was
manually corrected and the resulting segments hand labelled
into the seven following classes (the number of instances
in each class being indicated in parenthesis): car (134),
pedestrian (47), tree (51), building (13), trunk (32), pole (50),
traffic sign (47); total number of labelled objects: 374. The
sequence was divided into four non-overlapping subsets for
four-fold cross-validation testing. All the results provided in
this section are generated according to this set-up.

The classification problems considered here do not contain
the class “other” which corresponds to the assumption that
every test shape belongs to one of the seven considered
classes. This assumption does not hold in real-world appli-
cations. A possible solution is to develop gating processes,
as defined in the tracking and data fusion community. An
instance of such process for classification was investigated
in [4].

B. Scanned Objects as Training Data

In these first sets of results scan objects are used both
training and testing. In Sec. V-C, the training sets are formed
entirely of 3D models downloaded from the Internet.

1This minimum number of samples corresponds to the Nyquist-Shannon
sampling criteria applied to the 3D surface forming the object.

truth \inferred car pedestrian tree building trunk pole traffic sign
car 126 4 1 2 1 0 0
pedestrian 3 38 0 1 0 0 5
tree 11 0 34 4 0 2 0
building 4 2 7 0 0 0 0
trunk 1 0 1 0 10 7 13
pole 0 0 0 0 12 28 10
traffic sign 0 3 0 0 9 15 20

TABLE I CONFUSION MATRIX: GLOBAL PCA; ACCURACY = 0.68

1) Global PCA: The Global PCA features described in
Sec. III-A were classified with KNN and provided the results
in Table I. KNN was chosen since it is similar to the template
based approach which classifies by matching a test shape
to the nearest template, closeness being evaluated with the
metrics described in Sec. IV-B.

Table I presents the confusion matrix which corresponds
to an accuracy of 0.68 with a standard deviation of 0.04
across the four-fold cross validation tests. The average com-
putation time per cross-validation test is 0.03 secs for KNN
classification (K=1) and 0.04 secs for the computation of all
features.

The results in Table I correspond to high precision and
recall values for the classes car and pedestrian: 0.94, 0.87
and 0.81, 0.81, respectively. Trees are partially confused
with cars (precision: 0.67, recall: 0.79) due to canopy points
dominating the PCA computation and leading to geometrical
extents similar to cars. Buildings are mis-classified; they are
confused with cars and trees; this is due to the extents of
cars and of tree canopies being similar to the extent of (the
small segmented sections of) buildings in this dataset. The
classes trunk, pole, and traffic sign are not well separated
due to their similar geometrical appearance; the precision
and recall values for these three classes are: trunk (0.31,
0.31), pole (0.56, 0.54), traffic sign (0.43, 0.42). If these three
classes were gathered into one class, the overall accuracy
would increase to 0.86. This set of results will be used as
benchmark since the combination of Global PCA and KNN
represents one of the simplest approaches one can choose
for the classification task at hand.

2) Spin Images: The Spin Image feature described in
Sec. III-B is used to perform classification with a KNN
classifier. At each region of each object in the training data, a
spin image is computed and stored. To classify a region of a
test object, a spin image is computed and compared with all
training spin images, using the spin image similarity metric
in [8]. To provide a final class for the whole object, the most
common estimated class from all the local regions is chosen.
More advanced methods of combining local information exist
[8] [13], where local matches support the alignment of a
global template.

To reduce redundant overlap, spin images were computed
at points 30 cm apart. For the spin image parameters, a 16x16
grid spanning 5 m in width and height was used; this was
found to provide the best results as opposed to smaller grids.
This is due to the sparsity of the Velodyne data compared to
the Riegl data used in previous work [4]. The large image
size provides an almost global descriptor, but computed at
many points and orientations, removing the need for global



(a) buildings, cars (b) pedestrians, poles, traffic signs, trees, trunks (c) Template Set

Fig. 1. (a) and (b), visualisation of the set of labelled 3D segments; one colour corresponds to one class. (c) The set of synthetic 3D templates generated
using the process described in Fig. 2.

truth \inferred car pedestrian tree building trunk pole traffic sign
car 126 0 0 0 0 0 0
pedestrian 31 10 0 0 0 1 1
tree 8 0 42 0 0 0 0
building 2 0 3 10 0 0 0
trunk 6 0 1 0 13 10 1
pole 15 1 0 0 3 22 1
traffic sign 29 2 0 1 0 5 10

TABLE II CONFUSION MATRIX: SPIN IMAGES; ACCURACY = 0.66
truth \inferred car pedestrian tree building trunk pole traffic sign
car 104 1 14 4 1 0 2
pedestrian 2 22 4 0 0 5 11
tree 3 0 46 0 0 0 1
building 5 0 2 8 0 0 0
trunk 0 0 1 2 15 4 9
pole 1 2 1 2 6 17 13
traffic sign 3 1 2 1 12 7 21

TABLE III CONFUSION MATRIX: FPFH; ACCURACY = 0.66

alignment. The confusion matrix is given in Table II for
K=3, which provided the best accuracy of 0.66. All classes
have a high confusion with cars, in particular pedestrians
and traffic signs. Cars may be crowding out an overlapping
feature space, causing failure with KNN classification.

Table II presents the confusion matrix computed on a set
of 26,000 spin images in total. Using a C++ implementation
on a Core2Duo 3Ghz computer, these images took 14 secs
in total to compute, and 242 secs to classify all.

3) FPFH: The FPFH feature was computed similarly, by
selecting spherical regions of 5 m radius to compute the
feature on, with points subsampled to 30 cm spacing. Using
the C++ ROS implementation, it took 23 secs to compute
all features and 68 secs to classify them. An accuracy
of 0.66 was achieved for k=3, with the confusion matrix
shown in Table II. Buildings are often identified as cars,
potentially due to similar surface normal variations. As with
the other features, trunks, poles and traffic signs are difficult
to distinguish between.

4) Classification by Template Alignment: The classifica-
tion accuracies for the four types of alignment developed
in Sec. IV-A are presented in Table IV (the accuracies
standard deviation across the cross validation tests is in-
dicated in parenthesis) and the corresponding computation
times are reported in Table V (including alignment and
symmetric residual computation, Eq. IV-B.2, corresponding
to the comparison to an average of 251 templates; Python
implementation on a 2.6GHz Intel Core processor).

The results in Table IV show that the use of the symmetric
residual (Eq. 3) for shape difference calculation consistently
provides a significant improvement in classification accuracy
(16% on average). Using constrained ICP (i.e. ICP 2D or

ICP 3D ICP 2.5D ICP 2D no ICP
ICP residual 0.51 (0.18) 0.56 (0.13) 0.57 (0.11) x
symmetric residual 0.66 (0.07) 0.72 (0.08) 0.73 (0.07) 0.65 (0.08)

TABLE IV FOUR-FOLD CROSS VALIDATION ACCURACIES

car pedestrian tree building trunk pole traffic sign
ICP 3D 4.0 2.5 8.4 22.2 1.7 2.0 1.7
ICP 2.5D 4.0 3.1 8.5 20.2 2.0 1.8 1.5
ICP 2D 3.6 3.0 8.5 17.6 1.9 1.7 1.7

TABLE V COMPUTATION TIMES (IN MINS)

2.5D) improves on a full ICP solution (ICP 3D) by 7%
while being slightly faster (by 2% on average); see Table V
for computation times. This experimentally confirms that
constraining the ICP alignment using the knowledge of the
location of the ground provides improved classification. ICP
based methods improve by up to 8% on alignment without
ICP (i.e., the means of the point clouds are shifted to zero
without any further alignment), as indicated by the column
“no ICP”.

This first set of results suggests that the classifier providing
the best performance corresponds to the combination ICP
2D/symmetric residual. The corresponding confusion matrix
is detailed in Table VI. This confusion matrix shows that
the classes car, pedestrian and tree are correctly classified;
corresponding precision and recall values: class car (0.96,
0.88), class pedestrian (0.77,0.88), class tree (0.76,0.91). The
class building is confused with cars (precision and recall:
(0.22, 0.32)) due to our data set essentially containing small
sections of building whose extent is similar the one of cars.
The classes trunk, pole, traffic sign are confused due to their
similar geometrical aspect, with precision and recall values
of: class trunk (0.22, 0.32), class pole (0.86,049), class traffic
sign (0.34, 0.55).

Compared to the classification results obtained with the
Global PCA features, the classifier ICP 2D/symmetric resid-
ual provides an improvement of 5% (0.73 against 0.68). This
is due to the Global PCA feature representing the overall
3D dimensional extent of an object point cloud as opposed
to local shape variations, and as a consequence providing a

truth \inferred car pedestrian tree building trunk pole traffic sign
car 129 2 2 1 0 0 0
pedestrian 1 36 0 0 0 0 0
tree 8 0 39 2 2 0 0
building 9 0 2 2 0 0 0
trunk 0 1 0 0 7 17 7
pole 0 1 0 0 2 43 4
traffic sign 0 1 0 0 11 19 16

TABLE VI CONFUSION MATRIX: ICP 2D, SYMMETRIC RESIDUAL;
ACCURACY = 0.73



car pedestrian tree building trunk pole traffic sign
templates 8 16 2 8 3 2 4

TABLE VII NUMBER OF TEMPLATES GENERATED FROM 3D MODELS IN

EACH CLASS; TOTAL = 43.

less fine comparison of the objects’ shape. The spin image
and the FPFH feature provided similar performance with an
accuracy of 0.66 which is 7% lower than the alignment based
classification.
C. 3D Models as Training Data

In this set of experiments, the use of templates generated
from 3D models was investigated. Template generation is
illustrated in Fig. 2. The resulting set of templates is shown in
Fig. 1(c) and the final number of templates used per class is
indicated in Table VII. While eight scans obtained from eight
different angles are generated for each 3D model, not all
these scans are kept in the final template set. For instance in
the case of objects such as trees which are roughly symmetric
with respect to their vertical axis, only one scan is kept. The
selection of the final set of templates from the initial eight
scans per object is at this stage manual. Future work will
investigate the automation of this step.

Fig. 2. Illustration of the generation of object templates from 3D models.
A 3D model is loaded in Blender environment [1], a virtual range sensor
is positioned at eight equally separated yaw angles around the car (left
window), and the corresponding range image is computed (upper right
window; the bottom right window shows the sensor view). The resulting
range images are down-sampled and used as object templates.

1) Global PCA: The classification results provided by
the Global PCA feature are detailed in Table VIII (KNN
classification, K=1, using as training set the set of templates
generated from 3D models; accuracy = 0.61 and the asso-
ciated standard deviation is 0.03). It is 7% lower than the
accuracy obtained with field data as training set.
truth \inferred car pedestrian tree building trunk pole traffic sign
car 124 2 0 8 0 0 0
pedestrian 0 43 0 4 0 0 0
tree 8 0 19 22 7 0 0
building 5 0 0 8 0 0 0
trunk 2 1 0 1 15 10 3
pole 0 1 0 0 27 16 6
traffic sign 0 3 0 0 19 22 3

TABLE VIII CONFUSION MATRIX: GLOBAL PCA WITH 3D MODELS;
ACCURACY = 0.61

2) Spin Images: Spin Images were generated on the 3D
model scans and used as training data in KNN classification
as before. Compared to the case where training was per-
formed with field scans, a much lower accuracy of 0.46 was
obtained (i.e. a decrease of 20%). The confusion matrix in
Table IX indicates problems recalling trunks, poles and traffic
signs, these being mistaken for pedestrians and buildings.

The denser, cleaner web data may generate spin images
which are less similar to those produced from real data.

3) FPFH: Likewise, FPFH features were used in this
experimental setup, with a similarly low accuracy of 0.41,
corresponding to a decrease of 25% with respect to the
case where training was performed with field scans. The
confusion matrix in Table X shows similar problems to the
spin image confusion matrix.
truth \inferred car pedestrian tree building trunk pole traffic sign
car 92 30 0 4 0 0 0
pedestrian 0 42 0 1 0 0 1
tree 4 0 32 14 0 0 0
building 3 0 1 11 0 0 0
trunk 1 18 0 10 0 2 0
pole 1 23 0 14 0 4 0
traffic sign 0 43 0 4 0 0 0

TABLE IX CONFUSION MATRIX: SPIN IMAGES WITH 3D MODELS;
ACCURACY = 0.46

truth \inferred car pedestrian tree building trunk pole traffic sign
car 82 33 4 4 3 0 0
pedestrian 0 42 1 1 0 0 0
tree 0 19 27 1 3 0 0
building 4 0 0 11 0 0 0
trunk 0 10 5 15 1 0 0
pole 1 9 1 27 4 0 0
traffic sign 0 29 1 14 3 0 0

TABLE X CONFUSION MATRIX: FPFH WITH 3D MODELS; ACCURACY

= 0.41
4) Classification by Template Alignment: The same four

test sets used in the previous experiments are re-used here
and classified using the templates shown in Fig. 1(c). The
corresponding classification results are given in Table XI
(the accuracy standard deviation is indicated in parenthesis)
and the computation times in Table XII (including alignment
and symmetric residual computation for the comparison to
43 templates; Python implementation on 2.2GHz Intel Xeon
processors). The confusion matrix for the combination ICP
2D/symmetric residual, which as in the previous experiments
provides the best performance, is given in Table XIII.

The confusion matrix in Table XIII show high performance
for the classes car, pedestrian, tree; precision and recall val-
ues: car (0.93, 095), pedestrian (0.98,0.73), tree (0.75, 0.86).
This is consistent with the results in Table VI generated
with field scans as templates. The performance with respect
to the building class is worse; precision and recall: (0.54,
0.78); it is mostly confused with trees, due to the similar
geometrical extents between the two classes in the datasets.
The building class performed poorly as seen in the results
in Table VI, which points to the fact that a global shape
alignment mechanism may not be appropriate for larger scale
objects (such as buildings). The local methods described
in Sec. II may achieve better performance for those larger

ICP 3D ICP 2.5D ICP 2D no ICP
ICP residual 0.42 (0.07) 0.45 (0.07) 0.44 (0.13) x
symmetric residual 0.61 (0.09) 0.71 (0.06) 0.73 (0.07) 0.61 (0.08)

TABLE XI CLASSIFICATION ACCURACY: 3D MODELS AS TEMPLATES

car pedestrian tree building trunk pole traffic sign
ICP 3D 1.2 1.0 2.7 6.6 0.7 0.7 0.7
ICP 2.5D 0.8 0.7 2.0 4.6 0.5 0.5 0.4
ICP 2D 0.7 0.6 1.8 4.6 0.4 0.5 0.4

TABLE XII COMPUTATION TIMES (IN MINS)



truth \inferred car pedestrian tree building trunk pole traffic sign
car 125 8 1 0 0 0 0
pedestrian 0 46 1 0 0 0 0
tree 4 0 38 2 7 0 0
building 2 0 4 7 0 0 0
trunk 0 4 0 0 12 7 9
pole 0 3 0 0 14 14 19
traffic sign 0 2 0 0 6 8 31

TABLE XIII CONFUSION MATRIX: ICP 2D, SYMMETRIC RESIDUAL, 3D
MODELS AS TEMPLATES; ACCURACY = 0.73.

objects. This will be further investigated in future work. As
in the case of the results in Table VI, the lower performance
with respect to classes trunk, pole and traffic sign is due to
the similar 3D geometrical appearance of these three classes
of objects. When these three classes are gathered into one
class, the overall accuracy increases to 0.90.

The confusion matrices in Table VI and XIII correspond
the same accuracy (0.73) and to similar precision and recall
values. This experimentally shows that the combination ICP
2D/symmetric residual can provide maintained performance
while the training set is entirely replaced by templates
generated from web data.

The results in Table XI show that this is not only the case
for the combination ICP 2D/symmetric residual but also for
the other three ICP variants tested in this study. In addition
to maintaining the performance in terms of accuracy, the
3D model based classifier is significantly faster; as shown
in Table XII. Averaged across the seven classes considered
here, it reduces computation times by 77%2, which is simply
due to the smaller size of the template set: the number of
templates is reduced from 251 to 43, i.e. a reduction of 82%.

This leads to the following more general remarks. Classi-
fication of 3D scans of a given environment can be carried
out without having previously scanned this environment at
all by using scans of 3D models as templates. This can
be done while potentially achieving performance on par
with a classifier trained with actual sensor samples from the
field. A possible use case scenario of the alignment based
classification system would involve the user choosing the
objects to be identified by selecting 3D models found on the
Internet and passing them on to the system.

The combination KNN/Global PCA (K=1) achieves an ac-
curacy of 0.61, while as mentioned above, the 3D alignment
based classifier achieves an accuracy of 0.73. Not considering
the classes trunk, pole and traffic sign, the main difference
between Table VIII and XIII lies in the performance with
respect to the classes tree and building (as indicated in bold
in Table VIII). Due to the number of points in the canopy
of a tree, its extent is dominated by the extent of its canopy,
which makes it closer, in the Global PCA feature space,
to a building. (In our dataset, buildings are only observed
as sections of wall). On the other hand, local variations of
shapes are better captured by the symmetric error metric
(Eq. 3), explaining the improved performance with respect
to the class tree in Table XIII.

2The authors are aware that the computation times are evaluated on two
different machines but assume that the difference between the two machines
is small enough not to affect the overall trend showed by the computation
times.

The alignment based classifier also improved on the Spin
Image and FPFH based classifiers by 27% and 32%, respec-
tively. By applying a global alignment constrained with the
position of the ground, it is less sensitive to local shape
differences and is able to maintain performance given non
field samples as training data.

VI. CONCLUSION

There are two main outcomes to this work. First, the use
of shape alignment techniques for classification in robotics
applications involving sparse 3D sensing. This approach is
able to leverage the representation of the ground in the
segmentation to constrain the alignment of 3D segments to a
2D process. Second, experimental results indicating that field
samples may not be required for the training of 3D classifiers,
in particular when the classifier is implemented as a global
alignment process. This has the potential to change the way
the training of 3D classifiers is approached.
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Abstract—Object detection in complex and cluttered en-
vironments is central to a number of robotic and cognitive
computing tasks. This work presents a generic, scalable and fast
framework for concurrently searching multiple rigid texture-
minimal objects using 2D image edgelet constellations. The
method is also extended to exploit depth information for better
clutter removal. Scalability is achieved by using indexing of a
database of edgelet configurations shared among objects, and
speed efficiency is obtained through the use of fixed paths which
make the search tractable. The technique can handle levels of
clutter of up to 70% of the edge pixels when operating within
a few tens of milliseconds, and can give good detection rates.
By aligning our detection within 3D point clouds, segmentation
and object pose estimation within a cluttered scene is possible.
Results of experiments on the challenging case of multiple

texture-minimal objects demonstrate good performance and
scalability in the presence of partial occlusions and viewpoint
changes.

I. INTRODUCTION
Detecting real objects under clutter has been one key

problem underpinning a series of tasks in cognitive comput-
ing and robotics. One of the key complexities arises after
clutter and object viewpoints are taken into account, and
dealing with these has resulted in a series of techniques using
both 2D and 3D information. A more serious competence is
being able to learn extra objects as the system explores more
about the world, calling for methods that allow for scalability
without a severe penalty on processing time.
Consider the case shown in Figure 1 where multiple

texture-minimal but known objects are to be detected, and
their pose estimated within scenes of a complex cluttered
nature. In some cases, as it is here, it is conceivable that the
areas over which the process has to operate can benefit from
some level of prior knowledge, and therefore background
subtraction could be used. However, this still results in non
perfectly segmented regions, multiple object occlusions and
novel views to be dealt with.
This paper proposes a method that uses constellations of

2D edgelets as the representation. The method is generic,
scalable and fast for concurrently searching for multiple
rigid texture-minimal objects. Scalability is achieved by
using indexing of a database of edgelet configurations shared
among objects, and speed efficiency is obtained through
the use of fixed paths which make the search tractable. By
aligning our 2D edgelet configurations with a corresponding
trained point cloud, object pose estimation within a cluttered
scene is also possible.

















Fig. 1. Using depth background subtraction, three search regions are
considered. Our 2D detector along with an aligned point cloud are compared
to the best-matched training cluster using VFH object descriptor. When the
cluster contains occluded or touching objects, our 2D detector is still able
to detect one or more objects.

We have carried out a number of experiments with our
approach for several key aspects that include detection
performance, framerate expectation, scalability as the object
library increases and clutter handling. We then contrast our
approach to a state-of-the-art 3D object detector (VFH) [14]
where we exemplify how our method can deal with larger
levels of occlusion and clutter handling.

II. DETECTING TEXTURE-MINIMAL OBJECTS
There have been many previous approaches to shape

matching for textureless/texture-minimal rigid objects and so
we focus here only on some directly relevant works. In [9]
chamfer distance matching is improved and made faster by



using 3D distance transforms and directional integral images.
Detection time of 710ms with 300 reference views are re-
ported. This work uses a search strategy where time increases
linearly with more views or with more objects. Such methods
are being used in robotics platforms (e.g. [10]).
In [7], image patches represented by histograms of domi-

nant orientations are matched by efficient bitwise operations.
This enables detection within 80ms of one object using a
rich, 1600 reference views. However, the representation is not
rotation or scale invariant (which can be indeed addressed by
more reference views). Importantly, the complexity increases
with multiple objects, with detection time increasing to
333ms for 3 objects. Wiedemann et al. [17] organise object
views into hierarchies. Exhaustive search over discrete scales
and rotations gives detection times within 300-900ms for
a single object. Separate hierarchies are required for each
object, giving linear increase in complexity for the case of
multiple objects.
There are many techniques which make use of relation-

ships between edge features either within local neighbour-
hoods to create features for classification [2], [11] or amongst
constellations of edgelets located around the contour [3], [4],
[5], [8], [12]. For example, Carmichael et al. [2] train weak
classifiers using neighbourhood features at various radii for
detecting wiry objects like chairs and ladders. In [4], consis-
tent constellations of edge features over categories of objects
are learnt from training views and used for recognition via
exhaustive search over test images. Although these methods
demonstrate impressive detection performance, they are not
designed for the fast operation we aim to achieve, and are
geared towards single object search, with complexity scaling
linearly when multiple objects need to be detected.
Scalability to multiple objects was addressed in earlier

works by the use of indexing and geometric hashing, similar
in form to the library look up that we use in our method.
Examples include early work by Lamdan and Wolfson [18]
and Grimson [6], and later by others [13], [1]. Of particular
note is the work of Beis and Lowe [1]. They use descriptors
to represent the relative position and orientation of groups
of adjacent line segments which are then searched using
a kd-tree for recognising 3-D objects. Our method can
be seen as building on these techniques, incorporating the
discrimination benefits of constellations of edgelets and the
novel use of fixed path configurations to give tractable library
look up. Details of the method are given in the next section.

III. DETECTION USING EDGELET
CONSTELLATIONS

Our detection of a 3D object is based on the object’s
shape when seen from different vantage points around the
viewing sphere. We refer to the edge map as seen from
one point on the viewing sphere as a view of that object.
The views can be retrieved from 2D images around the
viewing sphere or a CAD model. For simplicity, we do not
distinguish between different views and different objects, as
the aim is to jointly detect and localise the object. The next
section explains the chosen descriptor for a constellation of

edgelets extracted from the edge map, and Section III-B
describes how two constellations are matched. Section III-
C then discusses using fixed-paths for extracting similar
constellations, and Section III-D explains the detection in
cluttered environments.

A. Edgelet Constellations
From the view’s 2D image, a set of edgelets {ei} are

extracted where an edgelet is a short straight segment,
represented by its centre point (pos) and orientation (ori).
The edgelets are sampled from straight lines with a maximum
length. A constellation of edgelets is an n-tuple of edgelets
c = (e1, .., en). These can be adjacent, near-by or far
apart (Figure 2). Constellations characterise both local parts
and global shape by encoding the relative orientations and
positions between segments of nearby and distant edges.
The vector vi connects the edgelet ei with the consecutive
edgelet ei+1 in the constellation’s tuple. For an n-tuple, there
are n − 1 vectors and accordingly n − 2 angles θi where
cos(θi) = (vi · vi+1)/(|vi||vi+1|). The base angle θ0 is the
angle between the first edgelet and the first vector. The set
of vectors are normalised to a unit vector and θ0 is used to
align with the vertical direction (Figure 2). These normalised
and aligned vectors define the path connecting the edgelets
in the constellation, and is represented by the angles Θ =
(θ0, .., θn−2). In addition to the path, the constellation is
described by Φ = (φ1, ..,φn−1) and ∆ = (δ1, .., δn−2)
where φi = êi, ei+1 is the relative orientation of consecutive
edgelets, and δi = |vi+1|/|vi| is the relative length of
consecutive vectors. The descriptor f(c) = (Θ,Φ,∆) is
translation-, rotation- and scale-invariant. It encodes the joint
presence of n-edgelets with certain relative orientations and
positions. Notice that the same set of edgelets could result
in a different descriptor when the order of edgelets changes
in the constellation’s tuple. Though this might be perceived
as an additional complexity, this complexity is managed by
using fixed paths as will be shown in the Section III-C.

B. Matching Constellations
Given a test image, a constellation of test edgelets ct =

(t1, .., tn) is represented by the same descriptor f . The test



















Fig. 2. Constellations of edgelets from one view of an electric screwdriver.
The constellations can be local (part-based) or global. The path of the
constellation is the normalised angular vectors connecting the constellation’s
edgelets. The figure shows two constellations of the same path.



constellation ct matches a view constellation cv if ∀i; |θvi −
θti | < Tθ|, |φv

i − φt
i| < Tφ and |δvi − δtj| < Tδ. When

a match is found, an affine transformation H is estimated
from the corresponding edgelets, and the remaining edgelets
from the view ω are mapped to their corresponding positions
and orientations in the test image. An affine homography
can be estimated for any constellation for which |c| ≥ 4
(considering positions only and assuming the edgelets are
not co-linear). Iterative closest edgelet (ICE) can then be
used to refine the alignment where the closest edgelet to the
transformed ei using the homography H is τ(ei, H), i.e.

τ (ei,H) =

{

argmintj
d(H(ei), tj) d(H(ei), tj) < β

null otherwise
(1)

where a distance measure between two edgelets d(ei, ej)
assesses the similarity in orientation (using L-1 norm) and
spatial closeness (using L-2 norm) [15]

d(ei, ej) = |ei.pos− ej .pos|2 + λ|ei.ori − ej.ori| (2)

In Equation 2, λ weights the orientation term. The cost
of the detection E, using the refined homography H ′ after
ICE convergence, is the scaled sum of the distance measures
between corresponding edgelets.

E(ω, H
′) =

∑

i

min(d(H′(ei), τ(ei, H
′)), β)

|ω|

|{τ(ei, H
′)}|

|{ei; τ(ei, H′) "= null}|
(3)

Here the distance measures are summed along with a
penalty measure for missing correspondences β, and the
scale is estimated by the number of edgelets in the test image
to the number they correspond to from view edgelets. An
object is then detected at edges {τ(ei, H ′)} if E(ω, H ′) < α.

C. Edgelet Constellations over Fixed Paths
An exponential number of constellations is present in each

training and test image. To manage the matching complexity,
we adopt a fixed-path approach. All constellations over the
same path Θk within a tolerance ε in the angles, and starting
from each edgelet, are found in each view (see Figure 3).
This is applied to all views and all objects. For a given
Θk, the unique descriptor fΘk(ci) = (Φ,∆) distinguishes
different constellations with the same path. This forms an
indexed library, where the hash key is the descriptor fΘk of





















Fig. 3. For a given path (upper left), two constellations from the same
starting edgelet, and one from a different starting edgelet are shown (left).
All constellations found with ε = 0.01, 0.015, 0.02 are also shown.

size |(Φ,∆)| = 2n − 3, and the value is the corresponding
view and the n-sized tuple of edgelets that generated the
descriptor. Given the training objects, the search is for paths
that can find enough constellations in the different views.
We randomly select paths and rank them by the number of
constellations found in all training views. In the experiments
next, we use up to 6 paths from 100 randomly chosen path
angles. We set the number of edgelets in each constellation
to 5 based on preliminary tests. Shorter tuples have a
higher chance of hallucinating detections while longer tuples
decrease the recall. By keeping a comprehensive library of
all constellations of path Θk, it is sufficient to extract one
constellation of the same path from the object in the test
image to produce a candidate detection that is verified using
the rest of the view edgelets. A separate library is built for
each chosen fixed path, and a quantised hash-table is created
so a descriptor would directly lead to candidate matches.

D. Cluttered Environments

For each fixed-pathΘk, all pairs of edgelets with a relative
position that satisfies the base angle θ0 in Θk (within the
tolerance ε) are highlighted. A pair is chosen at random, and
the search for edgelets that complete the fixed-path is carried
out (Figure 4). This search is speeded up by pre-calculating
relative measurements between all pairs of edgelets. As
the tuple is appended, the descriptor fΘk is incrementally
calculated and compared to the corresponding library. When
the partial descriptor cannot match any descriptor in the
library, the search is prematurely stopped, and another pair
is pursued. To speed up detection only one constellation
is pursued from each starting pair of edgelets. Given that
the library contains a comprehensive list of all possible
view constellations of path Θk, the risk of skipping a pair
before pursuing all the constellations starting with that pair
is acceptable, and proves sufficient during the experiments.
When a test constellation matches a view constellation with
an error E(ω, H ′) < α (Equation 3), the test edgelets
{τ(ei, H ′)} are explained edgelets based on this detection.
These edgelets are removed from any further searches. If
all pairs are tested, another fixed path Θ2 is used. For k
fixed paths, the worst case is O(k · p2). A further modality
of handling clutter exists when some prior scene knowledge
is available where a depth sensor is used as explained in
Section IV-D.






























Fig. 4. For a pair of edgelets (ei, ej) that satisfy the base angle θ0 (a),
an edgelet ek that completes the path is sought. When several edgelets are
found (b), one is selected and the path is completed (c).



Box,72,24

Plier,111,24

Wood,73,21

Driver,84,10

Wrench,107,11

Stapler,79,23

E-driver,53,8

Charger,46,10

Hammer,101,12

Block,60,6

Fig. 5. One view from each of the 10 textureless objects in the dataset
with (name, # of views, # of occurrences in test images)

IV. EXPERIMENTS AND RESULTS
We have tested the method on a dataset consisting of 10

real tools and components. Training images were coarsely
sampled around the viewing hemisphere (Figure 5) To extract
edgelets, we use the line-segment detector in [16]. The
edgelet length is set to 10 pixels and ε is set to 0.02 (see
Figure 3).
Note that due to the initial random order of pairs of test

edgelets, and pursuing one path from each pair, detection
performance can vary between runs. This is illustrated in
Figure 6 which shows the results from 5 runs on a single
image along with the edge map reflecting the complexity of
the search. In the figure, the block was detected in 4 out of
5 runs while the stapler was detected in 3 out of 5.

A. Detection performance
We first compare the detection performance for the dif-

ferent tools (Figure 7), discarding the false-negative effect
from the greedy removal of edgelets. This is evaluated using
100 ground-truthed test images with one to four objects per
image. The PASCAL overlap criterion is used to evaluate the
detections. The figure shows very low recall for the driver
(yellow) and high false positive rate for the wood (red). This
is because the wood’s rectangular shape can often match
other rectangular objects in the background. The e-driver,
plier, wrench and stapler achieve the best detection results
due to their distinguished shape. The box and the block are
ambiguous which increased their FPPI.

B. Expected framerate
We ran the detector at multiple frames per second on a 300

frames video sequence containing 6 out of our 10 objects
with surrounding clutter. In this case each frame is analysed

Fig. 6. Five runs on a single image (limited to 200ms). False negatives
are caused by not selecting a constellation that belongs to the object.

Fig. 7. FPPI versus Detection rate for the tools dataset

from scratch, without considering the detections from pre-
vious frames. Figure 8 plots the recall and precision as the
frame rate increases from 1 to 17fps. This is run using a non-
optimised C code on a standard laptop machine (2.53Hz,
6GB DDR3 SDRAM). Detection can achieve above 50%
recall at about 7fps while searching for the 10 textureless
objects. The same performance can be achieved at 11fps
when searching for a single object.
For a system that runs on a stream of live images, it is

affordable if an object is missed in one frame as long as
it can be detected in a few subsequent frames. Figure 9
reports a histogram of the number of frames between correct
detections when running at 5fps. For each video, the object
to be detected was present in all frames, either in full-view
or partially occluded. This was tested for all the 10 objects,
and an average of 65% of detections were found within
3 processed-frames from a previous correct detection. This
goes up to 86% for the plier and drops to 33% for the driver.

C. Scalability
For the detector to be considered scalable, we expect that

as the number of objects and views increases, the detection
time scales gracefully. A single non-cluttered test image
is selected for each object, and the test focuses on how
the performance is affected as the library size increases.
Figure 10 plots the average (and standard deviation) detection
time from 100 runs compared to the library size as the
number of objects in the library increases from 1 to 10. The
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Fig. 8. As the maximum time limit decreases, the recall and precisions
are plotted for a cluttered multi-object sequence.
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Fig. 9. Histogram of missed number of frames between subsequent
detections for five objects, along with frames showing sample detections
from the video sequences.

increase in detection time results from comparing to a larger
number of descriptors within each indexed bin, as well as
assessing ambiguous matches. From the figure, the driver
has a nearly linear average time, while the increase in time
for detecting the wrench is 2.7x as the library size increases
by 10x.

D. Clutter handling and using a depth sensor
The other factor affecting the method’s performance is

the increase in clutter. Figure 11 is plotted from three
video sequences, each starting with the object alone on the
desktop then more objects are added. The detector is run
at 5fps and the figure shows that the approach can tolerate
clutter increased up to 70% of the edge pixels. For more
complex environments with a higher percentage of clutter,
other techniques can be used to retrieve search regions within
which objects of interest can be found. One method to get
such search regions is to use depth background subtraction.
During training, the point cloud, as retrieved from an RGB-
D sensor, is saved as background prior to the introduction of
objects. At run-time, the segmented point cloud is used to
highlight bounding boxes containing interesting objects. All
edges within the bounding box are considered for possible
edgelet constellations based on the fixed paths. In our tests
the background segmentation is not perfect due to small
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detection time increases by 1.7x-2.7x for 3 objects.
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Fig. 11. The average detection time as the percentage of clutter increases
for different objects. Sample images from the ‘wrench’ sequence are shown.

changes in the scene and also addition of non-class clutter
objects. Figure 12 shows examples of detections in complex
environments using depth background subtraction.
The 2D detections can also be used to align the object

within the cloud point. During training, an RGB-D sensor
is used to combine each view with a segmented point
cloud (Figure 13). After the object is detected, the in-plane
homography is used to rotate the corresponding model’s 3D
point cloud around its centre of mass. The model point cloud
is then overlaid on the scene’s point cloud with the depth
estimated from that of matched scene’s points.
We compare this with a 3D object descriptor; the view-

point feature histogram (VFH) [14]. This descriptor is de-
pendant on obtaining a separate cluster of points containing
the object. For each cluster, a 308-D descriptor is calculated
and compared to a previously calculated list of descriptors
for all training models from various views. The histogram in-
tersection distance is used to compute the mismatch between
the descriptors, and the returned point cloud is that of the

Fig. 12. Detection in complex scenes using depth background subtraction.
Bounding boxes show a search region and all edges within the region are
considered for the detection. Yellow indicates a correct detection while red
indicates a false positive.
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Fig. 13. Using the RGB-D sensor, views are sampled along the hemisphere.
The 2D image (above) and the accompanying point cloud segmented from
the background (bottom) are shown for one view of three objects.

lowest mismatch. The clustering - and thus the descriptor -
is easily corrupted by the presence of occluding or touching
objects. Figure 14 compares our detector to the retrieved
best-matched model using VFH descriptors on 3 clusters.
The VFH descriptors were calculated using the available
implementation within Point Cloud Library (PCL). While
VFH is able to correctly retrieve the object in the case of
the occluded screwdriver, it is confused in the two other
cases. Also in the first correctly retrieved point cloud, the
mismatch score doubles as the point cloud is occluded by
another object. Similar results are shown in Figure 1.

V. CONCLUSION AND FUTURE WORK
We have presented a framework for scalable detection

of objects using constellations of edgelets. The constel-
lations are tractable using fixed paths, and are described
using translation-, scale- and rotation-invariant descriptors.
By using edgelet constellations, the method is more robust
to occlusions and camouflaged edges. The method was
tested on a dataset of textureless real tools and objects. The
technique allows concurrent detection of multiple objects
each with views around the viewing sphere. A 50% chance
of detection under clutter can be achieved within 140ms.
The system can handle up to 70% visual clutter and scales
gracefully as the number of objects increases.

(a) (b) (c) (d)
Fig. 14. Our detections (a) can correctly localise the model’s point cloud
(b) even when the clusters (c) contain occluding or touching objects. The
best matched model using VFH descriptors (d) fails to correctly detect the
object in two out of the three cases.

As the scene’s complexity increases, bounding boxes rep-
resenting search regions are used to search for objects of
interest. In this work, depth background subtraction is used
for retrieving such search regions. Other approaches can be
alternatively used, like colour or point cloud priors, and these
are left for future work.
As opposed to some current 3D object descriptors, this

method does not require object clusters to be cleanly seg-
mented. When the object is occluded or is touching neigh-
bouring objects, the path-based detector can still detect and
align the model’s point cloud successfully.
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Efficient Semantic mapping of Man-made environments using Kinect

Sven Olufs and Markus Vincze

Abstract— We propose a novel approach for efficient seman-
tic mapping of Manhattan-like structure i.e. the frequently
observed dominance of three mutually orthogonal vanishing
directions in man-made environments. First, we estimate the
Manhattan-like structure by using an MSAC variant that
estimates the Manhattan system directly from the 3D data.
In contrast to other methods we use only the normal vectors
of each voxel rather than estimating it indirectly using plane
estimation. The mapping is done using a geometric constrained
ICP using a-priori knowledge on the estimated Manhattan
system. The ICP registers only points within the same geometry
to each other. We show that the geometric constrained ICP
generate maps with a significant smaller angular drift than an
unconstrained one. Octrees are used for map representation in
combination with kd-Trees for ICP. We show the robustness of
our Manhattan-estimation using real world data. In this paper
we demonstrate our approach using a Microsoft Kinect, while
the approach will work with all kind of 2.5D sensors.

I. INTRODUCTION

The domain of service robotics has become an important
and fast growing market in the last decade. While service
robotics has become more and more common in the industry
domain they are still rare in the home robotics domain.
Recent demographic developments in Europe and Japan
have shown that there is a need for service robotics in
everybody’s home due to the elderly society phenomenon.
Such robots can be used for the remote surveillance of
elderly in the case of an emergency or to help them in their
daily life. With the home robotics domain we have usually
a relative small area (e.g. 100m2 of the owners flat), clutter
and visually weakly structured environments.
From the robotics point of view one of the key problems is
to estimate semantics from the visually weakly structured
environments. The semantics of the room structure is
required for efficient user interaction, mapping and
navigation and object recognition. Semantic information
such as wall, ground, table surface, or door assist in all
these tasks. We start from the observation that the structure
of many rooms looks the same, e.g. they have a rectangular
shape, due to the limited sensing capabilities of todays
robotics.
To cope with these environments, the use of 2.5D sensors
has become quite popular in the last decade, for instance the
use of tilting 3D laser scanners or the Swissranger SR-3000.
With the recent release of Microsoft’s Kinect structured
light sensor, the popularity of 2.5D sensors gained a boost.
The Kinect sensor is suitable for the task for two reasons:

Sven Olufs (olufs@ieee.org) and Markus Vincze
(vincze@acin.tuwien.ac.at) are with the Vienna University of Technology,
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Fig. 1. Concept of semantic labels for Manhattan-like structures, using
figure 2(a) as sample.

The sensors are cheaper than laser scanners and its offers
a depth image at frame rate. The challenge with data from
2.5D data is to cope with noise and uncertainty due to the
nature of the sensors. For instance, the quality of 2.5D data
from the Kinect depends on the reflection properties of
the observed surface and the angle of incidence (assuming
Lambert surfaces). Since the sensor uses structured light in
the infrared spectrum, the sensor is sensitive to sunlight.

Many approaches for room structure estimation use the
concept of occupancy grids [1] or its extensions to 3D, e.g.
[2]: The grid contains information on a primitive level if a
grid cell corresponds to a wall or ground. At this level, there
is no semantic information if certain parts of grid cells with
the label ”wall” are aligned to other ”walls” or if the ground
is parallel to other structures, e.g. a table top. This kind of
constraints is referred to in the computer vision literature as
the so-called Manhattan world assumption; The frequently
observed dominance of three mutually orthogonal vanishing
directions in man-made environments [3], [4], [5], [6]. Many
indoor environments can be considered as Manhattan-like
since most walls of a room are aligned orthogonally to the
ground or quasi Manhattan-like if the walls are not aligned
orthogonally to each other. In many cases, furniture is also
aligned Manhattan-like to its environment, e.g. a couch or
cupboard can be aligned with a wall. Here we emphasize
that it is not necessary that the furniture is aligned to all
three major axes i.e. even if a table is not aligned to a wall
its table surface is usually parallel to the ground.



The use of the Manhattan world assumption is useful for
home robotics for two reasons, see figure 1: First we can
distinguish between Manhattan-like and non Manhattan-like
structures. For instance Manhattan-like structures is useful
for mapping while the non Manhattan-like structures can be
used for object segmentation and classification. The second
reason is we use it as description for potential places for
objects. For instance objects useful for grasping are usually
placed on a vertical structures.
The novelty of the paper is twofold: First an MSAC variant
that directly estimates an Manhattan-system based on normal
vectors. In this paper we use it to detect the dominant
Manhattan system in the image. The second contribution
is a geometric constrained ICP method to build maps from
Manhattan-like structure if the Manhattan system is known.
The method is efficient regarding computational time and
memory usage with a complexity of O(nlogn).

In this paper, we propose a novel approach for the robust
room structure segmentation using Manhattan world
assumption and geometric constrained ICP mapping. The
approach estimates first the Manhattan system within the
data using the well known RANSAC approach. The main
difference to other approaches is that we estimate directly
an valid Manhattan like system rather than indirect using
individual planes. As a result we always obtain a valid
Manhattan-system as model. The mapping using ICP is
based on exploiting the geometric constrains within the
Manhattan system. In a first step we segment the 2.5D
according to its membership of the three axis of the
Manhattan system or if it does not belong to it resulting in
four labels. The idea is that we only register data to each
other with the same label, e.g. ”X Axis” to ”X Axis” voxels,
while we use only one ICP than four individual ones. In
this paper we demonstrate our approach using a Microsoft
Kinect, while the approach will work with all kind of 2.5D
sensors.

The paper is organized as follows: After discussing the state
of the art, we describe in section III the proposed approach in
two major parts: The first part describes (III-A to III-B) the
estimation of the Manhattan system within the 2.5D data. The
second part (III-C) presents an geometric constrained ICP for
mapping. Next we present experimental results. Finally, we
give the conclusion in section V.

II. RELATED WORK

Mapping is a very well understood area in the field of
robotics. A common approach is using registration methods
to align point clouds to each other using either Iterative
Closest Point [7], Hough Transformation [8], expectation
maximization [9], RANSAC [10] or split and merge [11]
techniques. Semantics can be obtained from the dataset
1) in a post processing step of the aligned data or 2)
using segmentation techniques on the current dataset before
registration. Rusu et al. [2] obtains semantics from a octree
oversegmetion in a post processing for safe navigation on

(a) RGB Image (b) Raw Depth Image (c) Depth Diffusion

Fig. 2. Processing of depth data for normal vector estimation.

outside terrain. Triebel et al [9] use hierarchical expectation
maximization method to extract planes as semantics from 3D
laser range scans. Rusu et al. [12] extended the idea by using
parametric descriptors for object primitives using geometric
primitives. The primitives are obtained from the point cloud
in a kitchen like environment. The semantics are given by
the combination of objects within the scene. [10] Gallo et al.
uses an hybrid approach of segmentation and post processing.
First the planes are estimated in 3D using RANSAC, but uses
an additional connected component analysis in 2D to extract
coherent planes in the data i.e. coherent in 2D.
Semantics can also be obtained in a pre-processing step
before registration of the point clouds. Methods based on
segmentation uses either a 2.5D grid of the data or rely on
split-and-merge plane strategies based on local homography
[11] or by clustering normal vectors [13]. Murarka et al
[14] use a parametric plane fit on segmented disparity
patches to obtain the observer orientation. The segmentation
is based on colour and local homogeneity in the image and
on exhaustive graph search. The plane fit is merged to a
plane hypothesis using graph cuts and energy minimization
[3]. The use of the Manhattan-World assumption is quite
popular in the computer vision literature, for instance, in
the use of multi view-reconstruction [4], [5], [15]. Gallup et
al. [4] use Manhattan-World assumption as prior for plane
sweeping i.e. using only orthogonal planes. Furukawa et
al. [15] use a similar approach for reconstructing piecewise
planar patches and Markov random field formulation for
exact planes. Sinha et al. [5] use a similar method, but with a
less strict model. Gupta et al. [6] extend the idea by including
not a-priory known kinematics on image structure. Another
idea is used by Flint et al. [16] by dividing the Manhattan
World assumption into local sub classes.

III. OUR APPROACH
Our approach consists of three steps: First we estimate the
dominant Manhattan-room configuration i.e. the roll, pitch
and yaw of the observer relative to the Manhattan system.
We use normal vectors for each pixel in the 2.5D grid and
assign every vector the most plausible Manhattan geometry.
As next we remove the rotation of the three axis from the
data and segment it according to their geometry membership.
The map is generated using standard ICP method while only
data within the same geometric are registered to each other.

A. Normal vector estimation
The use of normal vectors has become a defacto standard
feature in 3D sensing over the last decades [17], [18], [13].



The usual approach is to calculate a normal vector for each
corresponding voxel in the data set. Depending on the type
of sensor this task can be computationally demanding, for
instance if the data is not aligned in a grid-like structure
or if the data is noisy. In the case of 2.5D data, the data is
a aligned in an image-like grid structure which enables us
to calculate the normal vector in O(logn) runtime. We use
a variant of Stefan Holzer method from the Point Cloud
Library [18] to calculate normal vectors based on integral
images i.e. the 2.5D depth is used as image. The use of
integral images allows to calculate an average sum of any
rectangular size area with O(1). We extend the method by
applying a depth interpolation on missing data voxels in the
2.5D grid, see [19] for details and figure 2(c). Depending
on the type of sensor such holes can appear in dark or far
surfaces or caused by the different viewpoint of the depth
and RGB camera. Note that we use only the interpolated
voxels for smooth normal vector estimation of the true
(not missing) voxels, we do not use them elsewhere in the
processing. Another way to calculate normal vectors in an
efficient way is proposed by Badino et al. [17] using a
constrained least square fit.

Figure 3 shows a comparison of our normal vector esti-
mation and the standard kd-Tree approach using the Point
Cloud Library. One can see that the integral image method
shows adequate results within planes in respect to normal
vectors. The ”noise” within these areas is produced by the
limited precision of 32bit float values in the integral image.
The corners show artifacts because the estimation is done on
a dynamic 2D window in the image and not in the 3D state
space like with kd-Trees. Another effect is that the integral
image method shows a margin around the outer boundaries.
This is also caused by the used implementation of the normal
vector estimation using integral images and the use of a 2D
window (PCL Version 0.9.0).

B. Manhattan System Estimation

We propose an alternative approach using a variant of the
well known Random Sample Consensus (RANSAC) tech-
niques. RANSAC based methods obtain their estimate by
randomly selecting coefficients from a given dataset to a
known model. The estimation is iterative, in each iteration

(a) Integral Image (PCL), 100ms (b) kd-Trees 20cm (PCL), 4500ms

Fig. 3. Comparison of different normal vector estimations methods on
2.5D data. While the integral Image method is 45x faster than the standard
kd-Tree method, it shows quite some artifacts on depth edges

(a) Normal Vectors (b) Image

Fig. 4. Estimated Manhattan System of a sample scene. The colors indicate
the membership to one of the three major axis

the number of inlier is counted. After a fixed number of
iterations, the model with the most inlier is used as estimate.
The idea is to describe the Manhattan-world as three normal
vectors !N1, !N2, !N3 one for each axis. We use the normal
vectors to express the orientation to an axis i.e. the vector
is virtually aimed in both directions of the axis. The normal
vector of a voxel counts as an inlier, if the angle to one of the
three axis normal vectors is within a certain threshold e.g. 5
degrees. The resulting angle is always between 0-90 degrees,
since an axis does not have an orientation like a normal
vector. The model is given as follows: Let !A, !B1, !B2 ∈ V
randomly selected voxels of the 2.5D grid and !a,!b1,!b2 its
associated normal vectors. The three vectors are calculated
with:

!N1 = !a
!N2 = !B2 + !a((!B1 − !B2) · !a) − !B1
!N3 = !N1 × !N2

The entire concept is depicted in figure 5: The overall
assumption is that A is a point on a Manhattan-like
structure for instance on the ”Z-Plane”. B1 and B2 are
both on corresponding different Manhattan-like structure for
instance the ”Y-Plane” or ”X-Plane”. Since the Manhattan
system is redundant to one axis, we only need to calculate
two axes e.g. in figure 5 the x axis is redundant. The first
vector is given by the normal vector of A itself. The second
vector is obtained by shifting the first vector to B1 and
using B2 as ”roll” component. The third vector is the cross
product of both previous vectors. This approach generates
always a valid Manhattan system using three vectors. Note
that we do not check in advance if e.g. B1 and B2 are on the
same plane, since we have no prior information about planes
in the 2.5D data at this step. Such ”miss configurations”
usually generate a Manhattan system with a significant less
inliers than a ”proper configuration” like in figure 5.

In practice we use MSAC [20] for estimation, an M-
Estimator RANSAC variant: Instead of counting inlier within
a specific threshold, we accumulate the error of the model
from the original data. The MSAC uses a threshold to specify
a maximum error that a voxel belong to the model. Since we
assume that we have one dominant Manhattan system we
adapt this approach. The idea is to use an additional fixed
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Fig. 5. Estimating the Manhattan configuration using three normal vectors
and RANSAC methods: A is used as seed for the Manhattan system for the
first axis. B1,B2 are used to calculate the ”roll” of the second axis and the
third axis is redundant. Here we assume that A and B1,B2 do not share the
same orientation plane of the Manhattan system, but that B1,B2 does.

error if an error exceeds the maximum error. In practice the
additional fixed error is significant greater than the measured
maximum error according to the threshold. This will raise the
probability that the MASC will favor the dominant system
rather than a valid random one as long the dominant one
is also the largest one in the data. In our setup we use 5
degrees as threshold and 10 times as max constant error.
The conversion of the three normal vectors to roll, pitch and
yaw is straightforward. Figure 4 shows an correct estimated
Manhattan system.

C. Geometric Constratined ICP
In a first step we remove the rotation of the three major
axis from the data i.e. roll, pitch, yaw according to the
estimated Manhattan system. Next we segment all voxels
according to their membership to a Manhattan geometry,
see figure 1. We use for labels i.e. ”X Axis”, ”Y Axis”,
”Z Axis” and ”None” membership. The membership to an
axis is estimated using the normal vectors of each point. If
a normal vector has almost the same orientation to a major
axis within a specific threshold its assigned to that axis. We
use a threshold of 5 degree, all normal vectors that have no
membership to an axis are assigned with ”None”.

For the generation of the map we use an modified version
of the well known iterative closed Point ICP algorithm. In
a nutshell ICP consists of three steps to register a set of
samples to a model. First the samples are associated to the
model by the nearest neighbor criteria. Then estimate the
transformation of the points to the model and finally the
input points are transformed. The entire algorithm is repeated
to a fixed number of iterations or the error converges. In
our variant we associate only samples to the models with
the same label. We estimate separate the transformation for
translative and rotative part. The translative part is given
using Least squares while the rotation is obtained using the
Singular Value Decomposition approach. We also estimate
the rotative transformation to compensate the drift that is
caused by the inverse Manhattan transformation of the first

step here. Usually the angular drift is within 1 degree.
One key problem with ICP is initialization of the samples
to the model or in our case the map. Since mapping is a
continuous process we use a the last transformation of the
previous step for initialization for the next one. We do not
use a motion model as used in many visual slam or visual
odometry approaches.
The map is represented octrees with a fixed minimum
resolution which is efficient regarding memory usage and
computational power. Since the runtime of ICP depends on
the number of input and map (or model) points or voxels its
feasible to limit the size of the map instead of representing
them in a kd-Tree like structure [7]. In practice we use the
ICP with max 20 iterations and a octreemap with a resolution
of 2.5cm. Due to we remove the rotation from the 2.5d data,
ICP converges within 5-7 iterations in many cases. We use
the octree map implementation proposed by Wurm et al. [21].

IV. EXPERIMENTAL RESULTS

For our experiments we use a non-holonomic mobile robot
manufactured by Bluebotics with a first generation Microsoft
Kinect Camera mounted in 120 cm height to the ground.
Since the Kinect sensor has an inbuilt servo motor to tilt the
camera, we use it to adjust the tilt dynamically according to
the traveling speed of the robot. The tilt angle is adjusted
such that the Kinect looks at the region the robot will be
in 2 s according to the wheel speed. The average angle of
the Kinect while moving is 10 degree, if the robot stands
still or moves very slowly the camera has an average tilt of
35 degree. We use XSens MTi IMU for ground truth of roll
and pitch of the Kinect i.e. its physically attached. Yaw for
ground truth is obtained by hand for each frame rather than
using the robot self-localization.
We choose a typical domestic environment (see fig. 2(a))
for data acquisition using the Kinect. The data of all
sensors is recorded at 25 frames per second. We recorded a
representative set of seven tours through our lab with a total
length of approximately 180 meters. Three tours have a
Manhattan like environment while the other ones represent
a quasi Manhattan like environment. The environments
were not cleaned before acquisition to have a more realistic
environments. Since our lab is used for robotics it contains
of many boxes which are randomly scattered in the lab i.e.
they are not aligned to the dominant Manhattan system.

Figure 8 shows the average angle error of the estimation
of dominant Manhattan system using a fixed number of
iteration for RANSAC, MASC and our MSAC variant for
all tours. All methods use the same normal vectors as prior
for estimation. RANSAC needs here the most iterations
before till error convergence. Our MSAC variant converges
at 512 iterations in contrast to the normal MSAC. It is
able to find the dominant Manhattan system in the case
of multiple local Manhattan systems within the data i.e.
a box that is not aligned with a wall (on purpose). The
average error after 512 iterations is 0.77 degree for MSAC,
0.12 degree for our MSAC approach and 1.25 degree for



(a) standard ICP (PCL)

(b) standard ICP (PCL) with removed Roll, Pitch and Yaw

(c) our ICP variant

Fig. 6. Generated map after 30s (Frame 193) from figure 7 with 5cm plot
cell size for better visibility, we use 2.5cm for processing. The unconstrained
ICP shows an angular drift. Best Viewed in Color, height and geometric
membership is shown in color-coding

RANSAC. The traditional MSAC converges on the same
level as our MSAC approach after 786 iterations, RANSAC
after 1536. In general we consider an average error of 2
degree as reasonable for the segmentation which is reached
after 192 iterations for our MSAC variant 256 iterations for
the traditional one and 384 for RANSAC.
The generated map of a sample tour (after 32m) is shown in
figure 6 using ICP with and without geometric constraints.
The ICP without the geometric constrains generates
maps with the typical angular drift. This is typical for a
non-holonomic robots and sensors with a relative short
sensing range. Holz et al. [22] states that the angular drift
using ICP can be reduced with a large and wide field of
view i.e. 360 degree sensing up to 80m. The ICP with
geometric constraints shows almost rectangular maps since
the Manhattan geometry estimation reduces the angular drift

significant. One can see that non Manhattan-like structures
are also mapped and segmented out.

The major drawback of our method the segmentation is that
it depends on a proper detected Manhattan configuration.
While its possible to detect an non-existing Manhattan
system, it can not be always guaranteed that room structure
is fully orthogonally to each other. The use of a relaxed
Manhattan constrain is one possible solution i.e. that the
major axis are almost 90 degree orthogonally to each other.
Another issue that we encountered are open doors, or
slightly open doors. Since we estimate only the dominant
Manhattan structure right now, doors are not yet segmented
as long they are not closed or aligned to one other major
axis. Depending on the visible amount of the door in the
data, e.g. more than 20 percent, the door will be segmented
into small coherent areas.
Another drawback are artifacts in the map due to wrong
classified areas. This is due to the use of normal vectors
for segment ion. For instance a wall in a distance of 5m
can produce bogus normal vectors due to limitations of the
depth sensor resolution, see figure 3, while a wall in 2m
shows reasonable normal vectors. Such artifacts does not
influence the performance of the Geometric constrained ICP
since to we use independent maps for each geometry. If the
5m away wall is closer in the image it will be correctly
segmented. The artifacts can be removed from the map,
since they are usually not cohered areas in the map. One
issue are round objects. They seem to be aligned with to at
least two geometries according to their normal vectors. Here
the use of a local geometry analysis can reject this kind of
artifacts. Another issue are corners and edges, see figure
4(b). They are usually marked with ”No Membership”,
because we use normal vectors from an integral image.

Our code runs on 2.2GHz MacPro Book dual core with
optimized multi threading code. Overall we achieve 1.7
frames per second with our system. The bottleneck of our
approach is the detection of the Manhattan geometry with
305ms for 192 iterations using our MSAC variant. The
registration using ICP for all data points of the Kinect needs

(a) Frame No 1 (b) Frame No 60 (c) Frame No 90

(d) Frame No 130 (e) Frame No 181 (f) Frame No 193

Fig. 7. Kinect Ego View of the Sample Tour
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Fig. 8. Average Manhattan System estimation for a limited number of
iterations on the entire data set.

250ms. We use an octree map with a resolution of 2.5cm.
The update of the octree map is with 5ms relative fast.

V. CONCULSION

In this paper we presented a novel robust method for esti-
mation of the dominant Manhattan system and a geometric
constrained ICP for mapping. The proper estimation depends
on the amount of visible structure of the Manhattan system
within the 2.5D data. As long structure of two axis is visible a
robust estimation is possible. As long as Manhattan structure
of one axis is clearly visible in the image, its enough that
the second axis is partially visible within the data i.e. at least
1 percent of the data. The use of normal vectors is efficient
for Manhattan system estimation, but can be computational
expensive. The use of integral image style normal vector
estimation is a good trade off of runtime and quality and
allows to use the entire data set rather than a sub sampled
set. The use of a geometric constrained ICP is efficient
in Manhattan-like environments regards runtime and map
quality. The use of octrees for map representation is a good
trade off in runtime and precision. The biggest advantage
of this approach is that runtime scales almost constant over
time and is memory efficient too.
Experiments have shown that many home and office environ-
ments contains Manhattan like structure with all three axis.
We want to emphasize that the minimal Manhattan system
for our approach are two axis, which is very likely in the
most indoor environments. That is usually the ground and a
random wall which will be aligned orthogonal in most indoor
cases.
Our next steps is to relax the Manhattan constrains and to
estimate multiple Manhattan configurations within one view
and to use visual odometry.
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Abstract    Autonomous   development   of   sensorimotor  
coordination   enables   a   robot   to   adapt   and   change   its   action  
choices  to  interact  with  the  world  throughout  its  lifetime.  The  
Experience   Network   is   a   structure   that   rapidly   learns  
coordination   between   visual   and   haptic   inputs   and   motor  
action.   This   paper   presents   methods   which   handle   the   high  
dimensionality  of  the  network  state-space  which  occurs  due  to  
the   simultaneous   detection   of   multiple   sensory   features.   The  
methods   provide   no   significant   increase   in   the   complexity   of  
the  underlying  representations  and  also  allow  emergent,  task-
specific,   semantic   information   to   inform   action   selection.  
Experimental   results   show   rapid   learning   in   a   real   robot,  
beginning  with  no   sensorimotor  mappings,   to  a  mobile   robot  
capable  of  wall  avoidance  and  target  acquisition.  

I.   INTRODUCTION  
HE   semantics   of   an   object   stem   from   its   purpose   or  
use.  While  high-level  object  semantics  can  come  from  

multiple  domains,  initial  understanding  of  object  use  arises  
from  the  action-outcome  relationships  which  occur  through  
interaction.  Given  a  task,  it  is  these  semantics  that  enable  a  
robot   to   select   an   object   from   those   available   in   the  
environment  with  which  to  interact.    
   A   robot s   sensorimotor   coordination   (SMC)   links  
perception,   action   and   outcome   [1].   The   basic   object  
semantics  are  therefore  grounded  in  the  SMC  system  of  the  
robot.   If  a   robot   is   to  autonomously  acquire  understanding  
of   object   semantics   over   its   lifetime   it   must   be   able   to  
autonomously  develop  its  SMC.      
   Object  semantics  become  important  when  acting  in  an  

environment   in   which   multiple   objects   are   present.  
However,   in   such   environments,   the   high   dimensionality  
which  occurs  due  to  combinations  of  different  objects  being  
simultaneously  detected  in  the  sensory  field  makes  the  task  
of  developing   the  SMC  non-trivial,   even   for   a   low  degree  
of   freedom   robot   with   the   task   of   navigating   to   useful  
objects.    
   The   proposed   Experience   Network   (EN)   is   a   type   of  
Markov   Network   which   continually   develops   the  
SMC   over   its   lifetime.   The   EN   captures   sensory  
experiences  in  the  nodes  of  the  network,  and  temporal  and  
motor   information   in   the   inter-nodal   links.  While   network  
dynamics   are   similar   to   that   of   typical   reinforcement  
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learning   [2],   the   research   focus   is   on   how   the   continual  
stream   of   sensorimotor   data   is   efficiently   organised   to  
produce   the   SMC   representations   which   capture   the  
required  object  semantics.  
   Previous   work   demonstrates   the   development   of   SMC  
representations   which   allow   various   goal   states   to   be  
achieved,   when   interacting   with   only   a   single   object   [3].  
The   work   is   extended   into   a   domain   in   which   the   robot  
simultaneously   detects   multiple   features   from   both  
foreground   and   background   entities,   requiring   the  
formation   of   basic   semantics   in   order   to   achieve   a   goal  
state.   Three   problems   are   considered:   (1)   how   unchecked  
growth   can   be   minimised   when   state-space   size   increases  
exponentially  with   state  dimensionality,   (2)  how  emergent  
semantic   information   about   feature   relevance   can   be  
captured   and   used   to   better   inform   action,   and   (3)   how  
learning   speed   can   be   boosted   through   inferring   actions  
from  of  novel  states.  
   This   paper   presents   an   alternative   to   developing   a  
network   which   stores   the   entire   sensory   state   within   a  
single  node.  Instead,  each  node  is  created  with  only  a  single  
sensory   feature,   and   thereby   distributes   the   state   across  
multiple   nodes   in   the   network.  This   has   three  benefits:   (i)  
the   state   space   size   becomes   O(N)   with   respect   to   the  
dimensions   of   the   sensory   features,   rather   than  O(cN),   (ii)  
the   probabilistic   dynamics   of   the   Markov   network   can  
perform  pattern  generalisation  and  separation  to  efficiently  
generate   more   semantically   driven   sensorimotor  
coordination,   (iii)   inference   of   action   from   nodes   can   be  
more  easily  calculated  as  there  is  no  ambiguity  in  the  credit  
assignment  resulting  from  groupings  of  features.    
   The  paper  proceeds  by  outlining  related  work  in  section  
II,   before   describing   the   details   of   the   EN   in   section   III.  
Studies   using   a   real  mobile   robot   are   presented   in   section  
IV.  Object  detection   is  colour-based;;  however  features  are  
extracted   from   both   the   foreground   and   background  
entities.  Results  and  discussions  are  presented  in  Section  V  
and  VI  respectively,  and  Section  VII  describes  future  work.  

II.   BACKGROUND  
Autonomously  building  object  models  is  usually  performed  
by    predefining  the  foreground  [4-6],  or  the  background  [7],    
so   the   semantically   interesting   information   is   available   to  
the   robot.   The   problem   of   autonomously   learning   the  
relevance   of   a   feature   (which   is   task   contextual,   and  may  
not  be  static)  is  less  often  considered.    
   Learning  appropriate  actions   to  achieve  the  desired  goal  
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is   often   performed   by   finding   object,   action,   outcome  
relationships  in  a  second  phase,  after  object  representations  
have   been   formed   [5].   Outcome   learning   has   been  
performed   by   statistically   averaging   the   change   in   object  
state,   after   an   applied   action,   over   multiple   runs   [7],[8]  
More   continuous   methods   generally   apply   an   uphill  
learning  algorithm  to  optimise  the  performance  of  a  single  
task  [4].  To  acquire  relevant  semantics  over  the  lifetime  of  
the  robot  the  learning  must  occur  simultaneously  to  actions  
being   performed.   The   representations   learnt   must   also   be  
flexible   in  allowing  different   goals   to  be  achieved  given  a  
change  in  task.      
   While   Markov   networks   have   successfully   been  
employed   in   robot   navigation   scenarios   in   the   past   [9],  
research  in  reinforcement  learning  has  shown  that  network  
structures   have   issues   with   computational   complexities  
when   confronted   with   large   state   spaces   and   high  
dimensionality   [2].   However,   other   recent   trends   in  
object/affordance   learning   have   shown   that   the  
dimensionality   can   be   reduced   by   employing   Bayesian  
network   learning   to   capture   the   conditional   dependence  
relationships   [5],   allowing   the   full   state   distribution   to   be  
estimated  by  modelling  only  the  most  causal  relationships.  

III.   THE  EXPERIENCE  NETWORK  
The  Experience  Network   is   a  Markov   network   of   sensory  
states  which  have  been  experienced  by  the  agent  and  which  
are   linked   together   through   the   actuation   commands   that  
were  performed  when  the  state  changed.  The  sensory  state  
at  time  t  is  referred  to  as  an  agent's  experience  et:    

   ttt HVe ,      
where  Vt  is  a  set  of  visual  features  and  Ht  is  a  set  of  haptic  
features.   Each   visual   feature   vi   in   features  Vt   is   extracted  
from  the  raw  data  and  defined  as:  

   iii cfv ,      
where   fi Fv   is   a   description   or   label   component   of   the  
feature  and  ci  is  a  component  describing  the  position  in  the  
visual  field.  Similarly  haptic  features  are  defined  by  a  label,  
selected  from  set  Fh,  and  position  in  the  haptic  field.  
      actuation   command   is   referred   to   as   an  
action.  The  action  a  at  time  t  is:    

   Aat      
where  the  set  A  defines  the  set  of  all  possible  actions.    
A.   A  Network  of  Experience  and  Action  
The   EN   is   realised   using   a   graph   structure   in   which   the  
sensory  experiences  are  stored  within  the  nodes,  N,  and  the  
actions  are  stored  within  the  set  of  all  links,  L,  that  connect  
nodes  (Fig.  1).  The  graph  structure  can  then  be  exploited  by  
forming   an   agent   state   from   one   or   more   nodes   and  
following  links  towards  a  node  with  a  desirable  experience.    

  
Fig.     1.  The  multi-dimensional  EN  projected  in  2  dimensions.  Each  node  
stores  sensory  data  while  each  link  store  transitional  data.  The  dotted  lines  
indicate  links  to  experiences  not  shown.    

   Each  node Nni   is  representative  of  an  experience:  
   iii HVn ,      
where  Vi  are   the  features  which  describe   the  node  visually  
and  Hi  are  the  features  which  describe  the  node  haptically.  
A  link  connecting  node  i  to  node  j  by  performing  action  a  is  
defined  as:    
   ijaijaija tsl ,      
where  sija  is  the  strength  or  repeatability  of  the  link,  and  tija  
is  the  time  to  traverse  between  nodes.  

B.   Measures  of  Node  Similarity  
Nodes   are   added   to   the   network   by   considering   the  
information  currently  stored  in  the  network  and  comparing  
it   to   the   experience   at   time   t.   To   perform   a   comparison   a  
measure   of   the   similarity   of   two   nodes   is   required.   The  
probability  that  node  ni  is  the  same  as  node  nj  is  calculated  
as:    
   )|()|()|( jijiji HHPVVPnnP    (1)  
where   the   probability   based   on   the   visual   element   is  
calculated  as:  
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which   makes   the   assumption   that   the   feature   label   and  
position   are   independent.   Independence   is   also   assumed  
between  feature  labels;;  the  label  similarity  is  calculated  as:  
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   The  probability  due  to  position  in  sensory  field  is  defined  
by   a   closeness   measure   which   assumes   that   areas   in   the  
field  are  dependent  on  neighbouring  areas:  
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The  haptic  component  can  be  calculated  in  a  similar  fashion  
depending   on   the   sensor   arrangement.   Due   to   simplistic  
haptic   sensors   of   the   current   robotic   setup,   the   haptic  
probability  was  simplified  to:  
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C.   Node  Addition  
The  two  methods  for  developing  nodes  and  adding  them  to  
the   EN,   combination   of   features   and   distributed   features,  
are  now  defined.  In  general  both  methods  form  the  current  
robot  state  St,  which  is  a  subset  of  all  nodes  N,  by  selecting  
nodes  already   in   the  network  or  by  adding  new  ones   to   it.  
New   nodes   are   added   when   no   current   node   similarity   is  
above  the  threshold  Tn.  
   Combining   features   in   a   single   node   is   the   direct  
extension   to   previous   work,   a   single   node   is   required   to  
represent   the  current   state  and  all   features  within   the  node  

    
Algorithm  1:  Combination  of  Features  
1.   {}tS ;; tp en ;;   )|(maxmax piNn

nnPn
i

  
2.   if   np TnnP )|( max   
3.      maxnSt   
4.   else  
5.     },{ pnNN ;;   pt nS   

   The   distributed   method   adds   nodes   to   the   network   by  
forming  individual  nodes  for  each  feature  in  the  experience.  
Many  nodes  are  then  required  to  represent  the  current  state;;  
however   a   change   in   a   single   component   feature   does   not  
shift  the  entire  state  to  a  new  node,  only  the  specific  feature  
that  changed.    
Algorithm  2:  Distributed  Features  
1.   {}tS   
2.   for   tm Vv   
3.      tmp Hvn , ;;   )|(maxmax piNn

nnPn
i

  
4.      If   np TnnP )|( max   
5.         },{ maxnSS tt   
6.      Else  
7.         },{ pnNN ;;   },{ ptt nSS   

D.   Link  Addition  
Links   are   added   between   nodes   by   considering   the  

change  in  robot  state  from  time  t-1  to  time  t.  For  each  node  
in  St-1   no   longer  present   in  St,   a   link   is   added   to   the  most  
probable  node  in  St.    
Due   to   the  closeness  measure,  P(cy|cz),  and   the   fact   that  

the  label  probability,  P(fy|fz),  is  a  binary  measure,  often  the  
most   probable   node  will   be   a   nearby   node  with   the   same  
feature.  This  behaviour   is  designed   to  allow  the  modelling  
of   feature  motion   through   the  visual   field,   however   this   is  
not  an  absolute   rule   as  noise  in  feature  detection,  as  well  
as   perceptual   aliasing   (the   same   feature   can   be   in   scene  
multiple   times),   will   introduce   uncertainty.   Over   time  
correct   trends   in  motion   should  emerge.   In  cases   in  which  
no   node   has   the   same   feature   all   other   nodes   become  
equally  probable  (at  0)  and  thus  links  are  made  to  all  nodes.  
Over   time  emergent  behaviour,  such  as  a   feature  changing  
label  due  to  viewpoint  change,  can  be  captured.    
Once   links   are   chosen   the   current   network   links   are  

updated   by   increasing   the   link   strength,   sija,   by   1   and  

averaging  the  time  component,  tija,  over  all  traversals.  

E.   Network  Navigation    
The  graph   representations   formed   in   the  EN  are   exploited  
to  direct  future  agent  action,  closing  the  sensorimotor  loop.  
Given  the  current  agent  state,  St,  the  next  action  is  selected  
so   as   to  minimise   the  probable   time   it   takes   to   arrive   at   a  
node  that  complies  with  a  set  goal  criteria.    
   The  probable  time  to  a  goal  node  given  an  action,  T(ak),  
is   calculated   for   every   node   in   the   network,   given   each  
action,  using  dynamic  programming   techniques  [2].  Nodes  
which  meet  goal  criteria  are  set  to  have  a  T  value  of  0  and  
every  other  node  is  updated  according  to:    
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where   Pij(ak)   is   the   probability   of   action   ak   changing   the  
state  from  node  ni  to  node  nj.  Pij(ak)  is  calculated  as:  
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If  action  ak  has  never  been  performed  from  node  ni  (i.e.  the  
denominator  of  (7)  is  0)  the  time  to  goal  is  set  as:  
     1)( ki aT    (8)  
which   instigates   the   exploration   of   unperformed   links   to  
new   nodes.   Alternatively   the   time   can   be   inferred   from  
other  nodes  as  described  in  the  following  sub-section.    
In   the   distributed   feature   method   the   current   state   is  

formed   by   multiple   nodes;;   a   greedy   method   is   used   to  
perform  action  selection   in  order  to  minimise  the  probable  
time  to  goal  given  all  possible  actions  and  all  nodes  in  St:  
   )])([min(min kiAaSnt aTa

kti

   (9)  

F.   Inference  
Many   objects   in   the   world   have   similar   SMC   behaviours,  
and  hence  will  have  similar  network  connections  within  the  
EN.   To   remove   the   need   for   complete   exploration   of   a  
previously  un-encountered  feature s  state-space,  the  time  to  
goal,  Ti(ak),  can  be  inferred  from  already  established  nodes.  
If   a   successful  match,  based  on  partial   link   similarity,   can  
be   made   between   two   different   features,   the   entire   state-
space   of   that   feature   can   be   inferred   resulting   in   reduced  
learning   times.   Feature   similarities   are   more   causally  
calculated  in  a  distributed  network  as  the  links  from  a  given  
features  only  represent  the  change  in  the  change  in  a  single  
feature,  as  opposed  to  many.  
   Two  algorithms  are  introduced  to  perform  inference.    To  
recognise  when  two  features  exhibit  similar  behaviour,   the  
inference   measure   I   between   the   features   fu   and   fv   is  
continuously  calculated  as  the  network  is  developed:  
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where  the  values  of     and     are  updated  each  time  a  link  is  
added.  Given   a   link  between  node  ni   and  nj   is   added  with  



  
  

  

the   action   at-1   the   values   of      and      (initially   zero)   are  
updated  by   finding   similar   links  within   the  network  based  
on  the  feature  position  c   in  pre  and  post  nodes  (Algorithm  
3).   The   resulting   cross-correlation   matrix   I   defines   the  
similarity  in  sensorimotor  behaviour  for  all  features  in  F.  
Algorithm  3:  Inference  Calculation  
1.   for   Nng   
2.      if   nig TccP )|(   
3.         1igig   
4.         for   Nnh   
5.            if   5.0)( 1tgh aP & gh ff & njh TccP )|(   
6.               1ihih   
   The  similarity  between  features  is  used  when  calculating  
probable   times  of  each  node   for  network  navigation.   If   an  
appropriate   inferred  node  can  be   found  when  action  a   has  
never   been   performed   from   node   ni   the   time   is,   instead,  
inferred.  
Algorithm  4:  Inference  Usage  
1.   for   AaNni ,   
2.      if   0
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3.         for   Nnj   
4.            if Iij TI & nij TccP )|(   
5.               )()( aTaT ji   

IV.   EXPERIMENTS  

A.   Robot  and  Environment  
Experiments   were   performed   on   a   Pioneer3-DX   mobile  
robot   with   a   2-DOF   gripper   including   an   IR   break   beam  
between   the   paddles   for   haptic   sensing.   A   forward   facing  
Logitech   Webcam   Pro   9000   was   used   as   visual   input  
(Figure  2).  

  
Fig.    2.  The  robot  in  the  experimental  3x3m  walled  environment.  The  red,  
and  other  (green)  markers,  can  be  detected  using  the  gripper  while  the  wall  
and  floor  cannot.  

The  robot's  experience  consisted  of  visual  features  from  the  
camera   and   haptic   data   from   the   gripper.   Colour-based  
image  segmentation  was  employed  as   illustrated   in  Figure  
3.  Although  colour  segmentation  is  a  simple  way  to  extract  
useable  features  from  the  environment  the  experiments  are  
only   initial   studies   in   which   no   distinction   between  
foreground   and   background   is   made,   the   robot   had   to  
develop   its   own   semantics   about   which   features   where  
important  to  achieve  its  goals.  

  
Fig.     3.  The  visual   features  extracted   from  a   typical   scene.  The   image   is  
colour  segmented  allowing  features  to  be  generated  by  the  walls,  the  floor,  
and   the   red   and   green   markers.   Each   visual   experience   consists   of   the  
visual  features  fv  and  the  centroid  cv.  

The  elementary  actions  available  to  the  robot  were  forward,  
left,  and  right  and  selected  at  a   rate  of  10  Hz.  Laser   range  
data  was  used  to  detect  when  robot  actions  would  lead  to  a  
collision,   any   detection   would   stall   the   robot   before  
collision   occurred.   The   network   was   built   with   the   node  
similarity  threshold,  Tn,  set  so  nodes  cover  a  region  with  a  
~20   pixel   radius   (in   a   qqVGA   image)   and   the   inference  
threshold,  TI,  was  set  to  30%.  

B.   Experimental  Procedure  
Each  run  was  conducted  with  the  robot  in  an  initial  position  
and  the  markers  randomly  placed  within  the  robot's  field  of  
view.   The   robot   began   with   an   empty   EN,   hence   no  
understanding   of   the   sensory-motor   mappings.   The   goal  
criterion   was   set   to   be   nodes   with   the   IR   break   beam  
triggered.   Robot   and   marker   positions   were   reset   upon  
reaching  a  goal  state.  
both   Algorithm   1   and   Algorithm   2,   however   only   the  
network  formed  using  Algorithm  2  was  used  to  control  the  
action  of  the  robot.  
   Study   1:   20   runs   were   performed   with   a   single   red  
marker  in  the  arena.  The  study  aim  was  to  demonstrate  that  
the  distributed  EN  could  be  successfully  exploited  to  solve  
the   target   acquisition   problem   in   the   face   of   multiple  
different  background/foreground  sensory  input.  
   Study  2:  A   further  20   runs  were  performed,  continuing  
the  use  of  the  EN  from  Study  1.  An  additional  red  marker  
was  added  and  the  aim  was  to  investigate  performance  and  
representation   size   when   two   distinctive   (goal)   features  
were  present.  
   Study   3:   A   final   10   runs   were   performed   with   only   a  
single   green   marker   in   the   arena.   The   study   aim   was   to  
investigate   the   utility   of   inferring   novel   feature   behaviour  
from  known  feature  representations.  

V.   RESULTS  

A.   Node  Addition  Method  Comparison  
The  distributed  network  (DN)  led  to  a  smaller  network  size  
than   the  combined   features  network  (CFN)  as  can  be  seen  
in  Figure  4.  The  CFN  size  grew  significantly  larger  than  the  
DN   due   to   the   state-space   dimensionality;;   each   feature   in  



  
  

  

each  position  was  an  orthogonal  axis   in   the   state   space.   It  
was   from   this   evidence   that   the   CFN   was   disregarded   in  
further  analysis;;  the  time  and  physical  exploration  required  
to   develop   worthwhile   representations   was   exponentially  
larger  than  the  DN.    

slowed  in  the  first  study  as  a  reasonable  amount  of  the  state  
space   was   physically   explored,   was   not   required   to   grow  
when   a   second  marker  was   added,   and   only   required   new  
nodes  to  represent  the  green  marker  in  the  third  study.  The  
CFN  continually   increases   in   size   over  all   three   studies   as  
the  state-space  is  exponentially  larger.  It  is  only  in  the  third  
study  when  growth   slowed,   due   to   the   traversal   of   similar  
paths  by  the  (action  selecting)  DN.  

  
Fig.    4.  The  state-space  size  comparison  between  the  CF  network  (dotted)  
and  IF  network  (solid).  The  slope  is  reported  in  units  of  nodes/minute.  

B.   Study  1:  Grounding  Multiple  Sensory  Features  
The   initial   trial   took  over  5  minutes  as   the  robot   filled  out  
the   empty   EN   with   newly   acquired   sensorimotor  
experience.   Subsequent   runs,   even   with   the   marker   in   a  
random   position,   showed   the   effectiveness   of   the   DN   to  
acquire   the   task   specific   semantic   information   required   to  
complete   the   task,   as   the   average   time   dropped   to   28s.   It  
learnt  that  the  marker  feature  is  the  most  important  feature  
to  use  given  the  haptic  goal  and  in  most  cases  the  wall  and  
floor  features  are  not  helpful.  

  
Fig.    5.  The  time  to  goal  for  each  run  in  study  1.  The  dotted  line  indicates  
the  number  of  wall  'hits'  as  indicated  on  the  right  axis.  

  When   the   robot   cannot   see   the   informative   marker  
feature,  goal  directed  behaviour  is  not  possible.  There  is  no  
egocentric   information   available   to   the   robot   to   make   a  
prediction  about  the  relative  location  of  the  target  unless  it  

is   in   the   field   of   view.   However   the   robot   would   learn   to  
turn  rather  than  drive  straight  at  the  wall,  although  at  times  
it  would  prevaricate  between  turning  left  and  right  without  
gaining  sight  of   the   target,   as  evidenced   in   runs  8  and  16.  
These   runs  also   show  an   increased  number  of  wall   hits   as  
the   robot   learnt  more  about   the   semantics  of   the  wall  as  a  
feature.  The  ability  to  avoid  walls  is  learnt  as  can  be  seen  in  
the  decreasing  number  of  wall  hits.    

C.   Study  2:  Navigating  with  Multiple  Goal  States  
The   already   grounded   network   was   able   to   continue   to  
achieve  a  goal  state  when  a  second  marker  was  added  to  the  
environment  (Figure     6).  Very   few  new  nodes  were  added  
to   the   EN   in   this   study   (Figure   4),   hence   the   SMC   state  
representations  were  already  adequate  for  correct  behaviour  
with   links  continually  being   reinforced.  Due   to   the  greedy  
algorithm   the   closest   node   could   be   selected   as   the   goal  
target  only  further  reducing  the  time  to  goal.  In  contrast  the  
CFN   network   would   have   to   develop   new   representations  
to  represent  the  combination  of  2  marker  features.  

  
Fig.    6.  The  time  to  goal  and  wall  hits  for  each  run  in  study  2.  

D.   Study  3:  Inferring  Novel  Feature  Utility  
While  inference  between  features  was  being  calculated  and,  
if   necessary,   invoked   throughout  all   studies   it  was  only   in  
the   third   study   in   which   they   came   into   effect.   The  walls  
floor  and  marker  all  had  unique  movement  behaviour  with  
respect   to   their   centroids   and   hence   no   inference   was  
performed.   When   the   green   marker   was   introduced  
(producing   a   previously   unseen   feature)   it   was   closely  
matched   with   the   already   developed   red   marker   nodes  
(Table   1),   allowing   correct   actions   to   almost   immediately  
be  performed  to  achieve  the  goal  state  (Figure  7).    
The  long  run  duration  in  runs  45  and  48  were  caused  by  

the  incorrect  association  of  the  green  marker  with  the  wall  
features.   In   both   runs   the   marker   was   positioned   towards  
the  top  of  the  visual  image,  where  typical  wall  behaviour  is  
to   turn,   rather   than   driving   forwards.   Action   was   then  
incorrectly   inferred  and  hence  direct  motion   to   the  marker  
was   not   performed.   The   red   marker   had   a   zero   inference  
value   from   the   green  marker   as   the   red  marker  was  never  
reintroduced  after  the  green  marker  was  introduced.  



  
  

  

TABLE  1  
MOTION  INFERENCE  BETWEEN  FEATURES  

   Wall   Floor   Red  Marker   Green  Marker  

Wall   48.45%   29.41%   17.31%   58.73%  

Floor   4.35%   19.25%   10.20%   15.40%  

Red  Marker   14.81%   5.70%   47.26%   0.00%  

Green  Marker   32.79%   4.50%   33.21%   58.89%  
The  probability  that  a  feature  (rows)  has  the  same  sensorimotor  behaviour  
as  another  (columns).  Auto-inference  is  not  100%  as   the  probability  only  
increased  when  Pij(a)  >  0.5.  

  
Fig.    7.  The  time  to  goal  and  wall  hits  for  each  run  in  study  3.     

VI.   DISCUSSION  
The  Distributed  Experience  Network  algorithm  differs  from  
other   methods   of   learning   sensorimotor   coordination   in   a  
number  of  important  ways.  

A.   Learning  is  One-Shot  and  On-Line  
While  the  EN  develops  an  adaptable  SMC  from  scratch,  the  
network   complexity   is   kept   manageable   by   having   each  
node   deal   only   with   a   single   sensory   feature   from   an  
experience,   representing   the   experience   in   a   distributed  
fashion.   The   EN   does   not   require   separate   learning   and  

environment   result   in   learning,   allowing   the   robot   to  
continually  update  its  SMC  over  the  lifetime  of  the  robot    

B.   Attention  is  Intrinsic  to  the  Network  
Our  experiments  used  colour   segmentation   to   simplify   the  
incoming  visual  information,  but  no  specification  was  made  
as   to   which   features   were   in   the   foreground,   and   which  
were   in   the   background.   There   is   no   inherent   attention  
operator   to   highlight   features   of   interest      rather   the   EN  
develops   task   specific   semantic   information   by   noting  
which   sensory   changes   occur   consistently   with   motor  
action.  Only   the   foreground   features   (i.e.   from   the   object)  
are  recognised  as  informative.  

C.   Learning  can  be  Boot  Strapped  by  Inference  
Bootstrapping   knowledge   between   features   is   important  
when   using   state-action   representations   especially   in   high  
dimensional   space,   as  otherwise  each  state  of  each   feature  
needs   to   be   explored   and   grounded.   The   distributed  
network   more   easily   allows   for   dependencies   to   be   learnt  

which  are   then  exploited   to  reduce   the  amount  of   learning  
the   network   has   to   do   before   appropriate   actions   are  
emergent.    

VII.   FUTURE  WORK  
Adapting  these  studies  to  a  real-world  environment  requires  
the   introduction   of   appearance-based   features,   such   as  
SURF   [10].   The   large   increase   in   the   number   of   features  
which  must  be  processed  forms  the  key  challenge  of  doing  
so.  While   the   individual   features   can  be  picked  out   in   the  
DN,   a   single   object   can   produce   multiple   features   in   this  
scenario.   It   would   then   seem   viable   to   allow   small  
groupings   of   features   to   autonomously   form   in   nodes  
thereby   reducing   the   number   of   features   to   be   processed,  
while  also  demonstrating  emergent   .  
   Bayesian   network   theory   could   also   be   employed   to  
increase   the   robustness   of   inference   between   variables   in  
the  system,  such  as  in  [5].  Not  only  does  this  speed  learning  
but   also   allows   reduction   of   the   dimensionality   of   the  
system   if   new   variables  were   added,   such   as   global  X,  Y  
coordinates.  This  would  allow  the  robot   to   then  search   for  
objects   outside   the   immediate   view,   and   also,   in   a   similar  
method   to   visual   features,   develop   task-specific   spatial  
semantic  information.      
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Abstract— In this paper we describe the ODUfinder, a novel
perception system for autonomous service robots acting in
human living environments. The perception system enables
robots to detect and recognize large sets of textured objects
of daily use. Efficiency, robustness, and a high detection rate
are achieved through the combination of modern text retrieval
methods that are successfully used for indexing huge sets
of web pages and state-of-the-art robot vision methods for
object recognition. The result is a robot object detection and
recognition system that, with an accuracy rate of more than
80%, can recognize thousands of objects by learning and using
vocabulary trees of SIFT descriptors.

I. INTRODUCTION AND APPROACH

A robot acting as an household assistant must be capable
of recognizing the hundreds of objects of daily use that
are present in its operating environment. It also has to be
able to recognize new objects, for example, when emptying
a shopping basket to put the purchased items where they
belong. One way to equip robots with knowledge about the
physical look of these various objects is to retrieve images of
them from grocery webstores, such as www.germandeli.
com (Germadeli), or image libraries, such as google images.

In this paper we report on the design and implementation
of the Objects of Daily Use Finder (ODUfinder) perception
system that can deal with some aspects of this challenge. The
system can detect and recognize textured objects in typical
kitchen scenes. The models for perceiving the objects to be
detected and recognized can be acquired autonomously using
the robot’s camera as well as by loading large object catalogs
such as the one by Germandeli into the system. In the system
configuration described in this paper, the robot is equipped
with an object model library containing approximately 3500
objects from Germandeli and more than 40 objects from the
Semantic3D database1. The ODUfinder achieves an object
detection rate of 10 FPS and recognizes objects reliably
with an accuracy rate of over 80%. Object detection and
recognition is fast enough so that it does not cause delays in
the execution of the robot’s tasks.

The ODUfinder system employs a state-of-the-art object
perception technique Scale Invariant Feature (SIFT) [1] using
a vocabulary tree [2], which we extend in two important
ways. First, the comparison of object descriptions is done
probabilistically instead of relying on the more error-prone
original implementation with the accumulation of query

1http://ias.cs.tum.edu/download/semantic-3d




















Fig. 1. TUM-PR2 robot recognizing objects lying on the tabletop using
kinect sensor. Right column depicts extraction of clusters from point clouds
(top), projection of clusters onto camera image and Region-Of-Interest
extraction (middle) and, finally, ODUfinder recognizing objects (bottom).

sums. Second, the ODUfinder detects candidates for textured
object parts by over-segmenting image regions and then
combines the evidence of the detected candidate parts to infer
the presence of the object. These extensions substantially
increase the detection rate as well as the detection reliability,
in particular in the case of partial obstruction and in certain
lighting conditions like specular reflections on object parts.
Another contribution is the mechanism realized to enable
automatic acquisition of incomplete visual appearance tem-
plates, such as the ones from Germandeli. In a nutshell this
paper provides the following main contributions:

• An application of a vocabulary tree matcher to real
perception problems;

• A probabilistic comparison of objects’ descriptors;
• An over-segmentation-based recognition of textured ob-

jects;
• A mechanism for automatic acquisition of incomplete

visual appearance templates.

ODUfinder system is out-of-the-box and open-source



available as a ROS package 2 and can be easily deployed in
any kind of robot equipped with a 3D sensor and a camera
that are calibrated with respect to each other.

The remainder of this paper will proceed as follows: in
the next section we discuss similar approaches, which is
followed by a brief description of the system’s architecture.
SIFT based object recognition is explained in Section V, fol-
lowed by Section VI focusing on the ODUfinder’s capability
to learn new objects. In Section VII we present the results
of experiments and, finally, in the end we conclude and give
suggestions for future research.

II. RELATED WORK

Nakayama et al. [3] present the AI Goggles system, which
is a wearable system capable of describing generic objects
in the environment and of retrieving the memories of these
objects by using visual information in real time without any
external computation resources. The system is also capable
of learning new objects or scenes taught by users. As the
core of the system, a high-accuracy and high-speed image
annotation and retrieval method supporting online learning
are considered. The authors use color higher-order local
auto-correlation (Color-HLAC) features and the Canonical
Correlation Analysis (CCA) algorithm in order to learn the
latent variables.

Arbeiter et al. [4] implemented a framework for 3D
perception and modeling. The proposed algorithm can be
used to reconstruct a 3D environment or learn models for
object recognition on a mobile robot. Both color and time-
of-flight cameras are used, and 2D features are extracted
from color images and linked to 3D coordinates. Those
coordinates then serve as input for a modified fastSLAM
algorithm that is capable of rendering environment maps or
object models.

A self-referenced 3D modeler is presented in [5] by Strobl
et al., where the authors demonstrate that an ego-motion al-
gorithm can simultaneously track natural, distinctive features
and provide 3-D modeling of the scene. The use of stereo
vision, an inertial measurement unit and robust cost functions
for pose estimation further increased system’s performance.

Incremental learning and recognition of objects is done in
an unsupervised manner in [6], but Triebel et al. focus mainly
on chairs, and it is not clear how well multiple objects could
be reliably detected without any prior information. Moreover,
scalability is hard to assess since only one view is analyzed
at a time.

III. SYSTEM OVERVIEW

The ODUfinder’s mode of operation is depicted in Fig-
ure 2. The robot simultaneously takes a 3D scan and captures
an image of the scene in front of it. The robot generates
object hypotheses by detecting candidate point clusters in
the 3D point cloud acquired by the depth sensor. These
object hypotheses are then back-projected into the captured

2http://www.ros.org/wiki/objects_of_daily_use_
finder

image as regions of interest and searched for detecting and
recognizing objects (See section IV-A).




















Fig. 2. System overview

For the SIFT-based detection we first determine segments
by performing region growing on detected features in image
space, which typically results in an over-segmentation of the
region of interest (shown in Figure 3, right). Identifying the
object and the image region it belongs to is then performed
through methods transferred from document retrieval. In
document retrieval tasks, for example in a web searches we



look for the documents that best match a given query term.
To do so the search engines compute frequency statistics for
discriminative words or better word stems as a pre-processing
step performed on all documents. Given a search term, fast
indexing mechanisms quickly search for the documents that
are, with respect to frequency, particularly relevant for the
search term. The application of text retrieval technology for
object matching is promising because it is very mature and
the techniques allow for rapid functioning with high recall
and precision rates.

The computational idea of textual document retrieval can
be mapped to object description matching in the following
way: the descriptors computed from the regions of interest
that belong presumably to (or are partial views of) the same
object are considered to be the search term. The object
descriptors of the different views of the relevant objects
are the documents of the document retrieval model. Word
frequencies are replaced by the frequency of visual object
features. Given a large set of objects represented by their ob-
ject descriptors and the feature descriptor of an image region,
we can then index the objects where the particular features
are particularly prominent using the respective methods of
document retrieval.

In this paper we apply vocabulary trees for TF-IDF (Term
Frequency Inverse Document Frequency [7]) indexing, a
method used in document retrieval to find documents that
best fit a given textual user query. In this reformulation of
object identification, vocabulary trees speed up the retrieval
of the matching objects.

The methods for object descriptor matching do not only
match a given region descriptor to the large set of object
descriptors, they also learn new object descriptors to be put
into the visual object library.

The subsequent sections describe the individual computa-
tional steps performed by the ODUfinder in greater detail.

IV. THEORY OF REGION OF INTEREST EXTRACTION

In human living environments the objects of daily use
are typically standing on horizontal, planar surfaces or, as
physics-based image interpretation states it, they must be
in stable force-dynamic states. The scenes they are part of
can be cluttered or the objects are more or less isolated. To
account for these conditions, the ODUfinder employs two
alternative methods for region extraction: first, the combined
2D-3D extraction for objects standing more or less isolated
on planar surfaces, and, second, the region-growing based
extraction for cluttered scenes, such as the objects standing
in a cupboard. These two methods are described below.

A. Combined 2D-3D Object Candidate Detection

The combined 2D-3D object detection takes a 3D point
cloud acquired through a tilting laser scanner or a kinect
sensor and a camera image of the same scene. Figure 3 (left)
shows how the ODUfinder detects major horizontal, planar
surfaces within the point cloud and point clusters that are

supported by the planes 3. The identified point clusters in the
point cloud are then back-projected into the captured image
to form the region of interest that corresponds to the object
candidate. An accurate back-projection is possible thanks to
the accurate robot calibration, as described by Pradeep et
al. [9]. The sensors are calibrated using a non-linear bundle-
adjustment-like optimization to estimate various parameters
of the TUM-PR2 Robot.

Fig. 3. Left: Region of Interest Extraction using back projection of 3D
points, Right: Over-segmentation using a region-growing based approach.

B. Over-Segmentation-Based Object Candidate Detection

The second method for identifying image regions that
might correspond to objects is the computation of clusters of
visually distinctive pixels in the image space. This method
exploits the fact that many objects of daily use have distinct
textures.

In our case we determine the visually distinctive pixels
using SIFT features and apply region growing algorithms to
determine the clusters. Region growing starts from a point
that does not belong to any clusters and incrementally adds
points that are in a predefined radius r around the original
point. The process is repeated for all newly added points.
This results in clusters that represent the strongest texture
“islands” in the image.

For our application, the quality of the segmentation results
heavily depends on the appropriate setting of the radius
parameter r. In order to improve performance, we adaptively
chose the radius length in relation to the level of texturedness
of the camera image using a scaled and shifted logistic
sigmoid function:

r2(x) = (r2max− r2min)(K(1− logsig(x−A)))+ r2min (1)

where logsig is defined as:

logsig(x) =
1

1 + e−x
, (2)

which tends to work well for input images of the same size.

In the equations above the argument x is the number
of keypoints in the image. The parameters rmin and rmax

denote the maximum and the minimum values of the radius.
The parameter A denotes the value of x, where the value of
the function is the average of the minimum and maximum
value of the radius. The constant K denotes the speed at
which the function approaches its minimum and maximum
values. These 4 parameters are determined empirically and

3The implementation details of these steps have already been described
in [8] and fall outside the scope of this paper.



are valid for images of roughly similar sizes. In the exper-
iments below we use the following values: A = 800, K =
0.02, rmin = 200, rmax = 600.

This approach allows for bigger distances in images con-
taining fewer features, thereby forming better shaped clusters
and, respectively, it allows for small radiuses for images with
a lot of features, thereby avoiding the use of extreme radius
values.

V. RECOGNITION OF TEXTURED OBJECTS -
IMPLEMENTATION

The ODUfinder performs object recognition of textured
objects by computing the set of SIFT descriptors for all
distinctive pixels in any given region of interest and then
determines the object model in the library that best explains
the set of SIFT descriptors of the region of interest. Each
object view contains the set of SIFT descriptors of the
distinctive pixels.

Unfortunately, comparing a region of interest with every
object view in the object model library is prohibitively
expensive. To this end, as proposed by Sivic and Zisser-
man [10], we consider object recognition as a document
retrieval problem, which enables us to use fast data structures
and retrieval algorithms and apply them to object recognition
problems for large libraries of object models.

In this paper we employ vocabulary trees that were de-
veloped by Nister and Stewenius [2] for retrieving similar
images in very large image libraries. In this section we
show how we have specialized this technique for the purpose
of object recognition in the context of robot perception.
Our principal aim was to improve the capability of the
proposed method for identifying objects in real scenes, which
required taking different lighting conditions, obstruction and
clutter, and the uncertainty and noise associated with physical
sensors acting in the real world, into consideration.

A. Vocabulary Tree

The vocabulary tree of branching factor K and depth
L is a tree data structure where the nodes in the tree
represent a set of SIFT descriptors. The root node of the
vocabulary tree represents the SIFT descriptors of all views
of all object models in the library. If a node n in the
vocabulary tree represents the set of SIFT descriptors N

then its children nodes represent the partitioning of N into k

subsets represented by the children nodes cn1 . . . cnk, where
the SIFT descriptors within a children nodes are similar and
the ones of different children nodes dissimilar.

Thus, by taking a SIFT descriptor sd and classifying it
hierarchically through the vocabulary tree using the defined
distance measure on the SIFT descriptors we quickly find
the set of SIFT descriptors that are most similar in the object
model database as the leaf nodes, whose representative SIFT
descriptors have the smallest distances to sd. For efficiency,
sd is not compared to all features in a given node, but to the
centroid of its features.

The SIFT descriptors in the vocabulary tree also have a
reference to the object model in which they occur. Thus,

when sd matches a leaf node it votes for the object models
that the SIFT descriptors of the identified leaf belong to.

The children nodes cn1 . . . cnk of N are computed by
applying k-means clustering to the SIFT descriptors of
node n. Since the TF-IDF algorithm works on words (the
equivalent of leaf nodes), we use a vocabulary tree to convert
the keypoint descriptors into words, where each word is an
integer value corresponding to the number of the leaf node.

B. Building the database

In our approach we use a similar database (object model
library) as described in [2]. In order to be able to detect
objects the database only stores the quantized SIFT features
of the images, but not the images themselves.

1) Extracting SIFT features: In order to extract the visual
SIFT features from the images we use an open-source im-
plementation [11] of the standard SIFT algorithm as initially
described by [1]. Each SIFT feature is characterized by a 128
dimensional descriptor vector, 2 image coordinates, a scale
and an orientation value. In the current implementation we
only use the descriptor vectors for the detection process and
the image coordinates for visualization.

2) Generating database documents: After we have the
vocabulary tree, we quantize feature descriptors to single
words. For every image, we take all SIFT features, we
quantize them with the vocabulary tree and we group the
resulting words into one document for every image. In this
way each document is composed of a list of all quantized
features corresponding to a single image.

3) Populating and training the database: After generating
all image documents, we insert them into a specialized
database as proposed in [2]. The database is then trained with
the TF-IDF [7] algorithm. After this training the database
can be queried with documents generated from input camera
images in order to find the best database matches between
objects in the image and objects in the database. The database
documents, along with specific database information, can
be stored in a binary format in order to allow for fast
loading of the database. Additional information, like image
file names, textures and feature coordinates, is also saved for
visualization purposes.

The whole detection process is implemented as a single
ROS node, which receives an image coming from the camera
and outputs the most probable N matches from the database.

C. Retrieving Object Models

In order to find an object in the received image we have to
generate a database document in the same way as described
above. We first extract the SIFT features from the received
image and we quantize the descriptor vectors to words with
the vocabulary tree. A single document is formed from all
words of the input image and we can query the database
with it. The database returns the best N matches with their
respective scores (between 0 and 2, where 0 is best and 2 is
worst).

This approach performs well so long as there is only one
object in the image, i.e., if we were able to nicely segment



out clusters as described in Section IV-A. If two or more
objects are visible in the input image, and especially if
more than one of them is also loaded in the database, the
performance decreases. This happens because the database
retrieval mechanism tries to find an image containing all of
the objects together and, although the objects can still be
detected, their scores are low and very similar. This makes
it very difficult to tell which match truly corresponds to the
object in the image.

In order to improve recognition performance in such cases
we thus present a power-horse idea of this paper, namely, a
clustering of features of the input image in 2D space (the
position of the feature in the image). In this way we can
find rich-textured sub-regions in the object candidate image.
It is difficult to make the clustering algorithms find the exact
regions of the objects, but our experiments show, that this is
indeed not necessary. If we adjust the clustering algorithm
to over-segment, we get several clusters per object. These
clusters correspond to the strongest textures of the objects
and are, in most cases, enough to identify the whole object
(see Figure 4).

Fig. 4. Detection of objects by partial textures. Left part shows that only
a “Jacobs” sign is sufficient, while the right part implies the same for a
“Kronung” sign.

The next step is to generate a document for every cluster
size greater than the predefined size Scluster and query
the database with those documents. Typical values for the
Scluster are between 20 and 30, because smaller clusters are
unlikely to produce meaningful results. Thus, every cluster
has its own ranking of the most probable matches and we
need to merge the results. In order to combine the results
from every cluster into one final list of matches, we sum
the scores (clustersscores) which result from matching of
every cluster against every image in the database. In this
way, if several clusters vote with a high score for a specific
image in the database, we understand that it is very likely
that we have found the right object in the image. Note that
if we had two objects in one input image, which also have
respective entries in the database, then we will get more
than two clusters from the input image (thanks to the over-
segmentation) and the database retrieval mechanism will not
search for the documents containing both objects, but rather
only for parts of the objects, which will result in far more
distinctive scores.

The final consensus is that, as our segmentation method
tends to over-segment, the ODUfinder considers the image

regions that could spatially lie on the same objects as
multiple evidence for the respective objects and combines the
evidences provided by the individual regions. Obviously the
visual region-based object model appearance is particularly
appropriate to handle partly obstructed objects and those
which might have parts that cause reflections.

VI. INCREMENTAL BUILD-UP OF INCOMPLETE MODELS

- IMPLEMENTATION

The ODUfinder’s primary mode of operation provides
basic functionality for online learning of new appearances of
objects and mechanisms for storing and reloading them. We
consider this feature to be very important for the continuous
operation of service robots.

Fig. 5. Top row: Robot (left-most image) is manipulating an object in
front of the camera Bottom Row: Extraction of keypoints and masking of
robot’s parts.

In this ODUfinder’s mode of operation two cases may
emerge: i) either the objects’ appearances have been learned a
priori and they only have to be located in the perceived scene,
or ii) the robot encounters unknown objects (or unknown
views of objects) and the new views have to be learned
incrementally. While in the first case just a direct query for
each appearance of the object candidate in the database is
performed, in the second case we have to a) verify whether
we have a partial template model of the object in question
and, if so, b) the missing templates have to be acquired,
features extracted and quantized with an existing vocabulary
tree, and added to the existing database. In order to acquire
missing object templates we implemented an in-hand object
articulation and modelling process which is best explained
through the following steps:

• classify object as unknown if the sum of clusters’ scores
clustersscores < 0.5,

• calculate object grasp points on object’s cluster [12],
• grasp the object, bring it in the frustum of the camera

and set it upright,
• rotate the object around the up-right (z) axis to a

viewpoint where you verify that it matches a template
(from e.g. Germandeli),

• mask out parts of the robot and extract keypoints and
region of interest,

• build documents from the keypoints, quantize them
with the existing vocabulary tree and add them to the
database,

• repeat above three steps until object has been rotated for
2πrad (note that our TUM-PR2 robot is equipped with
the continuous revolute wrist joint). Also see Figure 5.



An important aspect of the learning of new models is that
the vocabulary tree does not need to be computed again.
The addition of a new document in a large database does
not change the distribution of the words in the database
substantially and therefore the existing quantization provided
by the vocabulary tree is still adequate. Regeneration of
the tree (and consequently of the database) is only needed
if lots of new documents are added to a relatively small
database, but this could be done later in an offline phase.
A demonstration of the incremental build-up of incomplete
models are available in the accompanying video submission 4

and Figure 5.

VII. EVALUATION

A. Database Training

To evaluate our approach we have trained two vocabulary
trees and built two databases with textured objects. In the
first case we parsed the Germandeli website, downloaded
product descriptions (semantic data, such classes of objects
as well as appearances) and in the second case we generated
a database out of the Semantic3D initiative which consists of
over 40 household objects (see Figure 6) as described in [13].
The latter database was enriched with 10 more objects from
the Germandeli website in order to demonstrate incremental
build-up of additional models. While K,L parameters for the
structure of vocabulary trees were 6,6 and 5,5 respectively,
the rest of the properties of the databases are given in Table I.

nr. images nr.
features

training
time

cluster
query
time

Germandeli 3500 2500000 1h 90ms
Semantic3D 170 65000 1min 50ms

TABLE I

TECHNICAL DATA FOR THE GENERATED DATABASES OF OBJECTS.

Fig. 6. A subset of the collection of objects from Semantic3D database.

B. Recognition Results with Over-Segmentation

Used test images were taken with the hand-held camera
in a German grocery store and encompass a wide variety
of grocery products. We carried out recognition tests against
the Germandeli database and present and discuss the results
in Figure 7. We show the segmentation in feature space,
where the circles denote SIFT keypoints and adjacent points
with the same color belonging to the same cluster. The left

4http://youtu.be/Hjwj0YN2z5w

part of every box in the Figure is the image received from
the camera and the right image is the first match from the
database.

In the first three rows of Figure 7 we see examples of
the detection of 3 different objects. In only one case is the
correct image not the first match found (row 3, column 3)
and we attribute this to the test image’s lack of the resolution.

The fourth row presents an interesting case. The camera
image contains a strawberry juice, but the best match in the
database is a juice with similar packaging, but of a different
flavor. If we take a look in the top 10 matches for the
test images in this row, we see that the first 6 matches are
juices of the same make with very similar packaging, which
differ only in respect to the small text in the middle of the
package and in the flavor drawing on the bottom. This case is
especially difficult because the strong texture from the Rauch
and Happy Day logos and the upper part of the packaging
are identical in all templates. This is why the correct flavor
is not always first place, but in the top 5 matches. Thus,
our system can find the right class of an object, in this case
Rauch juice, but fails to find the right instance (in this case,
flavor).

Fig. 7. Evaluation of recognition of objects found in German supermarkets
with over-segmentation

C. Recognition Results with Combined 2D-3D Object Can-

didate Detection

We ran this test in our kitchen laboratory (see left column
of Figure 8). The test was carried out against the SemanticDB
database on a total number of 12 objects located at 4 different
scenes (denoted with Scene 1 ... Scene 4 and depicted in top-
down order in the right column of Figure 8). The robot was
programmed to navigate to each of the scenes and capture



point clouds and images from several different views by
traversing along the free paths around the scenes. The partial
and total results of the evaluation are given in Table II.

Scene #Views #Failures Success Rate [%]
Scene 1 52 10 80.7
Scene 2 11 5 54.5
Scene 3 24 2 91.6
Scene 4 12 0 100

Total 99 17 82.8

TABLE II

RECOGNITION OF OBJECTS USING SIFT WITH VOCABULARY TREES

FROM COMBINED 2D-3D OBJECT CANDIDATE DETECTION.

Fig. 8. Left column: We performed the final evaluation test on a total
number of 12 objects located at 4 different scenes in our kitchen lab
(denoted with Scene 1 ... Scene 4 and depicted in top-down order in the
right column). Left column: The robot was programmed to navigate to each
of the scenes and capture point clouds and images from several different
views by traversing along the free paths around the scenes. Results of this
test are presented in the Table II.

1) Novel Object Case: To demonstrate the capability
of our system to acquire new object models on the fly
we set up Scene 1 with 1 unknown object (green coffee
box), which generated all 10 false positive measurements
reported in the first row of Table II. Since setting the
score value of the database retrieval mechanism to the
experimentally determined value of 0.5 enables us to classify
all measurements that exceed this value as unknown, we
can introduce image templates generating this score as new
object models. The assumption we are making here is that
the scene remains static and that the image templates have
consistent association with the cluster cloud with fixed 3D
position in the world coordinate frame.

Scene #Views #Failures Success Rate [%]
Scene 1 52 2 96.0

TABLE III

IMPROVED RECOGNITION RATE FOR SCENE 1 FROM FIGURE 8 AFTER

THE FEATURES FOR GREEN COFFEE BOX WERE ADDED TO THE

DATABASE.

After this we performed another test run on Scene 1 with
the the updated database of SIFT descriptors and were able

to reduce the number of false positives down to 2, as shown
in Table III. Please also refer to the accompanying video
submission.

VIII. CONCLUSIONS AND FUTURE WORK

This paper has presented a perception system for au-
tonomous service robots acting in human living environ-
ments, coined the ODUfinder. The perception system enables
robots to detect and recognize textured objects of daily use,
it ensures real-time and robust operation and is modular with
respect to the integration of new components (e.g. detection
of texture-less or translucent objects). On the theoretic part,
we consider an over-segmentation of image regions and the
combination of the evidences of the detected candidate parts
to infer the presence of the object, to be a major contribution
herein.

In the future we plan to improve the segmentation of
cluttered scenes using graph-based methods [14] and inter-
active perception approaches [15]. Furthermore, we plan to
include more recognition routines (e.g. Dominant Orientation
Templates [16], Transparent Object Detection [17]) and thus
convert the ODUfinder into a bag-of-experts system. En route
to ensure autonomous, continuous operation of the robot
over large spans of time, we plan to look into i) sharing
of model libraries between different robots and ii) inferring
of semantic types of objects using barcodes.
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Improving Object Detection and Recognition for Semantic Mapping

with an Extended Intensity and Shape based Descriptor

Erickson R. Nascimento Gabriel L. Oliveira Mario F. M. Campos Antônio Wilson Vieira

Abstract— We propose BASE, an extended descriptor for

RGB-D images, that efficiently combines intensity and geo-

metrical shape information to improve discriminative power.

We use this new descriptor to detect and recognize objects

under different illumination conditions and apply it within an

adaptive boost classification framework to provide semantic

information in a mapping task. We compare the performance

of our descriptor against two standard ones in the literature.

Experimental results show that in spite of the simplicity of

the descriptor and of the Adaboost training approach, high

accuracy classification is obtained with fast processing time.

I. INTRODUCTION

In order to achieve higher levels of abstraction, mobile
robots must be able to build structured representations of
their environment through categorizing spatial information
[20]. Such categorization can be used to generate semantic
information which would enable robots to distinguish ob-
jects, to identify events and to execute high-level tasks. The
importance of including semantic information to understand
the environment has been advocated in several works, of
which [11] and [4] are examples.

The richness of information engrafted in images has
naturally driven the use of image based techniques in sev-
eral categorization methods. Therefore, image based object
detection and recognition are among the fundamental issues
in Computer Vision and Robotics, and constitutes the core
of important tasks such as tracking and Simultaneous Local-
ization And Mapping (SLAM).

Visual classification tasks are typically tackled by ex-
tracting image features which are then used to represent
individual characteristics of objects and classes. The high
dimensionality of data is then greatly reduced enabling
increased performance of the matching process and the re-
duction of memory usage both in training and in recognition
steps. Therefore, feature point descriptors are at the heart of a
large number of state-of-the-art of classification methodolo-
gies. The Computer Vision literature enrols numerous works
which use different cues for recognition based on appearance,
such as Scale Invariant Feature Descriptor (SIFT) [15], Speed
Up Robust Descriptor (SURF) [1], Random Ferns [18] and
Binary Robust Independent Elementary Features (BRIEF)
[3].
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eral de Minas Gerais, MG, Brazil. This work has been sup-
ported by grants from CNPq, CAPES and FAPEMIG. E-mails:
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In nearly all these approaches, features are obtained from
images alone, and other information such as geometry are
rarely used. Consequently, common issues with real scenes
such as variation in scene illumination and textureless objects
may dramatically decrease the performance of image only
based classifiers. This shortcoming has fostered the devel-
opment of descriptors that include the 3D shape, such as
Spin-Image [9].

The combination of visual and shape cues, which is a
very promising approach for object recognition, is still in
its infancy. However, as far as efficacy is concerned, Lai
et. al. [13] have already shown that the combined use of
intensity and depth outperforms view-based distance learning
using either intensity or depth alone. The reason that many
descriptors have not used shape information can be partially
explained by the fact that until recently object geometry was
not easily and quickly obtained so as to be synchronously
combined with image feature data.

With the recent introduction of fast and inexpensive RGB-
D sensors (where RGB actually implies trichromatic intensity
information and D stands for depth) the integration of syn-
chronized intensity (color) and depth has become feasible.
RGB-D systems outputs color images and the corresponding
pixel depth information, enabling the acquisition of both
depth and visual cues in real-time. These systems have
opened up the opportunity to obtain 3D information with
unprecedented richness. One such system is the Kinect [16],
a low cost commercially available system that produces
RGB-D data in real-time for gaming applications. It can
be quickly and easily integrated into robots enabling the
execution of several tasks, including mapping.

In this paper, we propose a descriptor composed of Bi-
nary Appearance and Shape Elements (BASE) based on
BRIEF that efficiently combines texture and geometrical
shape information to improve discriminative power. We use
this new descriptor to detect and recognize objects under
different illumination conditions and use it in a adaptive
boost classification framework to provide semantic infor-
mation in a mapping task. Experimental results presented
later in the paper show that in spite of the simplicity of
the descriptor and of the Adaboost training approach, high
accuracy classification was obtained with processing time in
the order of few milliseconds running on current processors.

The main contributions of this paper are: i) A feature
point descriptor which efficiently merges appearance and
geometrical information, and ii) a simplified and fast ob-
ject recognition and detection technique based on Adaboost
approach which is largely robust, specially to variations in



illumination.

II. RELATED WORK
SIFT [15], SURF [1], and more recently BRIEF [3],

are the most used algorithms for keypoint extraction and
descriptor creation for 2D images. The first two build their
feature detectors and descriptors upon local gradients and
specific orientations to achieve rotational invariance. BRIEF
uses binary strings to build a descriptor that can be computed
using simple intensity difference tests, which leads to a small
memory usage and low processing time.

Keypoint extraction from 3D data has been successfully
obtained by spin-image [9], which creates a 2D representa-
tion of the surface patch surrounding a 3D point. Object
borders constitute an important challenge that has been
tackled by another descriptor for 3D point clouds known
as Normal Aligned Radial Feature (NARF) [22], which
identifies borders of objects based on transitions between
foreground and background.

Other works have been reported in the literature that
combine image intensity with range (which very often are
obtained by lasers). Those works usually have to restrict the
scope to the image being analyzed, but nevertheless produce
interesting results, in spite of the constraints imposed by
the limited view of the environment. Our method also aims
at fusing intensity and range information to enrich the
discrimination power of our semantic extraction phase. Three
dimensional mapping [7] and object recognition [13] have
shown results on public available RGB-D object dataset [12].

If on one hand image texture information can usually
provide better perception of object features, on the other hand
depth information produced by 3D sensors is less sensitive
to lighting conditions. Our descriptor brings forth the ad-
vantages of both texture and depth information with a small
memory budget and fast processing time. Our descriptor has
been used in semantic knowledge acquisition during the map
building process of environments with several objects.

Recent works in semantic mapping may be divided into
three basic groups. The first group is comprised of ap-
proaches that focus on cognitive maps. Object location in
the environment is the main goal of the methodologies in
the second group and the third group is composed by those
efforts that seek to classify each unit of the discretized space
into semantic categories.

Contemporary techniques on image based topological
mapping have been termed cognitive mapping. These tech-
niques have been discussed in some recent works that address
the problem of adding semantic information to geometric
maps [23], [26], [19], [8], [10]. Krishnan et al. [10] propose a
hybrid map which combines semantic and topological cues.
The top layer of their map is a semantic graph in which
each node is a topological entity such as a hallway or room,
and the edges represent the transition regions between those
classes, for example, a door. Tapus et al.[23] proposed an
incremental and automatic topological mapping which deals
with the problems of cycle closure and of a non static
environment. Their mapping updating is based on the entropy

of a probability distribution over the possible positions of the
robot.

The second group on semantic mapping consists of spatial
representations characterized by objects which can be used
to distinguish between different regions of the final map.
Galindo et al. describe a navigation approach which is
composed of symbolic commands [6]. In [20] the authors
deal with SLAM in dynamic environments, where the robot
detects and tracks natural landmarks, which are later used for
relocalization and to handle uncertainties both in the system
and in the environment.

The third group of semantic maps consists of a hierarchical
representation, where the discretized spatial information is
related to a label or annotation in the semantic information,
of which [14], [28], [17], [25], [27] are examples. Look-
ingbill [14] developed a method for learning models of the
environment using as reference the activity observed locally,
and called it activity-based map.

In this work we describe and apply our descriptor to
improve object recognition for building semantic maps, more
specifically, cognitive maps.

III. METHODOLOGY

In this section we detail the design of our descriptor and
show that it can be used to recognize objects, and finally
we show how it can be used to efficiently produce semantic
maps.

Objects are modeled as weighted sets O of descriptors fo
computed using selected points called keypoints. A judicious
choice of these keypoints ascertains not only a good object
detection from multiple views, but also a decrease of the
search space making it adequate for online applications.

The weight of each set is computed by a learning process
using the Adaboost algorithm [5]. In order to classify a new
RGB-D image we first find the nearest neighbor match for
all sets of object models, followed by a voting mechanism
to select the model among all weighted sets.

Unlike other descriptors that use only one type of infor-
mation information such as [15], [1], [3], [18] (texture) or
[9], [22] (shape), the keypoint descriptor developed in this
work encodes geometrical and appearance information. Later
on, when we describe the experiments, we show that the
combination of visual and geometrical cues greatly improves
the discrimination power of our keypoint descriptor.

A. BASE DESCRIPTOR
Our descriptor is inspired by the work of [3]. In that work

the authors encoded point information as a binary string,
and have shown the efficiency of this encoding in their
feature point descriptor. They have also shown that in spite
of the descriptor’s simplicity, it yields higher recognition
rates. We propose an extension to their work by embedding
geometrical cues during descriptor construction.

The first step to compute the set of descriptors of an RGB-
D image is the selection of a subset of keypoints K. For that,
we use an efficient keypoint detector called FAST [21]. After
the detection step, each keypoint will have its corresponding



estimated 3D location in the point cloud. This enables the
analysis of a small surface patch around the corresponding
point on the object, based on a patch p defined on the image.

The center of the image patch p of size S×S is positioned
at the location of each keypoint k ∈ K found by the FAST
detector. For all positions in a set of (x,y)-locations we
evaluate the function:

f(p) =

�
1 if p(x) < p(y) ∨ �N(x),N(y)� ≥ ρ

0 otherwise,
(1)

where p(x) is the pixel intensity at position x = (u, v)T and
N(x) is the normal vector of the projection of pixel p(x) in
the point cloud. To capture the characteristic change in the
surfaces we compute the dot product �N(x),N(y)� between
the normals.

The final descriptor is encoded as a binary string computed
by:

b(p) =
256�

1

2i−1f(p,xi,yi). (2)

The main reason to use a binary operator was to maintain
the simplicity and computational efficiency of the descriptor.
We empirically tested different operators, such as XOR,
AND and OR, to fuse these information, and the best result
was obtained using the OR operator. We also performed
experiments with larger signatures to separately handle in-
tensity and normal by concatenating them in order to avoid
ambiguity. However, the results were similar to the approach
combining them with the OR operator (which is more
efficient both in processing time and memory usage). Based
on these findings we chose to use the OR operator even
knowing that there exists a small probability (about 5%) of
ambiguity.

B. OBJECT RECOGNITION
One of the simplest methods to classify a test set of

descriptors T as belonging to an object O is to find the
nearest neighbors of each descriptor ft ∈ T that minimizes
a distance function D:

g(ft,O) = min
fo∈O

D(ft, fo). (3)

Since descriptors are strings of bits, the Hamming distance
D is used as the distance metric [3]. One of the greatest
advantages of this approach, besides its simplicity, is its low
computational cost. On the downside of this naïve approach
is that it tends to produce several false positives in the
final classification. Therefore, to improve classification, we
use a multiclass discriminative algorithm which returns the
probability of a datum belonging to a given class.

Our classifier is composed of binary weak classifiers hi,
i ∈ {1, . . . , n} integrated by the Adaboost algorithm. Each
weak classifier contains a set of descriptors O which repre-
sents an object. The probability that a test set T corresponds
to the object is given by:

h(T ) =
1

|T |
�

ft∈T
I(g(ft,O) ≤ τ), (4)

where I is an indicator function that returns 1 if the condition
in the argument is true and 0 otherwise. The term ft is
the descriptor vector of the test object T . The threshold τ
restricts the minimum distance for a valid match.

The multi-class classifier then selects a classifier H with
maximum membership probability. Hence, the class of a test
RGB-D image with a set of descriptors T is given by:

c∗ = argmax
H∈H

|H|�

i=1

wihi(T ), (5)

where H is the set of trained classifiers, wi is the weight
of the weak classifier hi and c∗ is the class represented by
classifier H .

C. SEMANTIC MAPPING
A particle filter was used for robot localization by selecting

its most probable position. The classifier returns a class label
c∗ for each frame acquired from the RGB-D sensor during
robot navigation. If the label is different than “none” then it
is indexed to the current location. Algorithm 1 describes the
mapping process.

IV. EXPERIMENTS
To evaluate the performance of our descriptor and the pro-

posed classification approach, we initially collected several
images with a Kinect mounted on a Pioneer P3-AT, as shown
in Fig. 2. The final dataset was composed of 17 samples of 9
objects with different shapes and textures and 30 samples of
random images from our lab to represent the negative dataset,
Fig. 1. Two images of each object from distinct views were
used to extract the sets of keypoints to build weak classifiers
in the training step.

We performed two tests: i) First we trained the classifier
and verified the quality of the classification using all other
images in dataset not used in the learning stage; ii) next,
the objects in the dataset were randomly positioned in the

Algorithm 1 Semantic Map(H)

1: while true do

2: p ← ParticlefilterPosition()
3: f ← getRGBDimage()
4: K ← FAST(f)
5: T ← {b(p)|p ∈ K}
6: Find label class c∗ solving:
7:

c∗ = argmax
H∈H

|H|�

i=1

wihi(T )

8: if c∗ �= “none” then

9: map[p] ← c∗

10: end if

11: end while



Fig. 1. Objects used for classification and detection experiments. From left to right: Toolbox, Cone, Nomad Robot, Pionner Robot Model 2, iCreate
Robot, PC, Pioneer Robot Model 1, Keyboard box and Cabinet classes. The last image is a example of negative sample used in the training and test steps.

hallways of the Computer Science building and a map with
the location of each detected object was created.

Finally we compared the performance of our descriptor
with SURF, a standard 2D descriptor in the literature, and
with BRIEF.

Even though the comparison with SURF and BRIEF may
seem unfair, our point was not to show which descriptor is
best. We actually wanted to show that better recognitation
performance may be attained by simply including informa-
tion of different nature, such as geometry, instead of using
highly sophisticated, robust descriptors.

Other approaches in the literature that use shape informa-
tion or other geometric descriptor (i.e. Spin Image or NARF)
would possibly provide high recognition rate but at the a
substantially larger computation time on a standard CPU. We
also aimed at obtaining good recognition results but at with a
significantly reduced computational requirements. Therefore,
we chose to compare with methods that would run under
similar hardware constraints such as BRIEF and SURF.

A. Matching Performance
To evaluate the correct matching rate using our descrip-

tor, we selected one image from the dataset in which the
object was directly facing the sensor and computed the set
of descriptors. These descriptors were matched with the
descriptors of all others 16 images of the object as well as
with the 30 negative images.

Figure 3 summarizes the result of true and false positive
rates as Relative Operating Characteristic (ROC) curves for
all objects in the dataset. Better matchings are closer to the

Fig. 2. Experimental Setup. On the left a picture of the mounted Kinect
RGB-D camera in a Pionner P3-AT. On the right show RGB camera and
the depth camera views.

Fig. 3. ROC curve of matching using BASE descriptor. The best matching
is closer to the upper-left corner. We note high true positive rate with low
false positive rate for all objects in the dataset.

upper-left corner. Six out of nine objects had their curves
very close to the upper-left corner. Even though the curves
of three objects (PC, Cone and Toolbox) were not as close
as those of other objects, their true positive rate was larger
than 80% with a false positive rate lower than 20%.

B. Learning and Classification Performance

Keypoint descriptors are at the heart of a large number
of vision based machine learning algorithms. In spite of
the ever growing performance of computer systems, the
overwhelming amount on visual data now available tends
to be processed and used on mobile devices with limited
resources. Therefore faster and efficient keypoint descriptors
need to be developed.

In order to estimate the performance of BASE descriptor,
we run 5 times and measured CPU time for the learning
and classification algorithms on our dataset. We compared
the performance with two intensity only descriptors: BRIEF
and SURF. Fig. 4 shows that in both steps – learning and
classification –, our descriptor was faster than the others.
The learning time of BASE was 60% faster than SURF and
15% faster than BRIEF. For the classification step, BASE
descriptor run 2 times faster than BRIEF and almost 4 times
faster than SURF.

One reason why BASE runs faster than BRIEF is due to
the fact that BASE includes more meaningful information
to build the classifier. In our experiments we observed that
BRIEF uses more than one weak classifier for its binary
classifier. This leads to a matching with more than one



Fig. 4. CPU time for Learning and Classification steps. In both experiments
BASE was faster than BRIEF and SURF. While the use of BASE in learning
step is approximately 2 times of SURF and it is closer to BRIEF, in the
classification performance our descriptor was almost 2 times faster than
BRIEF and 4 times faster than SURF.

set of descriptors. This also demonstrates the discrimination
superiority of BASE over BRIEF.

A far as memory use is concerned, BASE and BRIEF have
similar performance, since both use binary strings which
imply low memory utilization.

C. Classification
We now present the results of employing different types

of descriptors in a low computational cost classifier. As
described in Section III, we have adopted an ensembled
approach using Adaboost algorithm. The descriptors used in
the experiments were BRIEF, SURF and BASE. We train
the classifiers with 9 positive samples of objects in different
views and 9 negatives samples. The parameters τ and ρ used
in the matching process were set experimentally.

By comparing the confusion matrices among the nine
classes in Fig. 5 we observe that classification that uses
BASE obtains results significantly better than the others
that do not. Although the values in the confusion matrix of
BASE shown in Fig. 5(a) are slightly more spread than for
BRIEF and SURF, this matrix clearly shows better accuracy
by the diagonal squares that can not be observed in the
other descriptors confusion matrices. Also, an analysis of
the BRIEF and the SURF confusion matrices shows that the
classifiers built with those descriptors present a strong bias
toward a given class (e.g. Toolbox).

D. Semantic Mapping
We performed experiments to evaluate different aspects

of the use of the RGB-D descriptor to build a semantic
map. We tested semantic RGB-D mapping spreading objects
throughout the hallways of our computer science building.
A Pioneer P3-AT robot navigated in the environment using
the Vector Field Histogram [2] and a particle filter [24]
technique. The algorithms were implemented on Player 3.0.2
and the experiments were performed on a computer running
Linux on a Intel core i5 with 6 Gb of RAM.

Figure 6(a) shows the results obtained with our approach
that demonstrates a superior number of true positive recog-
nitions and higher rate of classified objects, with a small

amount of false positive detections. Comparing these results
respectively with BRIEF and SURF approaches, Fig. 6(b)
and (c) clearly show the superiority of our descriptor both
in recognition rate and robustness to false positive.

In spite of the large variation in lighting conditions of the
different moments when data were collected for training and
for testing, our method shows to be less affected by lighting
conditions since it takes advantage of range information.

V. CONCLUSION

We have proposed a new lightweight descriptor that effi-
ciently combines intensity and shape information to construct
fast and low memory consumption signatures for keypoints.
This descriptor was compared against standard descriptors in
the literature on data provided by low cost RGB-D system
developed for entertainment applications. Improved robotics
mapping and object detection and recognition was attained
in several experiments.

A dataset with 17 samples of each of the 9 objects
was built to test the matching capability of the proposed
descriptor. As shown in the ROC curves, our descriptor
obtained high true positive detection rate with low false
positive rate for all objects.

To evaluate the use of the BASE descriptor for object
detection and recognition, we propose an efficient and simple
framework based on Adaboost algorithm. Measurements of
learning and classification time were obtained with our
descriptor and two other algorithms: BRIEF and SURF. Our
descriptor demonstrated superior accuracy in the confusion
matrix and faster execution times for both learning and
classification steps.

We have also demonstrated an application of the classifi-
cation framework with the proposed descriptor in Semantic
Mapping. We analyzed the performance by comparing the
results with BRIEF and SURF. Again, our approach outper-
forms the other descriptors both in detection and recognition.

The results presented here reinforce the conclusion of [13]
that merging intensity and shape information is advantageous
in perception tasks. Shape and intensity information enables
higher performance than using either information alone.

A larger dataset such as [12] will be used to evaluate the
behavior of our descriptor for a larger number of classes.
As far as mapping is concerned, we are currently investigat-
ing the use our methodology to enhance loop closure and
modelling of 3D environment.
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Abstract—We consider the object search problem, where a
robot has to explore its environment in order to localize some
objects. We use a two step process, where the robot first
detects candidate objects, and later identifies them using another
algorithm. Since there are several candidate objects and the
outcomes of the object recognition algorithm are uncertain, we
model the planning process as an MDP. Furthermore, we give a
certain amount of time to the robot to fulfil its mission. This leads
to a problem where we want the robot to find as many objects
as possible and as fast as possible within a limited time. This
paper shows early results for the deterministic case. We model
this by a Constrained Deterministic MDP, and we propose an
incremental algorithm, based on a sequence of Mixed Integer
Linear Program to compute the policy.

I. INTRODUCTION

In order to perform more and more complex tasks, robots
have to get a better understanding of their environment. We
are considering an indoor environment, like offices or personal
houses, where the robot can interact with humans. One of
the most important tasks for a mobile robot is to preserve its
integrity, and thus has to know where it may go safely. This
issue has been well studied and has leaded to many SLAM
algorithms (Simultaneous Localization and Mapping) [1]. To
fulfil complex tasks, the information present on this map is
not sufficient anymore. Instead, the robot has to know what
kind of objects are in its environment and should be able to
locate them on a map. The problem of searching and locating
those objects on the map is called the objects search problem.

Many work has been done to search efficiently for objects.
Sjöö et al. [2] present an attention mechanism and methods
for depth computation, used to control the zoom level in
order to perform an SIFT matching at an accurate distance
measure. In [3], Meger et al. present Curious George, a
combination between an attention system and a SLAM al-
gorithm. This attention system allows the robot to take high
definition pictures of potentially interesting area, which are
used offline to perform the object detection. The principle of
alternatively performing a move and an observation action is
used by Shubina and Tsotsos in [4], where they compute the
probability of an object’s presence and the probability of an
object detection using a certain type of recognition algorithm.

The lack of a long term policy, by selecting only the best
next viewpoint, may lead to sub-optimal results. To obtain
a long term plan, Aydemir et al. [5] are using a high level
planner to select low level strategies to find a target object. The
algorithm of Masuzawa et al. [6] that first detects candidates
objects. Instead of directly selecting the best next viewpoint,
they compute a long term policy. The authors rely on an ad-

hoc world modelization in order to speed up their planning
algorithm, but still, since they are performing an exhaustive
search, is too slow to be solved for larger problems online.

Our problem is to recognize as many objects as possible
and as fast as possible given a time limit. The contributions
of this paper are the modelization of the problem as a
Constrained Markov Decision Process (CMDP), a simplified
Mixed Integer Linear Program (MILP) to solve it, and an
incremental algorithm to control the calls to the MILP solver.

II. PROBLEM

We define a candidate object as the location where some-
thing has been detected as potentially being a searched object.
We call the location from where this candidate object can be
identified a viewpoint. Fig.1 shows the object search prob-
lem. First, candidate objects are detected using a long range
algorithm (here a color histogram search). Those detections
are set as candidate objects on the map. Those candidates
objects can be identified using an accurate and short ranged
algorithm (here SIFT matches). For each object we define
a set of viewpoints from where it is possible to apply the
identification algorithm. We assume that this algorithm is not
perfect and that we can estimate its probability of success for
each viewpoint. We obtain a planning problem to select the
optimal sequence of viewpoints, and once solved we can apply
the selected action. At the end of the mission, we obtain a map
augmented by objects information. In this paper, we will add a
time constraint for the mission. We will focus on the planning
algorithm, thus the exploration part will not be presented here.
Furthermore, we will remove the uncertainty and will focus
on how to manage the constrained planning problem.

(a) Detect (b) Detect (c) Plan

(d) Identify (e) Identify (f) Return map

Fig. 1. Object searching



III. MODEL

A. Markov Decision Processes

MDPs [7], [8] allow the formalization of a sequential
decision problem under uncertainty. This process is fully
observable, i.e. the observed state is the actual state of the
system. A fully observable MDP is a 4-tuple �S, A, P, R�

• S is the (finite) set of states,
• A is the (finite) set of actions,
• P : S ×A× S → [0; 1] is the transition function,
• R : S ×A → R is the reward function.

The unique optimal value function V ∗ is given by the Bellman
equation [7] for the discounted expected reward for a discount
factor γ ∈ [0; 1]. ∀s ∈ S :

V
∗(s) = min

a∈A

�
r(s, a) + γ

�

s�∈S

p(s, a, s
�)V ∗(s�)

�
(1)

B. Observation planning model

From the raw sensor data, we need to build an MDP to
compute the observation policy. We use model presented in
[9], and defined by :

a) States set S: Since transitions are history independent,
the states have to contain all previous information needed to
take the decision. It is a way to handle the partial observability.

• the current position (x, y) of the robot,
• the list of visited viewpoints. Since the robot should

not observe twice the same object from the same view-
point, we need to keep the list of visited viewpoints
{{vp1

1, vp2
1, . . . , vpm

1 }, . . . , {vp1
n, vp2

n, . . . , vpm
n }} for all

n objects, and vp
j
i is the jth observation for the ith object

and m the maximum number of observations allowed.
• the information Ii about object i’s status. it can be

identified, rejected, or unknown.
A state s can be written :
s = �x, y,

�
{vp1

1, . . . vpm
1 }, . . . , {vp1

n, . . . vpm
n }

�
, {I1, . . . In}�

b) Actions set A: The robot has only one kind of action.
It is a macro action preforming a move action followed by
an observation action. The robot selects a viewpoint, goes
there and observes the related object. Its outcomes will be
described by the transition function. We also add a stop action,
available in every state, which makes the robot move to the
starting position and reach the final state. This stop action is
also executed when there is no more candidate objects.

c) Transition function P : In a general model, we con-
sider move actions as deterministic and observation actions
as stochastic. The probability of successfully identifying a
candidate can be computed for each viewpoint according to
known parameters (object type, location etc.). Since it is
impossible to observe twice from the same viewpoint, this
MDP is acyclic.

d) Reward and Cost function R: The observation plan-
ning problem can be naturally expressed by two criteria : the
overall mission time, and the number of recognized objects. In
[9], the authors focused on optimizing only the time criteria,
whereas in this paper we want to recognize as many objects

as possible given a time constraint. We define C(s, a) < 0 the
cost (time) of executing a in s (the time to reach the viewpoint
plus the time to recognize the object), and R(s, a) > 0 the
reward for having identified an object (set to 1 if s has just
recognized one object, 0 otherwise. This value can be changed
to introduce preferences between objects).

In the following, we will restrict this general model to
the deterministic case, where observations always succeed.
This process becomes a Deterministic MDP. Observing one
object immediately change its status to identified, hence the
observation history can be removed from the state’s definition.
Even, this simplified model is a first step towards the stochastic
one, the obtained plan can still be useful. For instance, it
can be used to decompose the whole problem into the object
observation order planning and the viewpoint planning for
each object or as a heuristic value.

IV. CONSTRAINED MDP

As previously shown, the robot has to deal with rewards and
costs of different natures and we don’t optimize a weighted
sum of the two criteria. Instead, we manage those two criteria
separately through a CMDP, see [10] for a survey. It is an
extension of MDP where the long term expected reward is
subject to constraints on other resources. A mutli-criteria
reinforcement learning algorithm has been proposed in [11]
which ensures a minimum expected reward for every state
before optimizing the other criterion. But it is working on a
sub-class of CMDP where our problem can’t be expressed.

When optimizing the number of objects using a time
constraint, once satisfied, it is not optimized anymore. For
instance, if a mission is given an infinite time, any policy
that selects, for each object, the viewpoints having highest
probability of recognition will be optimal, regardless to the
global observation order! Even this behaviour is rational from
an optimization perspective, it is unacceptable for a real
application. Thus we have to optimize the mission’s time using
an expected number of recognized objects as a constraint.

The methods the most widely used are based on linear
programming. The linear programming approach has been first
introduced in [12]. We present here the dual of this linear
program (LP) since it is more suited to solve CMDP [13]. The
occupation measure xs,a represents the discounted number of
time action a is taken in s, and αs : S → [0, 1] the initial
probability distribution over states ; C being negative, the dual
linear program to find the fastest policy is formulated as :

Maximise
�

s,a

C(s, a)xs,a

Subject to
�

a xs�,a − γ
�

s,a xs,ap(s, a, s�) = αs�

xs,a ≥ 0

(2)



Once this linear program solved the optimal policy1 can be
computed by :

π(s, a) =

� xs,a�
a

xs,a
, if

�
a xs,a > 0

arbitrary, if
�

a xs,a = 0
(3)

It is possible to add extra constraints on the minimum expected
number of recognized object Rmin to the linear program LP.2.
Those constraints are defined by the Eq.4 :

�

s,a

R(s, a)xs,a ≥ Rmin (4)

Adding Eq.4 to LP.2 implies that the optimal policy be-
comes stochastic, which is not wanted. In [14] the authors
showed that computing an optimal deterministic policy is NP-
Complete. They compute a deterministic policy by adding a
non linear constraint to the LP, ∀s ∈ S, a, a� ∈ A, a �= a� :

|xs,a − xs,a� | = xs,a + xs,a� , (5)

In [13], the authors change those additional constraints so
that the mathematical program becomes an MILP. Since more
tools are available to solve MILP than general mathematical
program, the MILP may be easier to solve. They introduce
∆s,a a binary variable to express the (unique) selected action
a in s, and X ≥ xs,a a constant to force xs,a/X ∈ [0; 1[.
They compute the optimal deterministic policy by adding to
LP.2 : 





�
a ∆s,a ≤ 1

xs,a/X ≤ ∆s,a

∆s,a ∈ {0; 1}
(6)

The CMDP defined to solve the observation planning problem,
see Sec.III-B2 has interesting properties : the starting state is
known, it is acyclic and any policy will lead to the final state.
Then we will use the same principle that combines LP.2 and
Eq.6, but here, thanks to those properties, we can simplify Eq.6
by defining xs,a as binary variables and we finally propose the
following MILP :

Maximise
�

s,a

C(s, a)xs,a

Subject to
�

a

xs�,a −
�

s,a

xs,ap(s, a, s
�) = αs�

�

s,a

R(s, a)xs,a ≥ Rmin

xs,a ∈ {0; 1}
(7)

Theorem 1: MILP.7 computes the optimal deterministic
policy for an acyclic DMDP with unique and known starting
state and γ = 1.

1Note that even the policy may appear stochastic, without constraint this
policy is always deterministic

2We add for the constrained problem a stop action which can end the
mission.
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Fig. 2. MILP solving time

Proof: The starting state s0 is known, thus : for the start-
ing state s0, with γ = 1 and αs0 = 1 we have

�
a xs0,a = 1.

Since xs,a ∈ {0; 1} one and only one action a0 will be selected
having xs0,a0 = 1. Since the problem is deterministic, there
is only one state s� such that p(s0, a0, s1) = 1, furthermore,
since the MDP is acyclic, there is no other state s� such that
xs�,a�p(s�, a�, s1) �= 0. We have

�
a xs�,a − xs0,a = 0, and so

on until the process reach the final absorbing state.

V. RESULTS

Fig.2 shows the computation time to solve the MILP for
six and seven objects in the model, different number of
viewpoints, and for various constraint value Rmin. We use Ilog
CPLEX with default options. For highly constrained problem
(Rmin = 7 obj) or low constrained problem (Rmin = 1
obj), the optimal policy can be found quickly. But for ”in-
between” problems the computation time increases dramat-
ically (6 candidates, 4 obj and 7candidates, 5 obj). Fig.3
shows the computed policy for different constraint values. In
this picture, each color represents one object, and each circle
represents one viewpoint for that particular object.

VI. ITERATIVE MILP

We propose an iterative algorithm, Alg.1, which will at
every step, find a solution to a problem constrained by a given
minimum number of expected identified objects. Thus the
solution found will be the fastest for that number of objects.
We define nbObj as the total number of candidate objects in
the model. If the expected mission time

�
s,a C(s, a)x(s, a) is

under the time limit, we increase the constraint value (line 6) in
order to find a suitable plan. Fig.2 shows that some instances
are very difficult to solve and should be avoided if possible.
Alg.1 controls the search and can try to avoid those particular
values when selecting Rmin (line 6). For instance, if the robot
has a lot of time, it can first plan for the maximum number of
objects and, if succeed, doesn’t need to solve for other values.
When a little time remains, even many candidates could be
checked, it is better to first search for a plan that recognize a
few objects.

VII. DISCUSSION

We showed how we can compute an observation plan for
object recognition under time constraint. This is an early work,
and the next step is to include uncertainty in the transition



(a) Rmin = 1 (b) Rmin = 2

(c) Rmin = 3 (d) Rmin = 4

(e) Rmin = 5 (f) Rmin = 6

Fig. 3. Policy execution for different constraint values Rmin

function. The MILP can’t simply use binary occupation mea-
sure variables anymore, we have to use one of the previous
approach [13], [14]. Since the observations may fail, and since
we want the robot to be able to try again, we have to keep a
history of observation in the state, leading to a huge increment
of the state space size. In previous works, this is solved by
using Monte-Carlo algorithm and a limited horizon planning.
It is possible to quickly compute a heuristic for the best policy
to recognized all object (see [9]), and we can use it to get a
high-level object recognition order, and then use it build an
approximate, potentially sub-optimal, MILP. This observation
order will force the plan to finish recognizing one object before
continuing to the next one. In that case, the object observation

Algorithm 1: Iterative MILP
Data: MDP model, mission time tmax

Result: π satisfying tmax

Generate MILP (see MILP.7) from model;1

Rmin ← 1;2

repeat3

Set constraint Rmin;4

Solve MILP;5

Rmin + + ;6

until E
π

� ∞�

t=0

γ
t
Ct|s0 = s

�
> tmax or Rmin > nbObj ;

7

return π∗8

history will be limited to the current object, the previous
object being solved, and the next one not yet observed so the
transition function will be limited to the current local plan.

VIII. CONCLUSION AND FUTURE WORKS

In this paper we presented the observation planning problem
with limited time resource. We showed how we can use the
properties of the observation planning problem to propose a
simplified MILP. We showed early works using an iterative
algorithm that solve a sequence of MILP. Once the observation
planning problem is viewed as a MILP it is possible to
use both the optimization techniques on the problem itself
(Hierarchical planning, approximate MILP generation) or on
the way of solving the MILP itself (approximate the solution of
the generated MILP). Since the MILP are well-studied, having
the observation planning expressed by those enables the use
of many proved property, and also many efficient algorithms.
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Robust 3D Monte Carlo Localization using an RGB-D Camera and a

Semantic Building Model

Maurice Fallon and John Leonard

Abstract— This paper presents a system for the robust

localization of an RGB-D Camera, such as a Microsoft Kinect,

in 3D. Our approach first focuses on the extraction of a low

fidelity 3D model of the area of operation made up of semantic

planar segments. In particular this emphasizes the extraction

of major planes which are most likely to remain static (such as

walls, floors, ceilings) while excluding non-planar point clouds

(such as furniture) which we deem to be clutter and more likely

to move in subsequent operation. Utilizing planar primitives,

rather than voxel grids, is an important decision because (1) it

allows for efficient 3D mapping relative to robot poses during

exploration and (2) directly represents the real world structure.

Using this map as input, an efficient Monte Carlo Localization

algorithm is proposed which utilizes visual odometry (as the

particle propagation mechanism) and coarse shape and color (to

form the likelihood function). Demonstration of this approach

is provided using an array of robots and human-mounted

platforms. The application area of this approach is wide:

including not just traditional robotic localization but many

wearable and virtual reality applications.

I. INTRODUCTION

Localization in a previously mapped environment is a key
skill to enable lifelong robotic operation. Previous research
has studied this problem with 2D LIDAR range finders:
demonstrating localization in a 2D occupancy gridmaps [1],
[2]. However these sensors typically cost several thousand
dollars — a figure which is not suitable, for example, for
the low-cost domestic robotic market. Instead this paper
describes ongoing work to develop a robust and accurate
localization algorithm for the significantly cheaper RGB-D
Camera such as a Microsoft Kinect1 in 3 dimensions.

This paper is split into two parts. In Section II we discuss
the attributes of a (minimal) 3-D planar map of an indoor
environment intended for localization and then demonstrate
how the map can be generated using RGB-D data from a
Kinect. In Section III a Monte Carlo Localization algorithm
is outlined which utilizes only the RGB-D data to reliably
position the sensor within this map. Finally a series of
experimental demonstrations are presented in Section IV
using several platforms — robotic and man-portable.

II. 3D MAP BUILDING

a) Pose Estimation: In this section we outline a pro-
cedure for the extraction of a 3D building model using a
robot pose estimated using Simultaneous Localization and
Mapping. SLAM is a fundamental subfield of robotics and

The authors are with the Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
mfallon,jleonard@mit.edu

1In this work we will typically refer to the Kinect, but other sensors based
on infrared projection are in development

Algorithm 1: Kinect Plane Extraction
Given a Kinect RGB-D point cloud;
First discard all points beyond 5m range (and hence in
the inaccurate non-linear range of the sensor);
Downsample point cloud using voxel tree with leaf of
size 30cm;
while 30% of points remain or the last extracted plane
was greater than 1m2

do

Extract the largest plane (with points within 0.03m)
from the remaining cloud using RANSAC;
Remove any disconnected points from this plane;
if the plane area exceeds 1m2

then

Retain the plane, its coefficients, centroid and
pose;
The plane color is determined to be the median
color of the original points;

has progressed from the initial work of Smith, Self and
Cheeseman [3] through EKF and later particle filter SLAM,
such as [4], to non-linear least squares optimization of the
entire robot trajectory and observation set — so called full
SLAM. The current state of art, such as iSAM [5] and
HogMan [6], provide efficient and incremental smoothing
via non-linear optimization of the underlying robot trajectory
when given a series of measurement constraints — such
as those provided by LIDAR scan-matching. Very accurate,
large scale 2D maps can be created in this way.

At this initial stage of our project we will utilize a LIDAR-
estimated trajectory created in this way to infer the motion of
the RGB-D sensor (rigidly connected to the Hokuyo UTM-
30LX on the push cart illustrated in Figure 5). Doing so
allows us to simplify the 3D map building procedure and to
focus on RGB-D-only localization in the later part of this
paper2. The LIDAR-estimated pose is indicated in Figure 2.

b) Map Extraction: Using this accurate estimate of the
Kinect sensor trajectory, we now wish to extract the planar
semantic information from the RGB-D data. We assert that
the largest planar polygons in any indoor environment are
those that are (a) typically stationary from day to day (b)
permanent structural features and (c) sufficient to form a
recognizable 3D model of an area. Our thesis is that this
type of model is sufficient for accurate robot localization in
3 dimensions.

2Ongoing visual SLAM research, such as [7], [8], would allow us to drop
the requirement for a LIDAR sensor in the map building module in future.



We present in Algorithm 1 a series of steps which extracts
these planes from successive scans of RGB-D data taken
by the sensor moving through an indoor building. Typically
this procedure results in the extraction of 3–8 large planes
representing the major planar objects within the sensor field
of view. The location of the plane polygons can then be
converted into the global reference frame using the afore-
mentioned sensor pose. This procedure is then repeated for
each successive scan within 5m of a central pose. Typically
this results in multiple observations of the same plane, as
large planes are typically observed many times as the sensor
passes.

(a)

(b)

(c)

Fig. 1. Plane extraction procedure: A frame of raw kinect data (top) is
first projected into a 3D point cloud (middle). Then large planar objects are
successively extracted (bottom, for several consecutive frames). Also shown
are the sensor pose triads.

A second algorithm (Algorithm 2) is then required which
combines each planar observation into a final representative
planar polygon representing a wall, floor, door or ceiling. The
set of all such planes within this region then represents an

Algorithm 2: Planar Submap Determination
Given a set of overlapping planes;
Choose a center point for the submap (eg the pose of
the sensor at some time);
Find the set of planes whose centroids are within a 5m
of this point;
while planes remain in the original set do

Choose a plane, incrementally find the set of planes
which intersect it, using these conditions;
- Both plane normals are within 4 degrees;
- 2nd plane polygon can be projected onto the first
with less then 5cm of translation;
- The percentage overlap of the projected points is
greater than 80% ;
for all accepted planes do

Merge into a single new plane, re-estimating the
centroid and the plane coefficients and Convex
Hull polygon — weighted by the number of
points of the originating cloud;

Remove all merged planes from the original stack;

accurate submap for this area, again illustrated in Figure 1.
A typical submap has an extent of about 5m x 5m and
are overlapped slightly so that approximately 30 submaps
each containing about 30 planes can represent an entire
building floor of MIT’s Stata Center. We envisage that a
single submap would represent an read the size of individual
office rooms but no such logic or understanding is yet in
place.

A. Model Utility and Storage Requirements

In this section we we will overview some design properties
of this map and explain why we believe it to be a useful
representation.

Other efficient 3D mapping and storage systems have
been proposed and implemented — often building on the
octree data structure. For example OctoMap [9] demonstrated
efficient octree-based occupancy grid mapping allowing for
compact storage of large scale maps with minimal memory
and disk storage requirements. Their representations of the
New College dataset of 40,000m2 requires 50 MB of memory
or 1 MB of disk space using OctoMap.

An alternative approach is proposed by Magusson et al
[10] as in extension of the Normal Distributions Transform
(NDT) algorithm to 3 dimensions.

However, our thesis is that by utilizing a fixed grid of
points the resultant octree is in a sense ’baked in’ and
disconnected from the underlying robot pose used to con-
struct it. It is difficult to adjust the structure of the tree —
should a loop closure be detected by an exploring robot.
In comparison the planar polygons are connected to poses
in the pose graph optimization mentioned previously by a
relative transformation. Should loop closures or adjustments
be detected the location of any of the planes can easily be
adjusted — updating and improving the 3D model.



(a)

(b)

Fig. 2. Using the sensor pose estimated from the LIDAR (red), a global
estimate of the plane locations can be inferred and an accurate 3-D model
of the entire floor can be constructed as shown in this topdown view (top).
Note the accuracy of the top-down model relative to the building floor-plan
(bottom). The size of a typical submap is indicated by the purple loop (about
5m x 5m).

Our representation is also efficient — we project that it
will require only 2 MB of disk space to represent the entire
70,000m2 9 floor MIT Stata Center. It intentionally does
not represent small furniture, chairs, tables etc. This type
of information is typically not required for long-range path
planning and is often transient in any particular location.
Semantic labeling of the representation is also feasible - at-
taching the building connectivity graph or the room function
to room-sized submaps.

Nonetheless, octree occupancy maps have many uses in
path planning and free space detection. We believe that
algorithms can be developed to transform between the two
representations to allow for complementary use.

Finally, we do not claim that the procedure outlined here is
in anyway optimal and we can ourself envisage a number of
optimizations to improve the appearance of these 3D plane
models. However using this semantic map representation
we aim to demonstrate accurate localization using only the
Kinect sensor.

(a)

(b)

Fig. 3. Illustration of a section of the 3-D building model. Note that the
model is intended to indicate the geometric information - not the precise
textural information. Plane colors are for illustration purposes only at this
stage.

III. RGB-D MONTE CARLO LOCALIZATION

Having created the planar map, we propose to utilize
particle filter localization to estimate the pose of a robot
moving in this environment. Particle Filtering, more gener-
ally known as Sequential Monte Carlo (SMC), was initially
proposed by Gordon et al. [11] and is well reviewed in [12].
Initial adaptations of SMC to robot localization were later
reported [1], [2] using laser range finders and optionally
wheel odometry to localize in 2D. Through the development
of the ROS AMCL software package this approach is widely
used by many researchers in the community.

Laser range finders (FOV 180–270 degrees, range 30–
80m), are very different in quality to RGB-D sensors —
which typically are highly non-linear beyond 5m and provide
no returns at all beyond 9m. Although RGB-D does, of
course, do provide 3D estimation within its 60 degree field
of view. Nonetheless we wish to use the RGB-D data to
estimate the sensor pose in 3D at each time-frame k

Ak = (xk, yk, zk,φk, θk,ψk) (1)

as well as the associated velocities in each filter dimension.



However the addition of a state dimension to a particle filter
typically requires an exponential increase in the number of
particles.

c) Height, Pitch and Roll Estimation: While the pro-
posed likelihood function can estimate in the full 6-DOF,
it is prudent to reduce the dimensionality where possible.
For this reason we will assume that the three constrained
degrees of freedom — namely pitch, roll and height — can
be accurately estimated independent of the particle filter. This
reduces the state dimension to 3 using one of the following:

• Use of an IMU
• Assumption of horizontal motion (in the case of a

ground robot)
• Direct estimation of the floor plane from the RGB-D

depth data.
In the experiments in Section IV we typically estimated the
floor plane direclty from the RGB-D data. The state vector
will become

Ak = (xk, yk,φk, ẋk, ẏk, φ̇k) (2)

A. Particle Propagation

Our goal is to estimate the posterior distribution of the
sensor state recursively using the standard two step Bayesian
update rule. We will use sequential Monte Carlo methods
to approximate the recursion of the non-linear and non-
Gaussian system. In this way was we can represent complex
probability distributions by a set of weighted Monte Carlo
importance samples. We will assume that the initial state dis-
tribution, p(A0), is known or can be estimated as suggested
in Section V.

For each subsequent frame we will propagate the previous
state estimate according to the state transition distribution,
p(Ak|Ak−1) using the estimate produced by the FOVIS
visual odometry algorithm [7]. For each dimension the
propagation equations are of the form (in this case for the
X -dimension)

xk = xk−1 +�T ẋk +N (0,σ2
x) (3)

ẋk = ẋk,vo +N (0,σ2
ẋ) (4)

where the final term in each equation adds a small amount
of normally distributed noise so as to support unexpected
target motion using σ2

x = 0.004 and σ2
ẋ = 0.0004. The

term ẋk,vo, is the relative (2-D) visual odometry translation
estimate, [vk,vo, vk,vo,φk,vo], transformed into the particle’s
global coordinate frame

ẋk,vo =
vk,vo cos(φk−1)− wk,vo sin(φk−1)

�T
(5)

ẏk,vo =
vk,vo sin(φk−1) + wk,vo cos(φk−1)

�T
(6)

φ̇k,vo =
φk,vo

�T
(7)

Typically the period of time between frames is �T = 0.1
seconds.

For smooth and continuous motion, the FOVIS algorithm
demonstrates relative odometry estimates with a mean veloc-
ity error of 0.08m/s in typical indoor environments. However,
during abrupt accelerations and sharp turning motions the
feature-based visual odometry algorithm will suffer from
periods of total failure. These failures are typically due to
motion blur and other problems with the rolling shutter of
the Kinect camera. (Given space restrictions, the interested
reader is directed to [7] for extensive testing of the visual
odometry.)

Fortunately, these failures are indicated by low levels of
feature matching, when this is detected we will instead
propagate the particle set using a noise-driven dynamical
model replacing Eq 4 with

ẋk = ẋk−1 +N (0,σ2
ẋ) (8)

and σ2
ẋ = 0.001. If the failure is relatively short in duration

(less than 3 seconds), it is possible for the MCL algorithm to
overcome this failure entirely3. For longer duration failures,
we envisage abandoning the current particle set and reini-
tializing the system anew using visual bag of words. This is
discussed in Section V.

B. Likelihood Function

Having proposed the particles for the current instance, we
now wish to evaluate a likelihood for each particle using
the current sensor depth data and to use it to update the
particle weights from the previous iteration. Typically, the
majority of computing time is spent evaluating the particle
filter likelihood function and we have given careful thought
to its design.

Firstly we propose to down-sample the incoming data.
Our experimentation has shown that from the 640x480 pixel
image/cloud, a sufficiently informative likelihood function
is possible using only 160–200 of the pixels. Using these
points we wish to determine which of the particle poses is
most justified.

d) Euclidean-based Likelihood Function: Our current
likelihood function probabilisticly measures the fit between
the RGB-D point cloud (translated by the proposed particle
pose) and the planar submap using Euclidean distance. This
is carried out in a manner somewhat like the cost function
of the Iterative Closest Point (ICP) algorithm - although we
carry out no iterative procedure.

For a given particle A(p)
k , the RGB-D cloud is first

transformed onto the particle pose and the minimum point-to-
plane distance is then found by comparing each point, z(p)i ,
from the cloud to each plane, sj , in the submap mentioned
above

d(p)i,min = argmin
j

�z(p)i − sj� (9)

where � ∗ � represents the distance from point to plane.
Given this distance, the likelihood of this point is evaluated

3By comparison, momentary failure of visual odometry as part of a SLAM
system — for even a small number of frames — can result in problems for
Vision-only SLAM



as follows

p(zik|A
(p)
k ) = βcrN (d(p)i,min; 0,σ

2
r) (10)

+(1− β)r−1
maxU(0, rmax)

where the maximum range is rmax = 3m and all ranges
beyond this are set to rmax. An appropriate normalization
constant, cr, had been added for the truncated normal distri-
bution and the measurement variance σ2

r is estimated to be
0.5 meters. The uniform distribution supports heavy tailed
behavior and in doing so each point in the cloud has only a
small effect on the overall likelihood function. The parameter
β = 0.01 was found to give good experimental performance.

Finally, the overall likelihood of this particle is the product
of the point likelihoods across the entire cloud

p(Zk|A(p)
k ) =

Ni�

i=1

p(zik|A
(p)
k ) (11)

where Ni is the number of RGB-D points. An example of
the evaluation of this likelihood function is demonstrated in
Figure 4. This procedure is repeated for each of the particles
in the cloud and the weights are then updated to produce an
estimate of the posterior distribution at the current time

w̃(p)
k ∝ w̃(p)

k−1p(Zk|A(p)
k ) (12)

Residual resampling is carried out whenever the effective
sample size of the particle set falls below 0.5.

Note that ongoing work is considering replacing this like-
lihood function by a ray-based projective likelihood function
as well as considering the contribution of color information.

(a)

Fig. 4. Example illustration showing the particle pose (green pentagon)
which the best fits the 3D map given the current RGB-D data — that is the
particle with the largest likelihood. The blue/green/yellows dots indicate the
Euclidean distance from each RGB-D data point to the nearest plane (blue
is a low distance, yellow is high). In addition, the orange triangles indicate
the pose of the entire particle set. This view point corresponds to the Kinect
sensor located along the left hand side of Fig. 3

IV. LOCALIZATION EXAMPLES

In this section we will present a number of examples
demonstrating accurate localization in the 3D map environ-
ment illustrated in Figure 2. In each case data was collected
and post-processed to generate the numerical results in
Table I which also indicates the path taken in each case.

Each platform had either a Kinect or a Primesense RGB-
D sensor. For the man-portable system and the push cart an
accurate estimate of motion was estimated using a Hokuyo
UTM-30LX mounted in the primary plane of motion and
was used to estimate the localization error of the MCL
system. Note that the PR2 and iRobot Create ROS toolchain
is currently in development.

No major failure of the localization algorithm occurred
in these experiments (i.e. the entire particle set diverging)
although troublesome locations containing little or no visual
or geometric features do exist within the building. As indi-
cated in the table, 2D RMS error of the order of 50cm was
seen, which is encouraging at this early stage. This value
is inflated due to poor performance in the aforementioned
locations, which perhaps is to be expected. The data for the
map-portable exhibits significant motion blur and occasional
visual odometry failure; thus the results for this system
indicate the robust nature of our approach.

Stable real-time operation with 150 particles has been
realized on a 4-core 2.53GHz Pentium Core2 powered laptop
— utilizing one core each for data capture, visual odometry
and Monte Carlo localization and typically processing at
10Hz. In regions of reduced uncertainty as few as 10 particles
are required with operation at several times real-time. For
that reason, implementation of an adaptively resizing particle
set could useful in such circumstances [13].

Finally we would like to reemphasize that only the RGB-
D Kinect sensor was used in these experiments so as to
demonstrate the robustness of Monte Carlo localization with
such a low cost sensor. Localization of a nodding or rotating
LIDAR within this planar map is straightforward and is likely
to be more accurate — given the improved accuracy and
range of such a sensor. Also, additional sources of odometry
such as wheel odometry or an IMU could have been used to
improve the prediction model and to address some of failure
modes of the visual odometry mentioned above. We have
avoiding doing so for simplicity and generality.

Platform Path Duration Distance RMS Error
Man Portable ECDBCE 101 88.07 0.885
Quad Rotor ECDC 48 35 n/a
Push Cart ACDBC 153 95.33 0.4306

Willow Garage PR2 Toolchain in development
iRobot Create Toolchain in development

TABLE I
Error of RGB-D MCL (using 150 particles) compared to LIDAR-based
SLAM estimate. Units: duration seconds; distance and 2D RMS error

meters. Path letters correspond to those in Figure 2



(a)

Fig. 5. Platforms used in testing, from top-right clockwise: man-portable
mapping unit, Willow Garage PR2, iRobot Create, quad-rotor and a push
cart.

V. CONCLUSIONS AND FUTURE WORK

This paper presented an algorithm for the extraction of
a geometrically-accurate building model built using planar
segments extracted from RGB-D data from the low cost
Microsoft Kinect. The model can be efficiently stored and
is amenable to improvement and updating.

The model was then used to localize a series of robotic and
mapping platforms moving within the mapped environment
using a particle filter. Our results illustrate that this Kinect-
based localization algorithm is accurate, is robust to the
failure of its sub-systems, as well as operating in realtime.
The application area of this approach is wide: including not
just traditional robotic localization but many wearable and
virtual reality applications.

The work presented herein is under active development
and there are many avenues for improvement of the algo-
rithm. As mentioned above we make no use of color infor-
mation. A projective error module as the ability to improve
our performance in sparse environments while a GPU-based
implementation has the capacity to vastly increase the speed
of operation.

In addition, we would like to explore the possibility of
so-called kidnapped robot localization using an appearance-
based bag-of-words (BOW) such as [14], [15]. We envisage
that when a location is proposed by the BOW algorithm, it
can be used to propose a portion of the particle set which
can then be used to resolve any localization ambiguity.

Finally, open loop operation of the algorithm (for point-to-

point navigation) currently being investigated on a number
of the platforms mentioned above.
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Robust Semantic Place Recognition with Vocabulary Tree and

Landmark Detection

Lin Yuan, Kai Chi Chan and C.S. George Lee

Abstract—Semantic place recognition problem has attracted

growing interests in autonomous robots to expand their applica-

tion domain. Due to the large in-class variance in semantic place

recognition, the recognition performance has been lackluster.

In this paper, we hypothesize that the large in-class variance

is due to the fact that connections between places cannot be

suitably assigned a label. We verified this hypothesis on the

COLD localization database. We then propose a robust method

that can effectively detect these connections (landmarks), thus

improving the accuracy of semantic place recognition systems.

The proposed method uses image sequences for landmark

detection instead of a single image, thus providing robust results

which can be used for topological mapping for mobile robots

under different lighting conditions.

Index Terms—Semantic Place Recognition, Bag-of-Words,

Visual Vocabulary, Dynamic Time Warping

I. INTRODUCTION

The semantic place recognition of an environment that a
robot is traveling will be helpful in autonomous navigation
and various human-robot interaction tasks. Efforts in seman-
tic place recognition or classification have emerged since
2005. The semantic place classification problem refers to
distinguishing differences between different environmental
locations (e.g. distinguishing a kitchen from an office). The
semantic place recognition problem refers to differentiating
different locations when they even may be of the same type
(e.g. distinguishing office A from office B). Researchers first
employed range sensors to solve the semantic classification
problem. The distance measurements from range sensors
provide a nature information about how cluttered the envi-
ronment is. These measurements form well distinguishable
features for different type of environments. Mozos et al. [1]
proposed using AdaBoost algorithm for classifying different
type of semantic environments (e.g. rooms, hallways, door-
ways, etc.) from range sensor readings. Various geometric
measurements calculated from laser range data are then used
as weak features for AdaBoost.

As robust feature extraction methods are developed in
computer vision [2], [3], vision-based localization methods
become a popular research topic and experiments with visual
sensors have been carried out to improve the recognition per-
formance [4], [5]. Our hypothesis (misclassification happens
mostly at connection between semantic places) is inspired by
research [6], [7] in the vision-based localization context. For
simplifying naming conventions, we define “landmarks” to
be an area on a 2D map where two semantic place units
join, which is similar to Ranganathan et al. [8]. From now
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Fig. 1. Landmarks represented with time series of visual words.

on, we will use the term “landmark” to stand for connections
between two adjacent semantic places.

II. RELATED WORK

Semantic place recognition and topological mapping share
a close relationship because each semantic place is usually
a node in the graph of a topological map. And the semantic
recognition problem appears earlier in the context of topo-
logical mapping. Tapus and Siegwart [9] used line and corner
features in omni-directional images to generate signatures
for each semantic location. Thus the topological map is
represented by a collection of signatures. With a hierarchical
SLAM system, Kouzoubov and Austin [10] can locate the



robot in a topological map. Friedman et al. [11] used Voronoi
random fields to extract the topological structure of an indoor
metric map. Ranganathan et al. [8] proposed a topological
mapping algorithm without metric map. In these topological
mapping literatures, a node in the topological map is usually
a room on the floor plan, which is a semantic place unit.

Later on, researchers employed Nearest Neighborhood
(NN) classification method for vision-based localization. In
these NN classification systems, observations are made that
misclassification happens mostly at “landmark” positions.
Using visual cameras, Zivkovic et al. [6] employed SIFT
features within images to match against the database images
in order to locate a robot to a semantic location. The seman-
tic location is represented with a node in the topological
map built with graph-partitioning algorithms. They tested
their localization performance by taking one image from the
database, matching it against all other images in the database
and assigning the nearest neighbor’s class to the image. The
database is simply a collection of images from one run of
the robot at a specific time (i.e., no lighting variations). Thus
they were able to achieve 90% recognition rate. However,
they pointed out that the misclassification happens mostly
at the boundaries between different partitions of their map.
Knopp et al. [7] also made similar observations. They
suppressed confusing features from being used for image
classification to achieve higher classification rate. Valgren
and Lilienthal [12] investigated the impact of different light-
ing conditions on the SIFT and SURF descriptors for vision-
based localization systems. They pointed out that vision-
based localization systems cannot achieve good recognition
rate with training and testing sets across different lighting
conditions based on a single image.

In recent years, the appearance-based, loop-closure prob-
lem has gained significant improvement. In the FAB-MAP
system proposed by Cummins and Newman [13], they
employed a bag-of-words model for images and used the
k-means clustering to generate a visual vocabulary. The
vocabulary itself carries moderate information about the
location where an image was taken, but is pruned to vari-
ous conditions. They further employed a graphical model,
called Chow-Liu tree, to capture the correlation between
those visual words. The resulting learned graphical model
significantly helped in the perceptual-aliasing problem.

This paper proposes a new framework under which novel
methods can be developed to effectively detect “landmarks”
to improve the performance of semantic place recognition
(c.f . Fig. 1) over alternative methods in [4], [5]. The
proposed approach is inspired by [6], [7], [13], but uses
a different method for generating vocabulary [14]. The
proposed method is based on forming a time-series sample of
Bag-of-Landmarks from a sequence of images. We call our
method as BoLTS for Bag-of-Landmarks using time series.
We generate the visual “landmarks” for a small number
of images (10-80) within an image sequence where “land-
marks” are identified by a human. Given image sequences
collected by the robot, a human picks up segments of images
where there is a “landmark”. By using the visual vocabulary

built with [15], a simplified version of [14], we obtained
a high recognition rate for “landmarks”. And by removing
these “landmarks” from the training set for the semantic
place recognition task, we improved the recognition rate,
thus validating our hypothesis that misclassifications happen
mostly at “landmark” positions. BoLTS advances the state-
of-art of visual landmark recognition, by broadening the
data-format into time-series with image sequences.

III. ROBUST SEMANTIC PLACE RECOGNITION

Our robust semantic place recognition approach consists
of two components: a vocabulary tree image classifier and a
landmark detector based on time-series pattern matching. We
use the vocabulary-tree method [14] to generate signatures
for images, which is a histogram of visual words from a
pre-built visual vocabulary. These signatures are later used
to form an image classifier for semantic place recognition.
In order to address the specific boundary issue (c.f . Fig. 4)
faced in semantic place recognition task, we propose to de-
velop a time-series pattern matching approach, called “Bag-
of-Landmarks using time series,” for detecting “landmarks”.

A. Vocabulary Tree

Bag-of-words modeling of images has been introduced by
Sivic and Zisserman [16]. Clustering methods are typically
employed for building the visual word dictionary. Several
clustering methods (e.g. k-means, vocabulary tree, etc.) have
been incorporated into an appearance-based localization sys-
tem [13]. In this section, we will demonstrate how a visual
word dictionary built with the vocabulary-tree method can
be used for semantic place recognition.

The vocabulary-tree method [14] is a hierarchical itera-
tive k-means clustering method with parent nodes being a
quantization representation of their children. Even though
the k-means clustering proved to be effective in various
applications, we find that the visual word extracted by the
vocabulary-tree method together with SIFT features is more
consistent under moderate change in lighting condition. This
is a crucial factor for robotics applications because the more
reproducible the word is, the better the place recognition will
be. Thus, we choose to use the vocabulary-tree method for
our bag-of-words model with SIFT features.

Given the signature of images, typical image categoriza-
tion methods will build up a nearest neighborhood (NN)
classifier from the image database, and then perform image
classification. When directly applying this method to seman-
tic place recognition, we face a boundary issue. In these
cases, the images collected at the “landmark” positions are
difficult for people to assign label for training. These “land-
marks”, as we mentioned before, are important landmarks
in topological mapping [17]. Hence, we propose a landmark
detection method based on time-series pattern matching, in
which each index of the time series is an image signature. If
a “landmark” is detected, we can preclude these images from
being used for semantic place recognition, hence improving
the recognition rate. In order to do the time-series matching,
the distance between two signatures needs to be matched.
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Instead of using the normalized difference measure [14],
we use a Gaussian histogram intersection kernel measure.
Define N as the number of leaves in the vocabulary-tree
(dictionary size). Given a query signature {sq : s1

q . . . sN
q }

and a database signature {sd : s1
d . . . sN

d }, the histogram
intersection kernel similarity sim(sq, sd) is described in
Eq. (1). Note that the similarity ranges from 0 to 1.

sim(sq, sd) =

N�
k=1

(min(sk
q , sk

d))

N�
k=1

sk
d

(1)

Next, we need to generate a distance measure based on
this similarity measure. Using images found in the database,
we find that the similarity measure for two images taken
within close proximity to one another can only peak around
0.2. This indicates that there cannot be a linear relationship
between the similarity and the distance. Through empirical
experience, we find that the Gaussian function e−kx2

in the
range of [0,1] is a fit for the data. Equation (2) shows the
distance diff(sq, sd) generated from the histogram intersec-
tion kernel. In practice, we used k = 40 for our experiments.
Figure 2 further illustrates the histogram intersection kernel
and the relationship between distance and similarity.

diff(sq, sd) = e−ksim(sq,sd)2 (2)

(a) (b)

Fig. 2. (a) Histogram intersection kernel (b) Relationship between
similarity and distance measure

B. Dynamic Time Warping

Dynamic time warping (DTW) is a well-known method
for matching time-series data. The advantage of using DTW
over other time-series matching algorithms is that the match-
ing between two time series can be of variable length.
This advantage is especially suitable for matching image
sequences collected by a robot because a robot usually can
vary its velocity, thus the number of images collected by
the robot over a specific range can be quite different. DTW
is also a suitable choice for other distance traveled based
schemes [13] since it handles the overlap of images well.
Meanwhile, by applying DTW, we assume that the robot
traverses through the “landmark” position in a fixed manner.
This is generally not a problem if the “landmark” is like a
doorway connecting two places, where the only option for
the robot is to “go in” or “go out”.

Fig. 3. Iterative Vector Dynamic Time Warping.

The DTW algorithm is a dynamic programming algorithm
and is described in detail in [18]. Following Fig. 3, each time
series can react with an elastic behavior such that each index
of the query time series can find its best match with the index
of the reference time series. When matching two time series
[Lq : s1..sn] and [Ld : s1..sm], the cost of matching si and
sj , where 1 ≤ i ≤ n and 1 ≤ j ≤ m is described in Eq. (3).

DTW (si, sj) = diff(si, sj)+
min(DTW (si−1, sj), DTW (si, sj−1), DTW (si, sj))(3)

C. Bag-of-Landmarks using Time Series (BoLTS)

In order to apply the DTW algorithm to robot systems,
we need to solve the computational issue due to the nature
of image sequences collected by the robot. When a new
image comes from the visual sensor, the robot will need
to concatenate it with variable length of buffered historic
images as a query time series Lq. Then the set of vari-
able length query time series is used to match against the
“landmarks” of time series trained beforehand, because the
“landmarks” of time series in database can have different
length. The traditional DTW used here will bring about
significant amount of redundant computation. Thus, we save
the distance between buffered signatures after each DTW is
done in an global buffer. We refer to our modified version
of DTW as Iterative Vector Dynamic Time Warping (IV-
DTW). Using IV-DTW, whenever a new image is collected,
only one more distance needs to be calculated.

By using the vocabulary-tree method with our adapted
histogram intersection kernel and modified DTW algorithm,
the entire BoLTS for detecting “landmarks” can be described
using Algorithm 1. The IV-DTW algorithm is described in
Algorithm 2.

D. Integration

As we have introduced the vocabulary-tree method and
the BoLTS method, we will put these two components
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Algorithm 1 : Bag-of-Landmarks detection using Time
Series
Require: m landmarks L1 . . . Lm in database. ∀i, Li = {s1 . . . ski

}, ki
is the length of the image sequence used for landmark i.
Initialize B = 80, minlen = 10
Initialize buffer D, d with size B ×B.
for t = 1 to T do

Collect new image It, generate signature st.
for j = minlen to B do

distj = IV-DTW([st−j ..st],{L1;..;Lm},D,d)
end for

store Distt = min
j

(distj)

end for

Output: The local minimums for Dist below some threshold will be
the detected landmarks.

Algorithm 2 : Iterative Vector Dynamic Time Warping (IV-
DTW)
Require: m landmarks L1 . . . Lm in database. ∀i, Li = {s1 . . . ski

}, ki
is the length of the image sequence used for landmark i. Query time
series (sequence of signatures): Lq = {s1 . . . skq}. Buffered distance
matrix: d and buffered cumulative distance D.
for i = 1 to m do

if d is empty then

d=[
�ki

k1=1

�kq

k2=1
diff(sk1 , sk2 )]

end if

Initialize Dc = [d, D]T

for every d(u, v) do

Dc(u, v) = d(u, v) + min(Dc(u + 1, v), Dc(u + 1, v +
1), Dc(u, v + 1))

end for

Compute disti between Lq and Li by backtracking from the top-right
cell of Dc

end for

Output: min
1≤i≤m

(disti).

together to build our semantic place recognition system. The
procedure of our system is described in Algorithm 3.

Algorithm 3 : Robust Semantic Place Recognition
Require: m landmarks L1 . . . Lm in database. ∀i, Li = {s1 . . . ski

}, ki
is the length of the image sequence used for landmark i.
for t = 1 to T do

Collect new image, generate signature using vocabulary tree.
if BoLTS report landmark detection then

Mark the matched time series as landmark.
Don’t do semantic place recognition.

else

Do semantic place recognition
end if

end for

IV. EXPERIMENTAL WORK

We validated our semantic place recognition system on
the COsy Localization Database (COLD) [19]. The “bag-
of-words” and “siftpp” code written by Vedaldi [15] is
used for generating signatures using the vocabulary-tree
method. We evaluated the performance of our system using
the 10 image sequences collected on Path A within the
COLD-Freiburg set. First, we demonstrated that the places
for misclassification using the vocabulary-tree method are
located at “landmark” positions. Next, we use each image
sequence as the test set and the “landmarks” in the other 9
image sequences to form the “bag-of-landmarks”. The land-
mark detection rates of BoLTS for all 10 image sequences

Fig. 4. Misclassified places on the map.
TABLE I

COMPARISON OF CONFUSION MATRIX

(a) Confusion matrix with pruning; (b) Confusion matrix without pruning
(a)

P1 P2 P3 P4 P5

P1 0.9939 0 0.0061 0 0
P2 0.0103 0.9897 0 0 0
P3 0 0 1 0 0
P4 0 0 0 1 0
P5 0 0 0 0.0273 0.9727

(b)
P1 P2 P3 P4 P5

P1 0.9351 0.0227 0.0185 0.0237 0
P2 0.0163 0.9837 0 0 0
P3 0.0181 0 0.9819 0 0
P4 0 0 0 0.9655 0.0345
P5 0 0 0 0 1

are discussed. Finally, we compared our system (with and
without pruning using BoLTS) to existing methods [4], [5]
and demonstrated the robustness of our proposed method.

A. Importance of Landmarks

Inspired by Zivkovic et al. [6], our hypothesis is that
misclassification happens mostly at “landmark” positions. To
verify our hypothesis, we used seq1 cloudy1 as a training
set and tested the semantic place recognition using only the
vocabulary-tree method (VTM). There are 5 semantic places
on Path A, and we trained the vocabulary tree with 100 im-
ages per place. As shown in Fig. 4, the green marks indicated
the images that got misclassified. The obtained confusion
matrix for 5 places are compared in Table I. We can see
that pruning images at “landmark” positions improved the
recognition rate. Furthermore, we trained another vocabu-
lary tree using 3 sequences (seq1 sunny1, seq1 cloudy1,
seq1 night1), with 100 randomly sampled images per place.
Then we tested the semantic place recognition system on 7
other sequences. The ratio of misclassified images taken at
boundaries over all misclassified images is shown in Fig. 5.

B. Landmark Detection Performance

The COLD-Freiburg database [19] was used to test the
performance of landmark detection. In the database, there
were 10 sequences of images collected at different times
under various lighting conditions. Leave-one-out cross-
validation was conducted on the 10 image sets to estimate
the accuracy of the detection algorithm in practice.
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Fig. 5. Misclassification ratio. Red bar represents the misclassified images
at boundaries.

In the training image sets, 8 “landmarks” were trained
based on the bag-of-words generated with vocabulary tree.
Then, the test images were compared to the “landmarks”
using the proposed BoLTS. Figure 6 shows the distance
measure for different testing image sets. Each point on the
curve represents the minimum distance among distances to
the 8 “landmarks” and a sequence of 10 to 80 images ending
at that point. The local minima of the curve indicate the
ending time of the matching with different “landmarks”.
Assuming that every landmark is detected at least 60 frames
from each other and by sorting the distances of points at
different frames, the 8 “landmarks” with at least 60 frames
from each other could be found. ∗ The end of time series
(each matched landmark) is marked by a red segment in
Fig. 6.

For each “landmark” detected, the corresponding se-
quence of images was retrieved. The accuracy of landmark
detection was computed based on the sequence of images.
The false positive rates of landmark detection are shown in
Table II for all 10 image sequences. Since the ground truth
of sequences of images at different “landmarks” were not
available, the false positive rates were estimated manually by
checking every image in the detected sequence of images. If
the image is manually accepted as taken at a “landmark” po-
sition, it is treated as a landmark image. Detection results are
shown in Fig. 7. In Fig. 7, which shows one of the detection
results, the blue line represents the path of a moving robot,
and the red line segments indicate the detected “landmarks”.
All the “landmarks” in the seq1 cloudy3 sequence were
detected correctly.

C. Improved Semantic Place Recognition System

We compare our semantic place recognition system with
similar visual place classification experiments performed on
the same COLD-Freiburg database. We name our methods
VTM (vocabulary-tree method) and VTBL(vocabulary tree
with bag-of-landmarks). Wang and Lin [5] used a Hull Cen-
sus Transform (HCT) method to generate features for each

∗With a robot collecting images at 30 frames/sec, this means that the
robot cannot travel from one “landmark” to another “landmark” within 2
seconds, which is reasonable since a robot usually cannot go from one door
to another door within 2 seconds.

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Extracted IV-DTW distance for example robot run, the red crosses
are identified “landmark” positions. The sequence from top-left to bottom-
right is (a) cloudy1, (b) cloudy3, (c) night2, (d) night3, (e) sunny1, (f)
sunny2. The local minimas show that “landmarks” are properly detected.

TABLE II
RECOGNITION RATES FOR LANDMARK DETECTION

Test TP% FP% TN% FN% Total No.
cloudy1 17.2 0 82.8 0 1459
cloudy2 14.0 1.0 84.3 0.7 1632
cloudy3 14.5 0 85.5 0 1672
night1 15.6 0.7 83.7 0 1911
night2 16.1 0.9 81.9 1.0 1582
night3 19.0 0.9 80.1 0 1703
sunny1 11.3 0.9 81.2 6.6 1598
sunny2 17.8 1.0 81.2 0 1514
sunny3 13.8 1.8 82.7 1.7 1451
sunny4 10.4 1.5 83.2 4.9 1777

Fig. 7. An example run of landmark detection on the floor plan tested
with seq1 cloudy3 image sequence.

omni-directional image and used this HCT feature together
with SVM for semantic place recognition. Pronobis et al. [4]
reported the multi-model place classification performance on
the COLD-Freiburg database. Figure 8 shows that both of
our methods, VTM and VTBL, outperformed existing work.
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Fig. 8. Comparison of different semantic place recognition algorithms on
COLD-Freiburg database. VTM: vocabulary tree without pruning; VTBL:
vocabulary tree with bag-of-landmarks pruning; HCT: Hull Census Trans-
form; MM: Multi-model semantic place classification. The result used for
HCT is obtained from [5], where their best result for each weather is chosen.
The result used for MM is an averaged result of their classification rate on
all 3 sequences reported in their paper [4]. It is unknown which 3 sequences
of COLD-Freiburg did they use.

Fig. 9. Final run with our approach for seq1 cloudy3, which has 89%
recognition rate.

An example run with a final label of the 5 semantic places
as well as detected “landmarks” is shown in Fig. 9. More
details can be found in the video attachment of this paper.

V. DISCUSSION AND FUTURE WORK

This paper proposed and developed a semantic place
recognition system with vocabulary tree and BoLTS. The
proposed system yielded significant improvement over ex-
isting methods for the semantic place recognition task. The
proposed landmark detection method (BoLTS) is a time-
series-based supervised learning approach, which is novel in
visual landmark detection context. However, the preparation
of training set of transition places may be very dependent on
robot trajectory. We will use of salient features other than
SIFT and incorporating probabilistic framework like [13]
into our landmark detection method to achieve a more robust
and general time-series landmark detector, thus requiring no
human assistance for marking image segments.
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Abstract— Many of today’s mobile robots are supposed to
perform everyday manipulation tasks autonomously. However,
in large-scale environments, a task-related object might be
out of the robot’s reach, that is, the object is currently not
perceivable by the robot. Hence, the robot first has to search
for the object in its environment before it can perform the task.

In this paper, we present an approach for object search in
large-scale environments using different search strategies based
on semantic environment models. We demonstrate the feasibility
of our approach by integrating it into a robot system and by
conducting experiments where the robot is supposed to search
for objects within the context of fetch-and-delivery tasks within
a multi-level building.

I. INTRODUCTION

Autonomous mobile robots that are to perform everyday
manipulation tasks need the appropriate capabilities to obtain
task-related objects from the environment. That is, object
search is a prerequisite to autonomous object manipulation.

When we look at the performance of humans in object
search tasks, it seems, that in most cases humans can find
objects in their environment relatively effortless and at very
high success rates. This is not only because humans have
excellent perception capabilities, but also because humans
can rely on a large body of commonsense knowledge to
conduct the search for objects more effectively.

Although perception plays a key role in object search
within robotics, it is also very important to employ semantic
knowledge to narrow down the search space, especially in
large-scale environments. Pruning the search space is mainly
important because of two reasons, first, robot perception is
computational expensive, and second, if robots have no clue
about potential object locations, objects will only be found
by employing exhaustive search methods or by chance.

In the present work, we investigate the problem of how
robots can use semantic environment models to perform ob-
ject search tasks in large-scale environments more effective
and efficient. The contributions of this work are as follows.
First, we extend the representations and reasoning methods
for semantic maps that have been introduced in [1] in order
to account for large-scale indoor environments, i.e. multi-
level buildings. Second, we utilize commonsense knowledge
acquired from Internet users to bootstrap probabilistic models
about typical locations of objects which can be updated
during the robot’s lifetime according to its observations.
Third, we present several object search strategies using the
above models while also considering the current context

of the robot. Finally, we integrate the developed methods
within a robot system and provide experimental results for
object search in fetch-and-delivery tasks within a multi-level
building. Additionally, we show how the semantic search for
objects is integrated into an iPad user interface.

In the remainder of the paper we first describe the fetch-
and-delivery scenario in more detail in Section II. Then, we
explain how we represent the semantic environment models
in Section III, and how we use them within various search
strategies in Section IV. The integration of these methods
with a robot system is presented in Section V. Experimental
results are provided in SectionVI. Finally, we put the paper
into the context of related work in Section VII, before we
conclude in Section VIII.

II. THE FETCH-AND-DELIVERY SCENARIO

In fetch-and-delivery tasks robots are, for example, sup-
posed to serve food and drinks, deliver letters, or collect
used cups from workplaces and take them to the kitchen.
An essential sub-task of such tasks is to search for the
task-related objects in the environment. In this paper, we
investigate two scenarios of object search in the context of
fetch-and-delivery tasks. In the first scenario the robot is
supposed to find cups in its environment and bring them
back to its starting position. In the second scenario, we ask
the robot to get us a sandwich.

Let’s first look at the cup scenario in more detail. For
example, consider a situation where a robot is supposed to
fetch a particular cup, let’s say Michael’s cup. In order to
find the cup in its environment the robot first replaces the
possessive attribute with one or more perceptual attributes,
e.g., Owns(Michael, Cup) is replaced by HasLogo(Cup,
PR2). Either the robot knows about the perceptual attributes
of the cup because of its own perceptual experience or this
information has to be provided somehow externally. Then
the robot tries to retrieve the set of known cup instances
from its belief state that fulfill the partial description, e.g.
HasLogo(Cup, PR2), or at least, do not contradict it. How-
ever, if the robot does not know about any cup instance in
the environment, it has to rely on more general knowledge
about cups. For example, the robot could infer that cups
are typically stored in the cupboards of a kitchen and that
they are occasionally located in a dishwasher. Furthermore,
if we assume that similar objects are placed next to each
other, the robot could reason that cups are similar to glasses



and that therefore the robot could try to find the cup nearby
instances of glasses it knows about. In the next step, the robot
retrieves the poses of the potential cup locations as well as
the poses from which the cups might be perceivable from
the semantic map. The latter poses are used as goal locations
for the autonomous navigation of the robot. In order to find
the cup, the robot moves to the respective goal locations
while taking path costs (or the expected rate of success)
into account. Having reached a potential cup position the
robot uses perception routines for detecting and localizing
the cup in the environment. If a cup is detected and fulfills the
partial object descriptions the robot applies more specialized
perception routines in order to gather all relevant information
needed for effectively manipulating the cup. However, if no
cup was found, the robot will repeat the procedure until it
has searched the remaining potential cup locations.

In the second scenario, the robot is supposed to find
and deliver a sandwich. Obviously, similar search strategies
like explained above can also be employed. For example,
the robot can infer that sandwiches are perishable and that
therefore they are typically stored in a fridge.

However, with this example we want to point to the
problem that an object might even not exist at the time when
looking for it. Some objects in our daily life will only come
into existence if we trigger the right processes. For example,
food items like sandwiches are created in meal preparation
tasks. Mostly these tasks or processes which create instances
of certain object types take place at specific locations, e.g.,
meal preparation tasks are typically carried out in a kitchen or
a restaurant. Having this kind knowledge, the robot can go to
the designated places and trigger the appropriate processes.
Our point here is, that knowledge about the environment is
not only beneficial for limiting the search space but in some
cases it is even a necessary condition to locate objects.

III. SEMANTIC ENVIRONMENTS MODELS

In this section, we explain the underlying representations
and the knowledge that is represented in the semantic envi-
ronment models. Figure 1 gives an overview of the different
ontological concepts and relations, whereby we distinguish
mainly between three types of relations: assertional, com-
putable, and probabilistic. In the following we first explain
the ontological representation and afterwards we elaborate
on the acquisition and formalization of a probabilistic model
for commonsense reasoning about object locations.
A. Semantic Maps of Large-scale Environments

In this work, we basically build on the representation for-
malisms as described in [1]. The underlying representation is
based the Web Ontology Language (OWL). In OWL, classes
are defined within a taxonomy and derive all the properties of
their super-classes. Relations between classes are described
by properties. Objects are represented as instances of classes
and can also have relations with other instances. The upper
ontology is derived from OpenCyc1.

With respect to semantic environment maps, this for-

1http://www.opencyc.org/
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Fig. 1. Simplified overview of concepts and relations of the semantic
model for large-scale environments.

malism allow us to structure the knowledge about classes
hierarchically, e.g. a ProfessorOffice is an Office which is a
RoomInAConstruction. Given the mechanism of (multiple-)
inheritance a class derives all the properties of its super-
class(es), e.g., ProfessorOffice have also the property room-
Number since it has been defined for RoomInAConstruction.
Objects in the map are described by instances and have a
certain type, e.g. Office, properties to other instances, e.g.
workplaceOf, and simple data properties like widthOfObject.
The spatial extensions of an object are described by their
bounding box, i.e. depth, width, and height. Although this
representation is very simple, it allows us to reason about
several spatial relations between objects like in-Container or
on-Physical more efficient. Furthermore, objects are related
to instances of perception events. These events contain infor-
mation about the object’s pose at a point in time. Thereby
we can track the pose of an object over time and answer
questions like where was an object five minutes ago.

In [1], the map representation is mainly focused on
small environments like rooms, especially kitchens. How-
ever, in the context of fetch-and-delivery tasks it is important
to represent also the knowledge about environments at a
larger scale. Therefore we introduced concepts like Building,
LevelOfAConstruction, RoomInAConstruction, and Elevator.
Figure 1 show a small excerpt of the extended ontology.
Additionally, we introduced properties like floorNumber,
roomNumber, inLevel, inRoom, and workplaceOf. Whereas
properties like roomNumber are directly asserted to particular
instances (assertional property), other properties like inRoom
are computed based on the actual physical configuration of
the environment (computable property), i.e. the current pose
and dimensions of an object are taken into account. Thereby
we can infer whether spatial relations between objects like
in and on hold at some point in time.

In this work, we created a semantic environment map of
the Engineering Building No. 2 at the Hongo Campus of The
University of Tokyo. Figure 2 visualize some aspects of the
semantic map including levels, rooms, furniture and places.
B. Commonsense Reasoning about Objects Locations

In this section, we explain how we bootstrap a probabilistic
model for reasoning about object locations. For example, if



Fig. 2. Engineering Building No. 2, Hongo Campus, University of Tokyo.
The map comprises several floors, elevators (yellow boxes), rooms with
different types, furniture, and a subway restaurant.

the robot has no information about instances of a certain
object type, it should look for these instances at locations
where the probability to find this type of object is maximal.

In [2], we investigated how commonsense knowledge that
was acquired from Internet users within the Open Mind
Indoor Common Sense (OMICS) project [3] can be trans-
formed from natural language to formal representations and
integrated into a robot’s knowledge base.

The locations relation in the OMICS database describes
objects and their typical locations, i.e. rooms. Following our
previous approach, we first transform the natural language
database entries to ontological concepts. For example, the
tuple (mug,kitchen) is mapped to well-defined ontological
concepts (Cup,Kitchen). Then, we calculate the conditional
probability of an object given the room by counting the
database entries as suggested by [3], i.e.:

P (xi|ω) = (C(xi,ω) + λ)/(C(ω) + λn)

where xi denotes an object, ω denotes a room, and λ
denotes the parameter according to Lidstone’s law. The λ
parameter basically influences how the probability distribu-
tion account for unseen tuples. In our experiments, we set
λ = 0.5 (Jeffrey-Perk’s law).

In total locations database table has more than 3500
entries. However, since we could not map all entries to
ontological concepts and we restricted the set of rooms
concepts to nine different types that fit our map, we used
only 448 entries for calculating the probabilistic properties.

IV. SEMANTIC OBJECT SEARCH

In this section, we first present various search strategies
when looking for an object, and second, we explain how the
search context influences the robot’s behavior.
A. Search Strategies

In the introduction of this paper we already mentioned
the excellent ability of humans to find objects, sometimes
even in previously unknown environments. Among other
reasons, this is because humans make use of different strate-
gies when looking for an object. Therefore, robots should

also be equipped with a repertoire of strategies they can
employ, depending on what knowledge they have about
the environment. For example, a robot that has knowledge
about some instances of a sought object class should exploit
this information before considering more general knowledge.
However, if a robot does not have any information about
object instances, it has to rely on common sense. How these
different kinds of search strategies should be orchestrated is
another interesting problem which beyond the scope of this
paper. Hence, in this work we assume that different searches
are conducted in a kind of try-in-order procedure.

In general, we identified three different situations in which
a robot can be when looking for an object:

1) the object is currently not perceivable by the robot
2) the object is perceivable by the robot
3) the object is physically attached to the robot

The search for an object can basically be started in all
three of these situations. If the robot already holds the
sought object in its hand, it can immediately finish the
search successfully. If the robot already perceives the sought
object within the environment, it has to localize the object
effectively for its manipulation routines and pick it up. If
the robot do not perceive the object at all, the robot has to
reason about the potential locations of the object, go to the
locations, try to perceive the object, and if it can perceive the
object try to pick it up, otherwise, the robot has to continue
at the next potential location. If the robot is not able to find
the object at any potential location, the robot could either
switch to another search strategy, ask for help, or eventually
give up the search.

In the following we explain some basic predicates that
have been implemented in PROLOG in order to search for
objects with different strategies using the semantic environ-
ment models described in the previous section.
locatedAt(Obj, Pose) denotes the pose of an object. Poses

are described by the translation and rotation of an object
decoded in a 4× 4 transformation matrix.

lookForAt(Obj, Pose) denotes the pose where an object
instance might be perceivable.

hasType(Obj, Type) denotes the type of an object. When
only providing a type all object instances with the
specified type are mentally retrieved from the map.

similarTypes(Type, SimilarTypes) denotes the semantic
relatedness between an object type and other types in the
ontology. The relatedness is calculated based on the wup
similarity measure as explained in [1]. We see basically
see two possibilities for using the similarity between
objects in the context of search: (1) objects that are
similar are often placed together, i.e. a robot can look
at places of similar objects, if it has no information
about the object itself, and (2), if an object cannot be
found in the environment, the robot could look for a
similar object instead, e.g. if the robot cannot find any
cup, it could look for a glass.
Since eventually we want to localize objects of the
similar types in the environment map, only types of map



instances are considered for the calculation. Finally, the
similar types are sorted with respect to the wup measure.

similarObj(Type, Obj) retrieves an object instance from
the map that is similar to a certain type. The predicate
considers only instances in the environment map. Even-
tually the predicate returns all instances described in the
map, for retrieving only a subset we have implemented
more specialized predicates (see below).

mostSimilarObj(Type, Obj) retrieves only the object in-
stances of the most similar object type from the map.

kMostSimilarObj(K, Type, Obj) retrieves the object in-
stances of the k-most similar object types from the map.

createdAt(Type, Loc) denotes a location where instances of
a given type will typically be created, e.g. a Sandwich
will typically be created in a Kitchen or a Restaurant.
Within the semantic environment map these locations
are related to events using the eventOccursAtLoca-
tion(Event, Loc) property and if these events have a
property like outputCreated(Event, Type) then the pred-
icate createdAt(Type, Loc) holds.

locationOf(Loc, Type, P) denotes the probability P to en-
counter a given object type at a location. The probability
is calculated from the probabilistic model explained in
Section III-B using Bayes’ rule:

P (ω|x) = P (x|ω)P (ω)�
i
P (x|ωi)P (ωi)

To retrieve the location with the highest probability we
simply apply the argmax operator argmax

ω∈Ω
P (ω|x).

Given these basic predicate definitions it is already pos-
sible to implement different kinds of search strategies when
looking for an object. The most noticeable difference is that
some predicates use knowledge about known instances in
the robots environment whereas others only consider general
knowledge about classes.
B. Search Context

This section describes how the search results are affected
by the situational context of the robot. In this paper, the
context is determined by the robot’s current pose.

In the previous section, we explained some basic predi-
cates a robot can use to retrieve objects and locations from
the semantic environment map. However, the decision to
which location the robot will move to and look for an
object depends also on its current position. That is, instead
of retrieving only instance-by-instance from the map and
move to the different locations successively, the robot rather
retrieves the set of all instances at once and takes the
respective path costs into account. More generally, these
costs should be include the probability of success to find an
object at a location. Though, in this work we only consider
a rough heuristic to calculate the path cost from the current
position of the robot to a goal location. For the heuristic we
distinguish two situations:

1) robot pose and goal pose are in the same level
2) robot pose and goal pose are in different levels

If the robot pose and the goal pose are in the same level,
the path cost is determined simply by the Euclidean distance
between the two poses. Obviously, the path cost calculation
can also be approximated by using path planner on 2D
occupancy grid maps.

highlow

Fig. 3. Path costs visualized as
heatmap calculated from room 73a4,
7th floor (dark red).

If the robot pose and the
goal pose are not in the
same level, the overall path
cost is determined by the
sum of three cost calcu-
lations: (1) the path cost
from the current position
to the elevator in the same
level, (2) the cost using the
elevator, and (3) the path
cost from the elevator to
the goal pose. The costs
(1) and (3) are calculated
as explained above. The elevator cost is determined by
the distance of levels. However, the cost model for using
an elevator could be replaced by a more complex model
considering for example the waiting time, intermediate stops,
and the hour of the day. Figure 3 visualizes the path costs
from room 73a4 in floor 7 to other rooms in the building.

V. THE ROBOT SYSTEM

Within the experiments, we use the PR22 robot platform
and a ROS3-based software infrastructure. An overview of
the different software components is shown in Figure 4.

Basically, the robot’s main control program is responsible
for performing the fetch-and-delivery tasks. It receives a
task goal from an iPad interface and performs the task
autonomously. Alternatively, the task can be carried out in in-
teraction with a user. After having received the task goal, i.e.
an object to search for, one of the search strategies is used to
query the semantic environment models for potential object
locations. When the task-level control program recognizes
that the robot has to change the floor, the relevant information
is retrieved from the semantic environment model, e.g. the
number of the current and the target floor, and the position of
elevator control panels. These information are then send to
the inter-floor navigation module to navigate the robot to the
respective locations. At the goal location the robot tries to
detect the object under request by using a sift-based template
matching approach. Finally, the robot uses motion planning
to figure out how to grasp the object.

VI. PRELIMINARY EXPERIMENTAL RESULTS

In this section, we present the preliminary results of two
example scenarios to demonstrate how a robot can use the
semantic environment models in fetch-and-delivery tasks.
A. Cups

In the first scenario, we look at situations in which a robot
is supposed to find cups in the environment.

2
http://www.willowgarage.com/pages/pr2/overview

3
http://www.ros.org/
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Fig. 4. Overview of the main software components realizing the execution
of fetch-and-delivery tasks.

In the first situation the robot is asked to look for a par-
ticular cup, a cup that has a certain logo on it. Let’s assume
the robot knows some cup instances in the environment, and
it also has a model of the logo. However, this logo is not
associated to any of the cups, i.e., the following query fails:
?- hasType(C,’Cup’), hasLogo(C, ’CMU’).

Hence, the robot has to move to all possible cup locations
and try to to match the logo with one of the cups perceptu-
ally. The following PROLOG query shows how the robot
can retrieve the positions of potential cup locations from
the semantic map and calculate their respective path costs.
The list of ordered poses is than passed to the navigation
framework which uses the lookForAt(Obj,Pose) predicate to
determine the navigation goals.
?- findall(Pose, (hasType(Obj, ’Cup’),

not(hasLogo(Obj, AnyLogo)),

locatedAt(Obj, Pose)), PList),

calc_path_costs(’current-pose’, PList, SortedPoses).

Figure 5 visualizes the query result in the semantic map
and show some images of the carried out robot experiment.
After detecting a cup with a different logo in the first room,
the robot navigates to another room where it eventually
find the sought cup4. We varied the experiment by placing
the individual cups at the different locations in various
permutations or removing individual cups completely.

Fig. 6. iPad interface.

In addition to the
autonomous object search, we
also developed an interactive
mode where users can search
for objects using an iPad
interface. Basically, users
can ask for an object and
receive a list of possible object
locations. After taking a user’s
request, the system searches
the semantic environment
models for possible locations

4Video: http://www.jsk.t.u-tokyo.ac.jp/�kunzel/sos.html
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Fig. 5. Row 1: Robot at place (1). Found cup, but has PR2 logo. Row 2:
Robot at place (2). Found cup with desired CMU logo. Row 3: Robot picks
up cup. Visualized query results in semantic map.

using a selected search strategy, generates a list of potential
locations including information about floor, room, costs, and
if available an image of the object’s visual appearance. The
user can then decide from which location the robot should
fetch the object. Figure 6 shows a query result for Cup.

In the previous situation we assumed that the robot had
some knowledge about cup instances. However, if the robot
has no such information it has to rely on more general
knowledge. The following query illustrates how the robot
retrieves potential locations from the probabilistic models.

?- findall([P, Type],

locationOf(Type ,’Cup’ , P),

PTList),

argmax(PTList, RoomType),

findall(R, hasType(R, RoomType), Rs),

member(Room, Rs),

inRoom(Spot, Room), hasType(Spot,‘Place‘).

First, the robot finds all tuples of probability (P) and room
type (Type), given that it is looking for a Cup. Figure 7 shows
some probabilities that a type of object can be found in a
room. Second, it extracts only the tuple with the highest
probability, i.e. Kitchen (given Cup). Third, it retrieves all
room instances of this Type from the semantic map, and
finally, it considers all known places in these room instances.
At each place the robot tries to perceive a cup at different
angles.

Using the above query the robot gets the information that
a Cup instance might be found in a Kitchen. So, it has to
search for a cup at all places in the kitchen. However, not all
places in the kitchen make sense to look for a cup, e.g. one
place is in front of a TV. Using additional knowledge, for
example, that the places should be in front of a table, shelf,
or cupboard, can further reduce the number of places.



Fig. 7. Examples of probabilities to find a given object in certain room, i.e.
P (ω|x). The initial configuration is bootstrapped from the OMICS database.

B. Sandwiches
In this scenario the robot is asked to get a sandwich.

Let’s assume the robot does not has any knowledge about a
Sandwich instance. So, it calculates which objects (it knows
about) are similar to sandwiches using the following query:
?- mostSimilarObj(’Sandwich’, Obj).

where Obj is bound to sushi1. This instance is of type
Sushi and it is similar to Sandwich because of the common
super-class Food-ReadyToEat. With its spatial reasoning ca-
pabilities the robot finds out that sushi1 is currently located
in frigde1 in room 73b2.

Another possibility to find a sandwich is to search at
locations where instances of sandwiches are created, e.g.
kitchens or restaurants. Using the query
?- createdAt(’Sandwich’, Loc).

the robots infers that sandwiches might be are created in
room 73b2 which is of type Kitchen and/or subway-shop
which is of type FastFoodRestaurant.

Fig. 8. PR2 using an elevator, approaching subway shop, and ordering a
sandwich.

VII. RELATED WORK

In recent years, the usage of semantic information has
become more and more prominent in the context of robotics.

In [4], object-room relations are exploited for mapping
and navigation tasks. Such kind of knowledge is often
represented by the means of Description logics [5], [6], or
probabilistic models [7], [8].

How to use semantic knowledge within object search
tasks is explored by [9], [10], [11]. Our approach can be
considered in a similar line of research. Probabilistic models
are used in [9] to guide a simulated robot during object
search tasks in structured indoor environments, namely su-
permarkets. Work by [10] utilizes also probabilistic methods

on a robot system to make inferences about the spatial re-
lations between object instances in the environment. Similar
to our approach, [11] bootstraps commonsense knowledge
from the OMICS database to initialize the probabilistic
representations. However, other forms of reasoning are not
investigated in their robot experiments.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we investigated how semantic information
about the robot’s environment can be used in object search
tasks. To this extent, we extended the representation for-
malisms introduced in previous work ([1]) and implement
several PROLOG programs to infer the potential locations of
an object. As proof-of-concept, we integrated the developed
methods into a robot system that searches objects within
a multi-level building in the context of fetch-and-delivery
tasks. The realized system is able to navigate to inferred ob-
jects location using different kinds of semantic information.

In future work, we will include further probabilistic mod-
els about spatial relations like in, on, and next-to in order
to restrict the search space of objects and thereby make
the search tasks even more efficient. Additionally, we will
conduct more experiments to evaluate the outcomes of search
tasks more systematically.
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Abstract— Many of today’s mobile robots are supposed to
perform everyday manipulation tasks autonomously. However,
in large-scale environments, a task-related object might be
out of the robot’s reach, that is, the object is currently not
perceivable by the robot. Hence, the robot first has to search
for the object in its environment before it can perform the task.

In this paper, we present an approach for object search in
large-scale environments using different search strategies based
on semantic environment models. We demonstrate the feasibility
of our approach by integrating it into a robot system and by
conducting experiments where the robot is supposed to search
for objects within the context of fetch-and-delivery tasks within
a multi-level building.

I. INTRODUCTION

Autonomous mobile robots that are to perform everyday
manipulation tasks need the appropriate capabilities to obtain
task-related objects from the environment. That is, object
search is a prerequisite to autonomous object manipulation.

When we look at the performance of humans in object
search tasks, it seems, that in most cases humans can find
objects in their environment relatively effortless and at very
high success rates. This is not only because humans have
excellent perception capabilities, but also because humans
can rely on a large body of commonsense knowledge to
conduct the search for objects more effectively.

Although perception plays a key role in object search
within robotics, it is also very important to employ semantic
knowledge to narrow down the search space, especially in
large-scale environments. Pruning the search space is mainly
important because of two reasons, first, robot perception is
computational expensive, and second, if robots have no clue
about potential object locations, objects will only be found
by employing exhaustive search methods or by chance.

In the present work, we investigate the problem of how
robots can use semantic environment models to perform ob-
ject search tasks in large-scale environments more effective
and efficient. The contributions of this work are as follows.
First, we extend the representations and reasoning methods
for semantic maps that have been introduced in [1] in order
to account for large-scale indoor environments, i.e. multi-
level buildings. Second, we utilize commonsense knowledge
acquired from Internet users to bootstrap probabilistic models
about typical locations of objects which can be updated
during the robot’s lifetime according to its observations.
Third, we present several object search strategies using the
above models while also considering the current context

of the robot. Finally, we integrate the developed methods
within a robot system and provide experimental results for
object search in fetch-and-delivery tasks within a multi-level
building. Additionally, we show how the semantic search for
objects is integrated into an iPad user interface.

In the remainder of the paper we first describe the fetch-
and-delivery scenario in more detail in Section II. Then, we
explain how we represent the semantic environment models
in Section III, and how we use them within various search
strategies in Section IV. The integration of these methods
with a robot system is presented in Section V. Experimental
results are provided in SectionVI. Finally, we put the paper
into the context of related work in Section VII, before we
conclude in Section VIII.

II. THE FETCH-AND-DELIVERY SCENARIO

In fetch-and-delivery tasks robots are, for example, sup-
posed to serve food and drinks, deliver letters, or collect
used cups from workplaces and take them to the kitchen.
An essential sub-task of such tasks is to search for the
task-related objects in the environment. In this paper, we
investigate two scenarios of object search in the context of
fetch-and-delivery tasks. In the first scenario the robot is
supposed to find cups in its environment and bring them
back to its starting position. In the second scenario, we ask
the robot to get us a sandwich.

Let’s first look at the cup scenario in more detail. For
example, consider a situation where a robot is supposed to
fetch a particular cup, let’s say Michael’s cup. In order to
find the cup in its environment the robot first replaces the
possessive attribute with one or more perceptual attributes,
e.g., Owns(Michael, Cup) is replaced by HasLogo(Cup,
PR2). Either the robot knows about the perceptual attributes
of the cup because of its own perceptual experience or this
information has to be provided somehow externally. Then
the robot tries to retrieve the set of known cup instances
from its belief state that fulfill the partial description, e.g.
HasLogo(Cup, PR2), or at least, do not contradict it. How-
ever, if the robot does not know about any cup instance in
the environment, it has to rely on more general knowledge
about cups. For example, the robot could infer that cups
are typically stored in the cupboards of a kitchen and that
they are occasionally located in a dishwasher. Furthermore,
if we assume that similar objects are placed next to each
other, the robot could reason that cups are similar to glasses



and that therefore the robot could try to find the cup nearby
instances of glasses it knows about. In the next step, the robot
retrieves the poses of the potential cup locations as well as
the poses from which the cups might be perceivable from
the semantic map. The latter poses are used as goal locations
for the autonomous navigation of the robot. In order to find
the cup, the robot moves to the respective goal locations
while taking path costs (or the expected rate of success)
into account. Having reached a potential cup position the
robot uses perception routines for detecting and localizing
the cup in the environment. If a cup is detected and fulfills the
partial object descriptions the robot applies more specialized
perception routines in order to gather all relevant information
needed for effectively manipulating the cup. However, if no
cup was found, the robot will repeat the procedure until it
has searched the remaining potential cup locations.

In the second scenario, the robot is supposed to find
and deliver a sandwich. Obviously, similar search strategies
like explained above can also be employed. For example,
the robot can infer that sandwiches are perishable and that
therefore they are typically stored in a fridge.

However, with this example we want to point to the
problem that an object might even not exist at the time when
looking for it. Some objects in our daily life will only come
into existence if we trigger the right processes. For example,
food items like sandwiches are created in meal preparation
tasks. Mostly these tasks or processes which create instances
of certain object types take place at specific locations, e.g.,
meal preparation tasks are typically carried out in a kitchen or
a restaurant. Having this kind knowledge, the robot can go to
the designated places and trigger the appropriate processes.
Our point here is, that knowledge about the environment is
not only beneficial for limiting the search space but in some
cases it is even a necessary condition to locate objects.

III. SEMANTIC ENVIRONMENTS MODELS

In this section, we explain the underlying representations
and the knowledge that is represented in the semantic envi-
ronment models. Figure 1 gives an overview of the different
ontological concepts and relations, whereby we distinguish
mainly between three types of relations: assertional, com-
putable, and probabilistic. In the following we first explain
the ontological representation and afterwards we elaborate
on the acquisition and formalization of a probabilistic model
for commonsense reasoning about object locations.
A. Semantic Maps of Large-scale Environments

In this work, we basically build on the representation for-
malisms as described in [1]. The underlying representation is
based the Web Ontology Language (OWL). In OWL, classes
are defined within a taxonomy and derive all the properties of
their super-classes. Relations between classes are described
by properties. Objects are represented as instances of classes
and can also have relations with other instances. The upper
ontology is derived from OpenCyc1.

With respect to semantic environment maps, this for-

1http://www.opencyc.org/
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Fig. 1. Simplified overview of concepts and relations of the semantic
model for large-scale environments.

malism allow us to structure the knowledge about classes
hierarchically, e.g. a ProfessorOffice is an Office which is a
RoomInAConstruction. Given the mechanism of (multiple-)
inheritance a class derives all the properties of its super-
class(es), e.g., ProfessorOffice have also the property room-
Number since it has been defined for RoomInAConstruction.
Objects in the map are described by instances and have a
certain type, e.g. Office, properties to other instances, e.g.
workplaceOf, and simple data properties like widthOfObject.
The spatial extensions of an object are described by their
bounding box, i.e. depth, width, and height. Although this
representation is very simple, it allows us to reason about
several spatial relations between objects like in-Container or
on-Physical more efficient. Furthermore, objects are related
to instances of perception events. These events contain infor-
mation about the object’s pose at a point in time. Thereby
we can track the pose of an object over time and answer
questions like where was an object five minutes ago.

In [1], the map representation is mainly focused on
small environments like rooms, especially kitchens. How-
ever, in the context of fetch-and-delivery tasks it is important
to represent also the knowledge about environments at a
larger scale. Therefore we introduced concepts like Building,
LevelOfAConstruction, RoomInAConstruction, and Elevator.
Figure 1 show a small excerpt of the extended ontology.
Additionally, we introduced properties like floorNumber,
roomNumber, inLevel, inRoom, and workplaceOf. Whereas
properties like roomNumber are directly asserted to particular
instances (assertional property), other properties like inRoom
are computed based on the actual physical configuration of
the environment (computable property), i.e. the current pose
and dimensions of an object are taken into account. Thereby
we can infer whether spatial relations between objects like
in and on hold at some point in time.

In this work, we created a semantic environment map of
the Engineering Building No. 2 at the Hongo Campus of The
University of Tokyo. Figure 2 visualize some aspects of the
semantic map including levels, rooms, furniture and places.
B. Commonsense Reasoning about Objects Locations

In this section, we explain how we bootstrap a probabilistic
model for reasoning about object locations. For example, if



Fig. 2. Engineering Building No. 2, Hongo Campus, University of Tokyo.
The map comprises several floors, elevators (yellow boxes), rooms with
different types, furniture, and a subway restaurant.

the robot has no information about instances of a certain
object type, it should look for these instances at locations
where the probability to find this type of object is maximal.

In [2], we investigated how commonsense knowledge that
was acquired from Internet users within the Open Mind
Indoor Common Sense (OMICS) project [3] can be trans-
formed from natural language to formal representations and
integrated into a robot’s knowledge base.

The locations relation in the OMICS database describes
objects and their typical locations, i.e. rooms. Following our
previous approach, we first transform the natural language
database entries to ontological concepts. For example, the
tuple (mug,kitchen) is mapped to well-defined ontological
concepts (Cup,Kitchen). Then, we calculate the conditional
probability of an object given the room by counting the
database entries as suggested by [3], i.e.:

P (xi|ω) = (C(xi,ω) + λ)/(C(ω) + λn)

where xi denotes an object, ω denotes a room, and λ
denotes the parameter according to Lidstone’s law. The λ
parameter basically influences how the probability distribu-
tion account for unseen tuples. In our experiments, we set
λ = 0.5 (Jeffrey-Perk’s law).

In total locations database table has more than 3500
entries. However, since we could not map all entries to
ontological concepts and we restricted the set of rooms
concepts to nine different types that fit our map, we used
only 448 entries for calculating the probabilistic properties.

IV. SEMANTIC OBJECT SEARCH

In this section, we first present various search strategies
when looking for an object, and second, we explain how the
search context influences the robot’s behavior.
A. Search Strategies

In the introduction of this paper we already mentioned
the excellent ability of humans to find objects, sometimes
even in previously unknown environments. Among other
reasons, this is because humans make use of different strate-
gies when looking for an object. Therefore, robots should

also be equipped with a repertoire of strategies they can
employ, depending on what knowledge they have about
the environment. For example, a robot that has knowledge
about some instances of a sought object class should exploit
this information before considering more general knowledge.
However, if a robot does not have any information about
object instances, it has to rely on common sense. How these
different kinds of search strategies should be orchestrated is
another interesting problem which beyond the scope of this
paper. Hence, in this work we assume that different searches
are conducted in a kind of try-in-order procedure.

In general, we identified three different situations in which
a robot can be when looking for an object:

1) the object is currently not perceivable by the robot
2) the object is perceivable by the robot
3) the object is physically attached to the robot

The search for an object can basically be started in all
three of these situations. If the robot already holds the
sought object in its hand, it can immediately finish the
search successfully. If the robot already perceives the sought
object within the environment, it has to localize the object
effectively for its manipulation routines and pick it up. If
the robot do not perceive the object at all, the robot has to
reason about the potential locations of the object, go to the
locations, try to perceive the object, and if it can perceive the
object try to pick it up, otherwise, the robot has to continue
at the next potential location. If the robot is not able to find
the object at any potential location, the robot could either
switch to another search strategy, ask for help, or eventually
give up the search.

In the following we explain some basic predicates that
have been implemented in PROLOG in order to search for
objects with different strategies using the semantic environ-
ment models described in the previous section.
locatedAt(Obj, Pose) denotes the pose of an object. Poses

are described by the translation and rotation of an object
decoded in a 4× 4 transformation matrix.

lookForAt(Obj, Pose) denotes the pose where an object
instance might be perceivable.

hasType(Obj, Type) denotes the type of an object. When
only providing a type all object instances with the
specified type are mentally retrieved from the map.

similarTypes(Type, SimilarTypes) denotes the semantic
relatedness between an object type and other types in the
ontology. The relatedness is calculated based on the wup
similarity measure as explained in [1]. We see basically
see two possibilities for using the similarity between
objects in the context of search: (1) objects that are
similar are often placed together, i.e. a robot can look
at places of similar objects, if it has no information
about the object itself, and (2), if an object cannot be
found in the environment, the robot could look for a
similar object instead, e.g. if the robot cannot find any
cup, it could look for a glass.
Since eventually we want to localize objects of the
similar types in the environment map, only types of map



instances are considered for the calculation. Finally, the
similar types are sorted with respect to the wup measure.

similarObj(Type, Obj) retrieves an object instance from
the map that is similar to a certain type. The predicate
considers only instances in the environment map. Even-
tually the predicate returns all instances described in the
map, for retrieving only a subset we have implemented
more specialized predicates (see below).

mostSimilarObj(Type, Obj) retrieves only the object in-
stances of the most similar object type from the map.

kMostSimilarObj(K, Type, Obj) retrieves the object in-
stances of the k-most similar object types from the map.

createdAt(Type, Loc) denotes a location where instances of
a given type will typically be created, e.g. a Sandwich
will typically be created in a Kitchen or a Restaurant.
Within the semantic environment map these locations
are related to events using the eventOccursAtLoca-
tion(Event, Loc) property and if these events have a
property like outputCreated(Event, Type) then the pred-
icate createdAt(Type, Loc) holds.

locationOf(Loc, Type, P) denotes the probability P to en-
counter a given object type at a location. The probability
is calculated from the probabilistic model explained in
Section III-B using Bayes’ rule:

P (ω|x) = P (x|ω)P (ω)�
i
P (x|ωi)P (ωi)

To retrieve the location with the highest probability we
simply apply the argmax operator argmax

ω∈Ω
P (ω|x).

Given these basic predicate definitions it is already pos-
sible to implement different kinds of search strategies when
looking for an object. The most noticeable difference is that
some predicates use knowledge about known instances in
the robots environment whereas others only consider general
knowledge about classes.
B. Search Context

This section describes how the search results are affected
by the situational context of the robot. In this paper, the
context is determined by the robot’s current pose.

In the previous section, we explained some basic predi-
cates a robot can use to retrieve objects and locations from
the semantic environment map. However, the decision to
which location the robot will move to and look for an
object depends also on its current position. That is, instead
of retrieving only instance-by-instance from the map and
move to the different locations successively, the robot rather
retrieves the set of all instances at once and takes the
respective path costs into account. More generally, these
costs should be include the probability of success to find an
object at a location. Though, in this work we only consider
a rough heuristic to calculate the path cost from the current
position of the robot to a goal location. For the heuristic we
distinguish two situations:

1) robot pose and goal pose are in the same level
2) robot pose and goal pose are in different levels

If the robot pose and the goal pose are in the same level,
the path cost is determined simply by the Euclidean distance
between the two poses. Obviously, the path cost calculation
can also be approximated by using path planner on 2D
occupancy grid maps.

highlow

Fig. 3. Path costs visualized as
heatmap calculated from room 73a4,
7th floor (dark red).

If the robot pose and the
goal pose are not in the
same level, the overall path
cost is determined by the
sum of three cost calcu-
lations: (1) the path cost
from the current position
to the elevator in the same
level, (2) the cost using the
elevator, and (3) the path
cost from the elevator to
the goal pose. The costs
(1) and (3) are calculated
as explained above. The elevator cost is determined by
the distance of levels. However, the cost model for using
an elevator could be replaced by a more complex model
considering for example the waiting time, intermediate stops,
and the hour of the day. Figure 3 visualizes the path costs
from room 73a4 in floor 7 to other rooms in the building.

V. THE ROBOT SYSTEM

Within the experiments, we use the PR22 robot platform
and a ROS3-based software infrastructure. An overview of
the different software components is shown in Figure 4.

Basically, the robot’s main control program is responsible
for performing the fetch-and-delivery tasks. It receives a
task goal from an iPad interface and performs the task
autonomously. Alternatively, the task can be carried out in in-
teraction with a user. After having received the task goal, i.e.
an object to search for, one of the search strategies is used to
query the semantic environment models for potential object
locations. When the task-level control program recognizes
that the robot has to change the floor, the relevant information
is retrieved from the semantic environment model, e.g. the
number of the current and the target floor, and the position of
elevator control panels. These information are then send to
the inter-floor navigation module to navigate the robot to the
respective locations. At the goal location the robot tries to
detect the object under request by using a sift-based template
matching approach. Finally, the robot uses motion planning
to figure out how to grasp the object.

VI. PRELIMINARY EXPERIMENTAL RESULTS

In this section, we present the preliminary results of two
example scenarios to demonstrate how a robot can use the
semantic environment models in fetch-and-delivery tasks.
A. Cups

In the first scenario, we look at situations in which a robot
is supposed to find cups in the environment.

2
http://www.willowgarage.com/pages/pr2/overview

3
http://www.ros.org/
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Fig. 4. Overview of the main software components realizing the execution
of fetch-and-delivery tasks.

In the first situation the robot is asked to look for a par-
ticular cup, a cup that has a certain logo on it. Let’s assume
the robot knows some cup instances in the environment, and
it also has a model of the logo. However, this logo is not
associated to any of the cups, i.e., the following query fails:
?- hasType(C,’Cup’), hasLogo(C, ’CMU’).

Hence, the robot has to move to all possible cup locations
and try to to match the logo with one of the cups perceptu-
ally. The following PROLOG query shows how the robot
can retrieve the positions of potential cup locations from
the semantic map and calculate their respective path costs.
The list of ordered poses is than passed to the navigation
framework which uses the lookForAt(Obj,Pose) predicate to
determine the navigation goals.
?- findall(Pose, (hasType(Obj, ’Cup’),

not(hasLogo(Obj, AnyLogo)),

locatedAt(Obj, Pose)), PList),

calc_path_costs(’current-pose’, PList, SortedPoses).

Figure 5 visualizes the query result in the semantic map
and show some images of the carried out robot experiment.
After detecting a cup with a different logo in the first room,
the robot navigates to another room where it eventually
find the sought cup4. We varied the experiment by placing
the individual cups at the different locations in various
permutations or removing individual cups completely.

Fig. 6. iPad interface.

In addition to the
autonomous object search, we
also developed an interactive
mode where users can search
for objects using an iPad
interface. Basically, users
can ask for an object and
receive a list of possible object
locations. After taking a user’s
request, the system searches
the semantic environment
models for possible locations

4Video: http://www.jsk.t.u-tokyo.ac.jp/�kunzel/sos.html
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Fig. 5. Row 1: Robot at place (1). Found cup, but has PR2 logo. Row 2:
Robot at place (2). Found cup with desired CMU logo. Row 3: Robot picks
up cup. Visualized query results in semantic map.

using a selected search strategy, generates a list of potential
locations including information about floor, room, costs, and
if available an image of the object’s visual appearance. The
user can then decide from which location the robot should
fetch the object. Figure 6 shows a query result for Cup.

In the previous situation we assumed that the robot had
some knowledge about cup instances. However, if the robot
has no such information it has to rely on more general
knowledge. The following query illustrates how the robot
retrieves potential locations from the probabilistic models.

?- findall([P, Type],

locationOf(Type ,’Cup’ , P),

PTList),

argmax(PTList, RoomType),

findall(R, hasType(R, RoomType), Rs),

member(Room, Rs),

inRoom(Spot, Room), hasType(Spot,‘Place‘).

First, the robot finds all tuples of probability (P) and room
type (Type), given that it is looking for a Cup. Figure 7 shows
some probabilities that a type of object can be found in a
room. Second, it extracts only the tuple with the highest
probability, i.e. Kitchen (given Cup). Third, it retrieves all
room instances of this Type from the semantic map, and
finally, it considers all known places in these room instances.
At each place the robot tries to perceive a cup at different
angles.

Using the above query the robot gets the information that
a Cup instance might be found in a Kitchen. So, it has to
search for a cup at all places in the kitchen. However, not all
places in the kitchen make sense to look for a cup, e.g. one
place is in front of a TV. Using additional knowledge, for
example, that the places should be in front of a table, shelf,
or cupboard, can further reduce the number of places.



Fig. 7. Examples of probabilities to find a given object in certain room, i.e.
P (ω|x). The initial configuration is bootstrapped from the OMICS database.

B. Sandwiches
In this scenario the robot is asked to get a sandwich.

Let’s assume the robot does not has any knowledge about a
Sandwich instance. So, it calculates which objects (it knows
about) are similar to sandwiches using the following query:
?- mostSimilarObj(’Sandwich’, Obj).

where Obj is bound to sushi1. This instance is of type
Sushi and it is similar to Sandwich because of the common
super-class Food-ReadyToEat. With its spatial reasoning ca-
pabilities the robot finds out that sushi1 is currently located
in frigde1 in room 73b2.

Another possibility to find a sandwich is to search at
locations where instances of sandwiches are created, e.g.
kitchens or restaurants. Using the query
?- createdAt(’Sandwich’, Loc).

the robots infers that sandwiches might be are created in
room 73b2 which is of type Kitchen and/or subway-shop
which is of type FastFoodRestaurant.

Fig. 8. PR2 using an elevator, approaching subway shop, and ordering a
sandwich.

VII. RELATED WORK

In recent years, the usage of semantic information has
become more and more prominent in the context of robotics.

In [4], object-room relations are exploited for mapping
and navigation tasks. Such kind of knowledge is often
represented by the means of Description logics [5], [6], or
probabilistic models [7], [8].

How to use semantic knowledge within object search
tasks is explored by [9], [10], [11]. Our approach can be
considered in a similar line of research. Probabilistic models
are used in [9] to guide a simulated robot during object
search tasks in structured indoor environments, namely su-
permarkets. Work by [10] utilizes also probabilistic methods

on a robot system to make inferences about the spatial re-
lations between object instances in the environment. Similar
to our approach, [11] bootstraps commonsense knowledge
from the OMICS database to initialize the probabilistic
representations. However, other forms of reasoning are not
investigated in their robot experiments.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we investigated how semantic information
about the robot’s environment can be used in object search
tasks. To this extent, we extended the representation for-
malisms introduced in previous work ([1]) and implement
several PROLOG programs to infer the potential locations of
an object. As proof-of-concept, we integrated the developed
methods into a robot system that searches objects within
a multi-level building in the context of fetch-and-delivery
tasks. The realized system is able to navigate to inferred ob-
jects location using different kinds of semantic information.

In future work, we will include further probabilistic mod-
els about spatial relations like in, on, and next-to in order
to restrict the search space of objects and thereby make
the search tasks even more efficient. Additionally, we will
conduct more experiments to evaluate the outcomes of search
tasks more systematically.
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Surface Reconstruction with Growing Neural Gas

Christian A. Mueller, Nico Hochgeschwender, and Paul G. Ploeger

Abstract— Surface reconstruction is a crucial step to convert
unstructured point clouds to a compact representation. In this
paper we introduce a modified Growing Neural Gas (GNG)
algorithm for surface reconstruction of free-formed objects
found in domestic environments. In our experiments we show
that the algorithm generates consistent surfaces and is able to
cope with noise in the point clouds. Therefore, the proposed
algorithm is an attractive alternative to standard triangulation
methods and also applicable as a basic processing step in
a perception pipeline (e.g. object categorization) for service
robots.

I. INTRODUCTION

Service robots performing household tasks (e.g. pick and
place) in unconstrained and domestic settings must be able
to robustly perceive object information even in the presence
of cluttered and dense environments. Thereby, independently
from the concrete application, surface reconstruction is an
important processing step in every perception system found
in service robotics. However, surface reconstruction from
real-world data is challenging: the observed point clouds
from objects are partial, unorganized, and free-formed. For
instance, they are not necessarily based on principle shapes
as cylinders, spheres, boxes, or cones. Furthermore, with
noisy sensors it is difficult to generate a consistent object
representation because points are missing or displaced. Naı̈ve
triangulation approaches (e.g. Delaunay based) for surface
reconstruction tend to generate surfaces which are potentially
overfitted with noise. Therefore, we propose in this paper
an alternative approach for surface reconstruction based on
Growing Neural Gas (GNG) introduced by Fritzke [1]. The
modified algorithm is able to cope with free-formed, noisy,
and partial point clouds from noisy RGB-D cameras like the
Microsoft Kinect c�.

II. RELATED WORK

Since several decades machine learning methods based on
Artificial Neural Networks have been applied to different
problems – ranging from data mining to computer vision. In
this paper we interpret surface reconstruction as an unsuper-
vised learning problem. The input vector is a point of a point
cloud from an object and the expected output is the surface
topology of the object. A similar learning problem has
been proposed by Fritzke[1] where an unsupervised Growing
Neural Gas (GNG) has been introduced to incrementally
learn the topological structure of input vectors. The GNG
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Rhein-Sieg University of Applied Sciences, Sankt Augustin,
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preserves the topology of the input vectors and shows a
contrary effect to noisy data and outliers. This is achieved
through incremental adaptation of the input.

In contrast to related approaches such as Self-Organizing
Maps (SOM[4]), GNG does not assume any dimensionality
of the resulting network which is in particular useful for
surface reconstruction of free-formed objects. Based on this
fundamental works (Fritzke[1], Kohonen[4]) several authors
proposed approaches for surface reconstruction (e.g. [2], [5],
[3], [6]). However, the majority of these contributions do not
take into account short response times and assume perfect
point clouds. For instance, far more than several seconds
for reconstructing a surface are required or high-resolution
point clouds (�10000 points) from objects are gathered with
less noisy sensors like laser range scanners. Furthermore, the
evaluations are performed with noise-free CAD or synthetic
models which are mostly not available in robotics and do not
comply with the sensed point clouds from RGB-D cameras.

III. SURFACE RECONSTRUCTION WITH GROWING
NEURAL GAS

In an unsupervised learning manner, GNG reflects the
topology of the input distribution as an undirected graph.
Basically the GNG approach proposed by Fritzke[1] is used
with modifications and extensions in this work. The basic
algorithm is shown in Algorithm 1, whereas the modified
algorithm is shown in Algorithm 2.

Consecutively a randomly selected point of a point cloud
P is fired as a signal (input) into the Growing Neural Gas
G (Algorithm 1: step 4). A competitive Hebbian learning-
like algorithm(Algorithm 1: step 5-9) is applied to generate
edges between neurons which are nearest to the signal. In the
original algorithm [1] a neuron is only added after a certain
interval λ (Algorithm 1: step 11). It is shown that after a
sufficient number of iterations of firing signals into G, that
G converges to a Delaunay triangulated mesh.

This algorithm offers further benefits over a simple mesh-
ing algorithm: due to the incremental adaptation of GNG, it
denoises and reorganizes the input distribution in such a way
that only concise properties of the point cloud are reflected in
the number of neurons, position and the connections between
the neurons. Eventually, the connected neurons of the neural
gas generate a mesh for a cup as shown in Fig.1.

Concerning the surface reconstruction problem, adding a
new neuron incrementally after a certain interval λ to G (Al-
gorithm 1: step 11) does not consider the actual divergence
between G and the P. In order to adapt to this problem a new
neuron nnew is only added to G if the �error(·) of an existing



Algorithm 1 Basic GNG Algorithm – Fritzke[1]
1: Select randomly two points p1 and p2 from P with

position ωp1 and ωp2 to initialize G (GNG).
2: Add p1 and p2 to G.
3: Create an edge between p1 and p2.
4: Select a randomly point (aka. signal) p from P.
5: Find nearest neuron n1 and second nearest neuron n2 in

G.
6: Increment the age of edges connected n1.
7: Add distance between n1 and p to error counter of n1.

�error(n1) = ||n1 − p||2.
8: Update positions(ω) of n1 and nn where n are neighbors

of n1. Move n1 and nn towards p by a fraction of εb and
εb.
ωn1 = εb(||n1 − p||2), ωnn

= εn(||nn − p||2)
9: Connect n1 and n2 if they are not connected.If they were

connected set the edge age to 0.
10: Delete edges which are older than amax. Remove neurons

which do not have any edge connected to.
11: After λ selected signals add a new neuron nnew to G as

follows:
•Identify the neuron nq with larges �error(nq).
•Insert nnew between nq and the neighbor n f with larges
�error(n f ): ωnnew

= 0.5(nq +n f )
•Connect nnew with nq and n f and remove the edge
between nq and n f .
•Decrease �error(nq) and �error(n f ) by α and set
�error(nnew) with �error(nq).

12: Decrease all �error(·) with d.
13: Continue with step 4 till stopping criterion(e.g. G has

reached max. number of neurons) is reached

Fig. 1. A grown neural gas mesh(right) form a cup point cloud(left). Note
that, a partial point cloud observation is given as input. In this and the
following figures, the neurons in a GNG are sized and colored by the mean
All-Pair-Shortest-Path(APSP) distances in order to illustrate the distribution
and topology of a neuron with respect to the other neurons. Thereby with
the APSP method the shortest paths in the GNG from each neuron to all
other neurons is computed.

neuron in G exceeds a certain threshold tγ (Algorithm 2: step
12).

As an further extension, G is retrained
1, i.e. the input set

is repeatedly fired into G so that after each epoch, G is more
adapted to the actual point cloud distribution. This guarantees
that the position distribution of the neurons is close to the one
of the points from the point cloud. The retraining process is
stopped if the mean distance ε(·) between the position of the
neurons ni and the nearest points of the point cloud P reaches
a lower bounded threshold tα (Algorithm 2: step 18), instead
of reaching a certain size of G (Algorithm 1: step 13). The
computation of the mean distance ε(·) is defined as shown
in Eq. 1 where N denotes the number of neurons in G. For
each neuron ni the distance to the nearest point of the point
cloud P is computed; the euclidean distance (Eq. 2) is used
as distance measure between two points p and q with the
dimensionality of m

2.

ε(G) =
∑N

i=0 ||ni − f indNearestPointToNeuron(P,ni)||2
N

(1)

d(p,q) = ||p−q||2 =

�
m

∑
i=1

(pi −qi)2 (2)

This retraining criterion is computationally efficient and
still provides a satisfying feedback about the condition
of reconstruction process, for instance other measurements
applied like the Hausdorff Distance in Yoon et al.[6] are
computationally more expensive.

Additionally, if the distance of a neuron to the nearest
point of P is above an upper bounded threshold tβ , i.e. the
neuron is strongly diverted from the actual input distribution,
then this neuron is removed from G – this procedure is
denoted as consistency check(∆1(·), see Algorithm 2: step
15). This guarantees that in the current epoch of the surface
reconstruction process, no nodes are contained which are
certainly not part of the actual point cloud distribution. This
will guide the reconstruction processes in situations where
e.g. concave surfaces (e.g. cups or bowls) are reconstructed:
due to the unsupervised learning manner of GNG Neurons
might be attracted to the concave inner area – especially in
the first epochs.

Moreover, rather than repeatedly firing the identical input
set in each epoch into G, to each point of P a Gaussian noise
is added (∆2(·), see Algorithm 2: step 17) which enriches

the variation of the input set; subsequently this results in
an accelerated triangulation of a mesh compared to a mesh
where adding noise is neglected (see Fig.5). We believe the
acceleration can be explained by the larger variations of P

with near-model-points (Gaussian noise added points of P).
Due to this variation, the actual topology of the input is
stronger reflected in the resulting G.

Finally in each iteration (epoch) a refinement procedure
∆3(·) (Algorithm 2: step 16) is applied, which only retrains

1Note that, a single retraining of G is also denoted as epoch.
2
m = 3 due to the 3D Cartesian coordinates x,y,z of each point respec-

tively neuron.



points from the point cloud which are positioned at a large
curvature. This step will reinforce and consequently retain
relevant surface properties of the point cloud in the GNG
surface reconstruction process; e.g. surface properties which
have a large curvature are edges or curves at box or cup
instances.

Algorithm 2 Modified GNG Algorithm based on Fritzke[1].
Modifications are marked with �.

1: � Buffer P in Pori.
2: Select randomly two points p1 and p2 from P with

position ωp1 and ωp2 to initialize G (GNG).
3: Add p1 and p2 to G.
4: Create an edge between p1 and p2.
5: Select a randomly point (aka. signal) p from P.
6: Find nearest neuron n1 and second nearest neuron n2 in

G.
7: Increment the age of edges connected n1.
8: Add distance between n1 and p to error counter of n1.

�error(n1) = ||n1 − p||2.
9: Update positions(ω) of n1 and nn where n are neighbors

of n1. Move n1 and nn towards p by a fraction of εb and
εb.
ωn1 = εb(||n1 − p||2), ωnn

= εn(||nn − p||2)
10: Connect n1 and n2 if they are not connected.If they were

connected set the edge age to 0.
11: Delete edges which are older than amax. Remove neurons

which do not have any edge connected to.
12: � A new neuron nnew is added to G as follows:

Identify the neuron nq with the larges �error(nq). If
�error(nq)> tγ then continue this step.
•Insert nnew between nq and the neighbor n f with larges
�error(n f ): ωnnew

= 0.5(nq +n f )
•Connect nnew with nq and n f and remove the edge
between nq and n f .
•Decrease �error(nq) and �error(n f ) by α and set
�error(nnew) with �error(nq).

13: Decrease all �error(·) with d.
14: � Continue with step 5 till the set of points of P are

applied to G.
15: � Check for strong diverted Neurons in G, i.e. remove

Neurons which exceed the distance tβ to the nearest point
p in P: G = ∆1(G, tβ )

16: � Refine G: G = ∆3(G)
• Create points set Pre f ine from points in P at locations
with a high curvature.
• Apply steps 5 to 15 where P = Pre f ine – refinement is
only once applied in each epoch.

17: � Adding Gaussian noise to each point of Pori:
P = ∆2(Pori).

18: � Continue with a new epoch in step 5 till stopping
criterion ε(G)< tα is reached.

(a) Cup (b) Can (c) Box (d) Bottle

(e) Bowl (f) Plate (g) Ball

Fig. 2. A set of reconstructed surfaces via GNG is shown regarding
the seven object categories (cup, can, box, bottle, bowl, plate, ball). Note
that, missing connections like in (a) and (e) – at the rim – are due to the
consistent non-existence of points in the related points clouds which also
reflects the fact that only a partial observation from a certain perspective
on the object is available; the point clouds are sensed with the Microsoft
Kinect c�. Moreover, note that these reconstructed surfaces do actual contain
less noise, e.g. outliers.

IV. EVALUATION

A. Setup

The modified GNG approach has been applied to a set of
point clouds from seven different object categories, namely
cup, can, box, bottle, bowl, plate and ball. These object
categories are chosen in order to analyze the reconstructed
surfaces from primitive shapes like cylinders (cans) or
spheres (balls) and also to analyze the ability to reconstruct
surfaces from objects with different surface properties such
as convex/concave (cups and bowls), planar (plates and
boxes) or spherical (balls) surfaces. Some instances are
illustrated in Fig.2. The surfaces are reconstructed from point
clouds which do not contain more than 1000 points.

The some of the following experiments are focused on
one single instance from the cup category (see Fig.1); this
category is chosen due to its variety of different surface prop-
erties. Furthermore, the example point cloud from Fig.1(left)
is applied in different experimental conditions in order to
illustrate the behavior of the proposed GNG approach.

B. Experiments

Through a number of retraining epochs the GNG evolves
and provides a more consistent topology projection of the
input distribution. In Figure 3 the error ε(·) over number of
epochs is analyzed between the GNG and the point clouds
from the seven mentioned object categories – the error ε(·)
is defined as shown in Eq. 1. It can be observed in Fig. 3
that the error rapidly drops after the first few epochs. Later
the GNG steadily adapts to the point cloud and consequently
the error decreases.

A further example is shown in Fig.4; as input the partial
point cloud from Fig.1 (left) is used. It can be observed that



(a)

(b)

Fig. 3. Two plots which illustrate the resulting mean(a) and standard
deviation(b) of the error ε(·) between GNGs and point clouds after a specific
number of retraining iterations (epochs). The results of these plots are based
on surface reconstructions from points clouds of the seven object categories
(cup, can, box, bottle, bowl, plate, ball). 10 instances of each category have
been used.

(a) i=1, ε(G)=0.082 (b) i=5, ε(G)=0.05 (c) i=10, ε(G)=0.045

(d) i=20, ε(G)=0.043 (e) i=30, ε(G)=0.041 (f) i=50, ε(G)=0.04

(g) i=100, ε(G)=0.041

Fig. 4. Example of a grown neural gas after i iterations of retraining. ε(·)
denotes the mean error as defined in Eq. 1. The neural gas is constantly
adapting to the input point cloud from Fig.1(left). The size and color of the
neurons are displayed according to the mean APSP (see Fig.1).

Fig. 5. Two grown neural gases trained with the point cloud from
Fig.1(left). The left figure shows a grown neural gas without added noise.
On the right side the figure shows a grown neural gas with added noise
during retraining. In both cases the GNGs are retrained with 100 iterations.
It is observable that the triangulation is more distinctive in the right figure.

the more epochs are applied the more the actual topology
is projected and Delaunay triangles are observable. Also
the error ε(·) as defined in Eq. 1 reduces over the applied
epochs. However the error keeps almost steady after about 30
iterations, hence it can be assumed that the GNG is saturated
by a sufficient number of neurons and their distribution is
sufficiently organized over the surface. Nevertheless it is
observable in Fig.4(e),(f) and (g) the error is similar with
increasing iterations but the occurrences of triangles become
more and more uniformly distributed.

Figure 5 shows how adding mild noise to the input point
cloud3 during the retraining process of the GNG (Algorithm
2: step 17) accelerates the Delaunay triangulation. Moreover,
the number of nodes and edges have increased by applying
the noise in each epoch: the number of nodes has increased
from 97 to 107 whereas the number of edges from 158 to
237. As mentioned in the previous section III, we believe
the acceleration of the triangulation is due to the variation
enrichment of the points from the point cloud in each epoch.
Based on this variation and the incremental learning process
of GNG, the surface is able to be reconstruct in a more
detailed and consistent manner.

Also mentioned in section III, the training process of GNG
has a denoising effect on the input. This is shown in Fig. 6:
the input point cloud from Fig.1(left) is reconstructed by the
proposed GNG approach. Despite the noisy point cloud (e.g.
caused by noisy camera input) the GNG approach is still
able to cope with it and to learn the topology of the point
cloud.

Finally runtime experiments have shown that the average
response time is about 115 ms – considering the given seven
object categories where 10 instances from each category are
used.

V. CONCLUSION AND FUTURE WORK

In this paper an approach is proposed for 3D surface
reconstruction with Growing Neural Gas. Surface reconstruc-
tion based on point clouds which are sensed from the real
world is challenging due to noisy sensors. The basic GNG

310% Gaussian noise to each point of the point cloud is applied.



Fig. 6. The left figure displays the point cloud from Fig.1(left) with
extensive noise. The resulting grown neural gas after 100 iterations is shown
right. Note that the distribution – respectively topology – of the neurons is
still similar to the GNG from Fig.1(right).

algorithm has been modified to adapt to the problem of 3D
surface reconstruction. It has been shown that GNG provides
some benefits which leads to an attractive alternative to
standard triangulation approaches and also copes with noisy
conditions and low response time constraints.

The future work is directed to object perception tasks, like
recognition and categorization based on the proposed surface
reconstruction algorithm. Typical reconstructed surfaces such
as shown in Fig.2 will be used for object description purposes
followed by typically learning algorithms in order to dis-
tinguish different object instances or categories. Moreover,
additional investigations about the behavior of GNG are
planned, e.g. measuring the quality of the triangulation and
also the effect of the quality of the GNG compared to the
resulting recognition, respectively categorization rate.
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Abstract— Real world environments typically include objects
with different perceptual appearances. A household, for exam-
ple, includes textured, textureless and even partially transparent
objects. While perception methods exist that work well on one
such class of objects at a time, the perception of various classes
of objects in a scene is still a challenge. It is our view that the
construction of a descriptor that takes both color and shape into
account, thereby fostering high discriminating power, will help
to solve this problem. In this paper we present an approach
that is capable of efficiently capturing both the geometric and
visual appearance of common objects of daily use into one
feature. We showcase this feature’s applicability for the purpose
of classifying objects in cluttered scenes with obstructions, and
we evaluate two classification approaches. In our experiments
we make use of Kinect, a new RGB-D device, and build a
database of 63 objects. Preliminary results on novel views show
recognition rates of 72.2%.

I. INTRODUCTION

One of the great challenges in autonomous mobile robot
manipulation is scaling technology to realistic tasks in real-
world environments and conditions. This means that an
autonomous household robot must be able to interact with
many different objects of daily use, and handle them (e.g.
when opening a fridge to get milk, or when performing
challenging everyday tasks, such as setting the table or
preparing a meal).

In recent years, descriptor-based object recognition has
proved to be very successful. SIFT [1], SURF [2] and other
descriptors can detect, localize and recognize many types of
textured objects efficiently, reliably and under varying light-
ing conditions. Likewise, descriptors have been developed
for perceiving objects based on their shapes (e.g. circles,
cylinders, spheres and hybrid variants). The most notable are
Normal Aligned Radial Features (NARF) [3] for range im-
ages and several versions of Point Feature Histograms (PFH,
FPFH) [4] and Viewpoint Feature Histograms (VFH) [5]
for unordered fully-3D point clouds. While these descriptors
were successful, their applicability is limited because they
typically work only in restricted feature spaces. In order to
have a perception system based on SIFT features, the search
space needs to be restricted to objects that are detectable
by texture, and if 3D features are used, the objects must
be distinctive with respect to their shapes. Ultimately, a
perception system for autonomous robots needs to be able to
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Fig. 1: Top: Autonomous service robot equipped with a
Kinect sensor acquiring training data of the objects shown in
the bottom image. For every view of the object, a VOSCH
or ConVOSCH descriptor was estimated and a database
of 63 objects was generated. An object detection pipeline
with Support Vector Machines or Linear Subspace Method
classifiers was then used to detect objects in natural scenes.
Bottom: the objects used in our experiments.

perceive and decipher all objects, whether they are textured,
textureless, or different shapes, or the like.

While it seems feasible that perception routines can simply
be developed by combining various descriptors [6], [7], a
more promising idea is to develop descriptors that work
in multiple feature spaces. The reason for this is that it
might be easy to discriminate objects in a combined feature
space, whereas it is impossible to discriminate them in
individual spaces as depicted in Figure 2. Thus, our approach
is to be seen as an alternative to the bag-of-experts type
of approaches [8]. In this paper we present our work,
which includes two variations of a novel descriptor that
is based on the Global Radius-based Surface Descriptor



Fig. 2: Examples of scaled VOSCH histograms. Left: dif-
ferent categories of objects (top-down: cylinder, cube, cone,
plane, sphere, torus, die) have different values in the first 20
bins of their histograms. Right: different colors of the same
category of a torus have different values in the last 117 bins
of their histograms.

(GRSD [7]) and the Circular Color Cubic Higher-order Local
Auto-Correlation descriptor (C3-HLAC [9]). We termed our
descriptor (Concatenated) Voxelized Shape and Color His-
tograms – (Con)VOSCH.

The strength of our descriptor lies in its ability to consider
geometric and visual features in a unified manner, thereby
facilitating object classification. The two underlying features
(GRSD, C3-HLAC) were carefully selected for their similar
structures and the way they are computed from voxelized
3D data. While ConVOSCH is a mere concatenation of
GRSD and C3-HLAC histograms, VOSCH is developed
such that it allows for its computation in a single step
because of the modified underlying algorithmic properties for
GRSD and C3-HLAC. Both features count relations between
neighboring voxels, capturing geometric surface type and
texture transitions at the same time. These features can
be used to perform classification of one object against 63
different objects (see Figure 1) in 0.1 millisecond using
Linear Subspace Method Classifier [10].

II. RELATED WORK

Expressiveness and efficiency are both crucially impor-
tant for a real-time object recognition system.The SIFT [1]
descriptor, one of the most well-known 2D descriptors for
object recognition, makes use of detected keypoints in scenes
comparing them with referenced objects in order to identify
the objects currently being observed. A combination of the
visual appearance descriptor and the 2D shape is presented
by Bosch et al. in [11] where they use random forests to
achieve around 80% classification accuracy.

The NARF [3] descriptor detects salient points in range
images of real environments. Despite its repeatability in
point-to-point matching, difficulties remain in cluster-to-
cluster matching, which is necessary for identifying each
cluster candidate as an object in the environment. This also
causes high computational costs especially when the target
object database is large. In the 3D domain, VFH [5] descrip-
tor was recently developed and presented as an extension
of [4]. The feature’s discriminative power is increased by the
inclusion of the viewpoint, which, however, also represents
a deficiency in that the feature becomes orientation variant.

There are some approaches that use both geometry and
color descriptors to represent 3D bodies [12]. However,
properly balancing these two different properties is difficult.
Caputo and Dorko [13] learned respective kernels for shape
and color representations and combined them for object
recognition, while Huang and Hilton [14] balanced them by
normalizing bins of shape-color histograms. An alternative
solution for properly combining and balancing geometry
and color information is to extract descriptors represented
by patterns of shape-and-color co-occurrence. For example,
the textured spin-image [15] splits the well-known spin-
image [16] descriptors into several layers according to given
levels of luminance. C3-HLAC [9] splits the CHLAC [17]
descriptor depending on the relative position of neighboring
voxels, into RGB channels and the correlation space of these
channels. In [9], the C3-HLAC descriptor is used as a local
descriptor in the training process and as a global descriptor
describing each object cluster in the recognition process. This
takes advantage of the combination of the Linear Subspace
Method (LSM) [10] and the descriptor’s additive property,
which means a global descriptor for an object cluster is
computed by summing up the local descriptors of its sub-
parts.

III. SYSTEM OVERVIEW

The general idea of the work presented herein is de-
picted in Figure 1. We first acquired the training data for
63 objects of daily use using the RGBD Kinect sensor.
We then estimated ConVOSCH and VOSCH descriptors
for every object view and generated training models using
Support Vector Machines [18] (SVM) or Linear Subspace
Method [10] (LSM) classifiers. The models were then used
in the evaluation for cross-validation checks.

To construct the ConVOSCH and VOSCH descriptors, we
modified the original algorithms so that the C3-HLAC be-
came rotation invariant and GRSD additive. We thus obtained
descriptor histograms with 1001 bins for ConVOSCH and
137 bins for VOSCH. For constructing a database of object
models (Figure 1 bottom) containing training examples, we
used a rotating table with a pan-tilt unit that is controlled by
the robot over the network. Objects placed on the rotating
table were scanned at given angle intervals (15◦) and then
used to classify objects found in typical household settings.

Our approach is realized as part of the Robot Operating
System (ROS, http://www.ros.org/wiki/vosch)
open source framework, and makes use of modular and

http://www.ros.org/wiki/vosch


robust components that can be reused on other robotic
systems.

An important factor of robotic perception systems is quick
performance. To achieve this we optimized the proposed
descriptors, bringing the estimation time down to 0.26 s
for a cluster consisting of 4632 points on average and the
classification time down to under 50 milliseconds for the
SVM classifier and 0.1 millisecond for the LSM.

This paper provides the following main contributions:
• A specification of a novel descriptor with two variants

(ConVOSCH and VOSCH) that account for geometrical
as well as visual appearance properties of objects;

• A comparison of classification results for two estab-
lished classification frameworks – LSM and SVM; and,

• An extensive database of 63 objects of daily use
captured with the Kinect sensor and used as training
examples (which we intend to publish after the review
process).

IV. FEATURE ESTIMATION

As mentioned earlier, the construction of ConVOSCH and
VOSCH is based on the features of C3-HLAC and GRSD.
For the sake of clarity, we briefly present an overview of how
the features of HLAC and GRSD are constructed. Following
this, we outline the modifications that were made to these
features in order to obtain the novelty of the proposed
features.

A. C3-HLAC

C3-HLAC descriptor is a high-dimensional vector that
measures the summation of the multiplied RGB values of
neighboring voxels in a 3×3×3 grid around a voxel grid of
arbitrary size. Each bin in a C3-HLAC descriptor is differen-
tiated by the RGB color space and the relative position of the
two neighboring voxels. Let x = (x, y, z)T be the position of
a voxel, p(x) be the flag for occupancy of the voxel and r(x),
g(x) and b(x) be its RGB values normalized between 0 and
1, respectively. By defining r1(x) ≡ sin

�
π
2 r(x)

�
, g1(x) ≡

sin
�
π
2 g(x)

�
, b1(x) ≡ sin

�
π
2 b(x)

�
, r2(x) ≡ cos

�
π
2 r(x)

�
,

g2(x) ≡ cos
�
π
2 g(x)

�
, and b2(x) ≡ cos

�
π
2 b(x)

�
, a voxel

status f(x) ∈ N6 is defined as follows:

f(x)=

�
[r1(x) r2(x) g1(x) g2(x) b1(x) b2(x)]

T p(x)=1

[ 0 0 0 0 0 0 ]T p(x)=0

Letting ai be a displacement vector from the reference
voxel to its neighboring voxel, the elements of a C3-HLAC
descriptor extracted from a voxel grid V are calculated by
the following equations:

q1 =
�

x∈V

f(x) (1)

q2 =
�

x∈V

f(x) fT (x) (2)

q3(ai) =
�

x∈V

f(x) fT (x+ ai) (i = 0, . . . 12) (3)

Since these values are summed up around a voxel grid, there
is redundant computation of the same value over symmetric
pairs of ai. As a result, the number of variations in ai is
13, which is a half of the 26 neighbors in a 3 × 3 × 3
grid. The matrix computed by (3) is expanded into a column
vector of 36 elements. Therefore, the dimension of the vector
calculated by (1) is 6, while that by (3) is 468 (=36 ·13). The
second part of the C3-HLAC descriptor is computed from
the binarized values of r(x), g(x) and b(x). To determine
the threshold of color binarization, we applied the histogram
threshold selection method of [19] to the R, G and B
values respectively, using the voxel colors of all objects in
the database as sample data. C3-HLAC features calculated
by (2) include redundant elements, e.g., r(x) · g(x) and
g(x)·r(x). Excluding the redundant elements, the dimension
is 12 if color values are binarized, and 21 otherwise. Finally
a full C3-HLAC vector is obtained by concatenating the two
vectors from binarized color voxel data and from original
color voxel data. As a result, the dimension of the C3-HLAC
feature vector becomes 981 (6+468+21 for non-binarized
data plus 6+468+12 for binarized data).

B. GRSD

GRSD is a histogram, that counts the number of transitions
between different types of voxels. While it is applicable to a
wide range of applications, we used it to count the transitions
between the following geometric classes of voxel surfaces:
free space, plane, cylinder, sphere, rim, and noise. Surface
types were identified based on the estimation of their two
principal curves’ radii, rmin and rmax [20]. This approach
uses the leaves of an octree as voxels, to facilitate fast ray
intersection tests. The number of bins b is:

b =
s(s+ 1)

2
(4)

where s is the number of possible surface types, resulting in
21 dimensions for the above stated 6 types of surfaces.

In order to efficiently merge the two features, the original
GRSD had to be altered (see next subsection). In the new,
additive GRSD2 feature, transitions from free space to free
space are impossible, hence its dimensionality becomes 20.

C. VOSCH

In order to generate VOSCH we refined the C3-HLAC
descriptor to be rotation-invariant by bringing all 13 different
vectors given by (3) together in the following equation:

q4 =
12�

i=0

q3(ai) =
12�

i=0

�

x∈V

f(x) fT (x+ ai) (5)

This reduces the dimensionality of the descriptor down to
117 (6+36+12 for non-binarized data plus 6+36+21 for bi-
narized data) with respect to the original implementation. By
doing so, the refined C3-HLAC descriptor is well-matched
with the GRSD histogram, making it rotation invariant, while
preserving expressivity.

The GRSD, as presented in [7], originally used ray-tracing
in order to find transitions between surface types. To make



Fig. 3: Rotation-invariant C3-HLAC can not differentiate
the die from the cube (identical histograms on the left),
while GRSD/GRSD2 can not differentiate the different colors
(identical histograms on the right). Their combination how-
ever produces distinct signatures for all of them (Figure 2).

it fit into VOSCH we i) omitted ray-tracing in favor of fast-
to-compute adjacency voxels checks and ii) discarded the
normalization of histogram bins – thus obtaining GRSD2.

These modifications allow us to create histograms which,
as in the case of C3-HLAC, are additive. The latter property
can best be described as follows: if we break an object into
several parts, the object’s histogram becomes equal to the
sum of the histograms of its sub-parts. Furthermore, since we
do not use ray-casting but consider only the direct neighbors
of each occupied cell, the computation of the new GRSD2

is in the millisecond range. This is 2 orders of magnitude
faster than the original implementation, at the cost of some
descriptiveness.
D. ConVOSCH

The idea of ConVOSCH is to simply estimate C3-HLAC
and GRSD2 in two separate steps, concatenate resulting
histograms and normalize the final result into a range of
[0,1]. This preserves the high dimensionality and, thus, the
accuracy for the color space, but it also makes the feature
rotation-variant and slightly slower for use in classification
schemes.

The advantage of the VOSCH and ConVOSCH features
is depicted in Figure 3, where we can see that the visual
appearance-based feature, such as C3-HLAC, can not discern
the orange cube from the orange die (note that the histograms
in the bottom-left part are identical). On the other hand, we
have a shape-based feature GRSD/GRSD2 which can not
discern between the orange and the blue die (likewise, the
histograms in the bottom-right part are also identical).

V. CLASSIFICATION METHODS
A. Linear Subspace Method

LSM is an established learning method for classification.
For the first step, we solve PCA for all the descriptors
extracted from all the trained objects, and then use the top d

dimensions of the descriptor as a feature vector, in the same
way as [9]. For training, several feature vectors that represent
each object were extracted, and then Principal Component
Analysis (PCA) for them was solved. Similarly to [9],
we divided the whole voxel grid of each object into cubic
subdivisions of a certain size (7 cm × 7 cm × 7 cm with
5 cm × 5 cm × 5 cm overlapping in our case) and then
extracted feature vectors from all of the subdivisions. Let
the number of subdivisions be N and the training feature
vectors be zt ∈ Rd, t = 1, 2, ...N . Then the eigenvectors of
R = 1

N

�N
t=1 ztz

T
t are computed.

To classify and identify a detected object in environments,
the system extracts one feature vector from the whole voxel
grid of the object. Letting the feature vector be z and the
matrix of top c eigenvectors for the i-th object in the database
be Pi ≡ (vi1vi2...vit), the similarity between the query
part and the i-th object in the database yi is calculated by
yi = �PT

i z�/�z�. There is an advantage to using LSM with
this kind of histogram-based descriptors which are additive.
Owing to this property, one feature vector computed from
each object cluster in environments can be classified by
projecting it to each subspace of database objects, regardless
of the size of the object cluster, thus providing a fairly fast
method for classifying partially visible objects.

B. Support Vector Machine-based Classification
We also performed classification using SVM in our exper-

iments. SVM is a fast classification method that works by
learning the vectors that define hyperplanes separating the
training examples according to a cost and a kernel function.

Unlike LSM, it is not well-suited for recognizing partially
visible objects using the presented features, unless partial
views are explicitly trained. Another problem is over-fitting
to the training data, which can be limited by choosing pa-
rameters so that they maximize the results of cross-validation
checks on the training data.

We used a C-SVC type SVM with a radial basis function
kernel [21] with γ = 0.0078125 (0.5 for GRSD2). Cost
values higher than 128 did not further improve the final
results.

C. Scaling of Features
To improve classification rates using LSM it is important

that the values of the feature do not vary over several orders
of magnitude and, thus, become very important components
during PCA. Similarly, for SVM the results are also im-
proved if the variation of each feature bin is proportional.
Therefore we performed bin-wise scaling of the features for
classification as follows: when going through the training
data, the minimum and maximum value of each bin was
recorded, and this interval was mapped to the interval [0,1]
both during training and during testing.

VI. RESULTS

To evaluate the proposed features we ran tests using SVM
and LSM classifiers on the following two sets of data:
i) 7 artificially generated objects with 7 different colors,
and ii) 63 objects of daily use, scanned using a Kinect



nrpoints tpoint tobject
synthetic data (49 views of 49 objects) 19124 36 µs 0.69 s

real data (1512 views of 63 objects) 4632 57 µs 0.26 s

TABLE I: Times needed for the estimation of VOSCH.

sensor and a rotating table (shown in the bottom part of
Figure 1). We measured the recognition rates against the
original implementations of C3-HLAC and GRSD2. Since
C3-HLAC was already shown to outperform Textured Spin
Images in [22] we did not include it in our experiments.

A. Feature Extraction
In all tests, the computation of the feature was

parametrized as follows:
• search radius for normals: 2 cm
• search radius for rmin and rmax estimation: 1 cm
• voxel size: 1 cm
The execution times for VOSCH feature estimation are

shown in Table I, where nrpoints denotes the average number
of points per object, tpoint is the average estimation time per
point and tobject is the average estimation time needed for
an object.

B. Synthetic Data
We first carried out tests on a set of 49 artificially

generated objects, consisting of 7 shapes, each in 7 different
colors (Figure 2). We used one example of each object as a
training sample and evaluated the model on 5 examples of
each object with 10 different noise levels. The noise levels
were generated for points’ 3D coordinates using Gaussian
distribution with the following standard deviations:

σ ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0} [mm]

The deviations were set to correspond to the actual noise
levels of a Kinect sensor1. Note that not partial but the whole
shape of each object was given as an example in this exper-
iment. For LSM classification we set the dimension of the
compressed feature space d to 50 for C3-HLAC, ConVOSCH
and VOSCH, while GRSD2 was left uncompressed. The
dimensionality of the subspace c was set to 3. The results of
the test in Figure 4, show VOSCH (right-most two columns)
outperforming all other features.

Interrestingly, LSM is slightly better than SVM at low
noise levels, but is superseded by SVM as noise increases.
This is because SVM avoids over-fitting by maximizing the
margin between the different classes, while LSM penalizes
deviations from the model (i.e. “regression line” of the
training features).

Since GRSD2 is insensitive to color, it can identify at most
1/7 ≈ 14.2857% of the data. Additionally, since objects
were uniformly colored and mostly symmetrical, the fact
that C3-HLAC is not rotation invariant did not influence the
results. In the original implementation C3-HLAC had to be
trained in artificial rotations to achieve rotation invariance.

1http://www.ros.org/wiki/openni_kinect/kinect_
accuracy

GRSD2 C3-HLAC ConVOSCH VOSCH
LSM 43.65 (39.48) 99.67 (99.6) 99.8 (99.74) 99.8 (99.67)
SVM 99.07 (73.81) 99.87 (99.6) 99.87 (99.67) 99.8 (98.94)

TABLE II: Model accuracy of the training data and for the
leave-one-out test – the latter in parentheses.

C. Real Data

1) Acquisition of Training Data: Our database of 3D
objects was obtained using the Kinect sensor mounted on
the head of a robot. The set of objects (see Figure 1)
encompasses those commonly used in a typical household
environment (mugs, utensils, groceries, etc.).; we plan to
expand this object set and release it after the review process.
We rotated the objects on the rotating table with an angular
step of 15◦ around the up-axis, and acquired partial snap-
shots from a perspective that best approximates the robot’s
viewpoint during its working cycle.

2) Evaluation of the Training Data: Table II shows the
percentage of correctly classified training examples using
the model computed for them. The numbers in parentheses
are the percentages of correctly classified views using the
model constructed using the remaining views (leave-one-
out-test). For LSM classification we set d to 100 for C3-
HLAC, ConVOSCH and VOSCH, while GRSD2 was left
uncompressed. The dimensionality of the subspace c was set
to 10 for GRSD2 and 50 for the others.

3) Evaluation on Novel Views: To evaluate the proposed
features of the novel views, we performed the test with
the following setup : (a and b) we selected 5 types of
scenes containing textured and textureless objects, (c) objects
with similar shapes, (d) a scene with the substantial altered
lighting conditions, and (e) objects with arbitrary rotations.
We acquired the data from three substantially different
views.Object candidate clusters were detected by first finding
a major horizontal planar surface within the point cloud,
as done in [23]. For these experiments, we tested all the
choices with a break for ten (10, 20, . . . ) as the dimension
of subspace c in LSM, and set the best one.

In total we tested 72 views, achieving the highest rates
with SVM, as shown in Table III. One possible way to
improve the results would be to treat each view as a separate
sub-class, which should increase the actual classification
results by avoiding the training of very different views of the
same object into one class. Such an approach improved the
success rate by 12% of GRSD based geometric classification.

While LSM proved to be robust to noise in the synthetic
data, the real data is quite smooth, and SVM outperformed it
in our tests. LSM has, however, the advantage of exploiting
the additive property of the feature for detection in clutter.
Moreover, the time required for classification is significantly
shorter with LSM than with SVM. To validate LSM’s
robustness to parial data in clutter, additional experiments
with larger number of partially observed objects are the most
important future work.

http://www.ros.org/wiki/openni_kinect/kinect_accuracy
http://www.ros.org/wiki/openni_kinect/kinect_accuracy


Fig. 4: The effect of simulated noise on the classification results using GRSD2, C3-HLAC, ConVOSCH and VOSCH with
LSM and SVM (both with and without random rotations of test data).

GRSD2 C3-HLAC ConVOSCH VOSCH
(a) LSM 16.7% 75% 91.7% 83.3%

texture SVM 50% 75% 83.3% 66.7%
(b) LSM 16.7% 44.4% 61.1% 44.4%

no texture SVM 44.4% 66.7% 61.1% 61.1%
(c) LSM 5.6% 33.3% 44.4% 55.6%

sim. shape SVM 22.2% 61.1% 72.2% 77.8%
(d) LSM 5.6% 50% 50% 61.1%

diff. light SVM 22.2% 88.9% 88.9% 72.2%
(e) LSM 16.7% 16.7% 16.7% 100%

arb. rotation SVM 0% 16.7% 33.3% 50%
Total LSM 11.1%∗ 45.8% 55.6% 63.9%

SVM 30.6%∗ 68.1% 72.2% 68.1%

TABLE III: Model accuracy on novel view data. ∗Please note
that while in the original implementation GRSD was used for
detecting the geometric category, here we used it for clas-
sification of objects that were only visually distinguishable
(different brands of milk boxes for example).

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented and evaluated a method to
efficiently combine two appearance characteristics into a
single feature (both rotation variant and rotation invariant)
and showed its advantage over the original methods.

With its low number of dimensions, the rotation invariant
VOSCH feature promises to be an efficient and descriptive
feature that scales well with the number of objects. C3-HLAC
is not rotation invariant, so it has to be trained with all
rotations around the view-ray, and thus, so does ConVOSCH.
However, we found that at least in regards to our 63 objects,
the texture variations were not significantly different when
the objects were rotated – neither for the single colored
synthetic data (Figure 4), nor for the real views (Table III).

Future work will include the incorporation of other
promising 2.5/3D approaches, like VFH and NARF, into the
voxelized feature extraction process and further evaluations
using more test and training data.
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