

Spotlight the Negatives: A Generalized Discriminative Latent Variable Model Hossein Azizpour¹, Mostafa Arefiyan², Sobhan Naderi Parizi², Stefan Carlsson¹

¹KTH, Computer Vision and Active Perception Lab (CVAP), Stockholm, Sweden ²Brown University, Laboratory for Engineering Man/Machine Systems (LEMS), Providence, US

Latent Variable Models (LVM)

Naïve game strategy: Maximize your score

Generalized Latent Variable Models (GLVM)

Better game strategy: Maximize your score and minimize your opponent's

BROWN

Dependency Structure of Latent Variables

Connections

- Deformable Part Models can be generalized
- Latent Hough Transform can be generalized
- And-Or trees can be generalized
- and probably many more discriminative LVMs
- Latent Structural SVMs as a shallow case of GLVM [2]
- Mid-level features for scene recognition [1,3,4]
- ConvNets have negative parts!? [5]

Cat Head Detection (Oxford Pet)

PASCAL VOC 2007 Animals

	-		~		Y	age.		×	No.		6	
	Abyssinian	Bengal	Birman	Bombay	British Shorthair	Egyptian Mau	Maine Coon	Persian	Ragdoll	Russian Blue	Siamese	Sphynx
$\frac{DPM_4}{DPM_6}$	21.3 22.2	12.8 12.8	34.5 31.4	23.3 21.5	32.2 31.3	15.8 16.5	21.6 26.0	28.0 29.0	19.4 20.6	24.0 25.0	29.4 30.9	22.7 22.0
$GDPM_2^2$	24.3	11.9	38.4	23.9	31.0	19.7	27.7	29.7	24.5	29.9	35.9	27.4
$GDPM_4^2$	25.5	13.7	34.0	23.0	33.5	20.9	24.5	30.0	21.9	25.3	30.6	23.2

Generalized DPM implementation is non-trivial •

Consistent improvement

- No meaningful visualization of negative parts
- More robustness toward over-fitting

AP for careful initialization of $GDPM_8^1$ for cow is **26.9**

We would like to thank **Dr. Pedro Felzenszwalb** for the fruitful discussions regarding this work.

[1] S. Parizi, A. Vedaldi, A. Zisserman, P. Felzenszwalb "Automatic Discovery and Optimization of Parts for Image Classification", ICLR 2015 [2] C.J. Yu, T. Joachims, "Learning Structural SVMs with Latent Variables", ICML 2009

[3] M. Juneja, A. Vedaldi, C.V. Jawahar, A. Zisserman, "Blocks That Shout: Distinctive Parts for Scene Classification", CVPR 2013 [4] C. Doersch, A. Gupta, A. Efros, M. Hebert, "Mid-level Visual Element Discovery as Discriminative Mode Seeking.", NIPS 2013 [5] R. Girshick, F. Iandola, T. Darrell, J. Malik, "Deformable Part Models are Convolutional Neural Networks", CVPR 2015