Strong Supervision from Weak Annotation: Interactive Training of Deformable Part Models

S. Branson, P. Perona, S. Belongie
Methods by level of supervision

- simple models, weak annotations
 - least effort, potentially fast learning, not best results
- complicated models, weak annotation
 - state-of-the-art performance (multiple instance learning, latent parts, latent structural SVM)
 - non-convex optimization
 - slow training
 - Hard to pinpoint error source (optimization error, inappropriate model or feature space, insufficient training data)
Methods by level of supervision

- **Strong annotation**
 - Very time consuming
 - Easy learning task (possible convex optimization)
 - Generalization guarantee
 - Sensitive to quality and style of annotation

Question: Is it possible to have strong supervision properties with weak annotation computational efficiency?
Yes! Interactive Labelling and Online Learning

1. Model part structures with structured models

2. Bring up a new image,
 - predict the part locations with current model
 - Correct the wrong locations

3. Update the learned model and go to 2
Interactive Labelling + Online Learning
Interactive Labelling + Online Learning

• Interactive Labelling
 - Real time detection
 - Easy update
 - Tree-structured deformable parts model with dynamic programming is a good choice!

• Online Learning
 - Fast model updating
 - Convex optimization
 - Stochastic gradient descent
Related works

- Interactive labelling
 - Grab cut (Segmentation)
 - Label me video
 - Visipedia (attributes)
Related works

• Active learning
 - Intelligent computer decide which image to annotate
 - More savings than interactive labeling
 - In comparison to strong supervision
 • Higher computational complexity
 • Fewer theoretical guarantees

Label the object(s) in this region

Completely segment and label this image.
Model and Interactive UI

\[s(\Theta; x) = \sum_{p \in V} \psi_p(\theta_p; x) + \sum_{(p,q) \in E} \lambda_{pq}(\theta_p, \theta_q) \]
Learning framework

- Strong Convex formulation
 \[F_n(w) = \frac{\lambda}{2} \| w \|^2 + \frac{1}{n} \sum_{i=1}^{n} \ell_i(w) \]
 \[\ell_i(w) = \max_y (w \cdot \Phi(x_i, y) - w \cdot \Phi(x_i, y_i) + \Delta(y_i, y)) \]

- Gradient computable
- by one inference

\[\bar{y}_i = \max_y (w \cdot \Phi(x_i, y) + \Delta(y_i, y)) \]
\[\nabla \ell_i = \Phi(x_i, \bar{y}_i) - \Phi(x_i, y_i) \]

- Stochastic gradient descent
- Process an image at each step
 - Pegasus!
Theoretical properties

• **Pegasos**
 - Faster convergence rate than linear SVM
 - Performance guarantee with the number of iterations
 - Training time does not increase with increasing number of images (for a specific performance)
 - Slower steps than linear svm
 • Inference at each step

• **Interactive labelling**
 - Loss function is defined as the number of misplaced part
 - Number of annotation is bounded!
Some results...
Tables

- 50 images:
 - 6.6 / 13 correction.
 - 19.7 seconds

- 4000 images:
 - 3.9 / 13 correction
 - 12 seconds
Conclusion

• Framework for large scale annotation
• Simultaneous learning of structured models
• Nice theoretical properties, seen in practice
Cross-category Object Recognition (CORE)

- University of Illinois at Urbana-Champaign

- more detailed models and for exploring cross-category generalization in object recognition
CORE – Data overview

- Images from ImageNet, thus coming with object hierarchy
- Binary attributes
 - Pose
 - Surrounding context
 - Viewpoint
 - Etc.

(a) Binary Attributes
CORE – data overview

- Ploygon labels
 - Objects
 - Pre-defined parts of a category

(b) Polygons
CORE – data overview

- Segmentation mask
 - Materials
Quality Measures

- Way of collecting images
- Which attributes
 - Easily annotatable
 - Unsure button
- Quality assurance methods...