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About myself

I Computational mathematical modeling
with differential equations.

I High Performance distributed methods.

I Adaptive finite element methods.

I Focus on turbulent flow and
fluid-structure interaction.

I Applied projects in aerodynamics,
aero-acoustics, biomedicine and
geophysics.



About this course

Schedule
Today: Introduction, discussion of prestudy results, condition,
stability, direct methods.
Tuesday: Iterative methods.
Wednesday: Methods for eigenvalue problems.
Thursady: Multigrid methods.
Friday: Outlook to methods for nonlinear problems.
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First exercise

The fibonacci numbers are defined as

fib(n) =


0, for n = 0,

1, for n = 1,

fib(n − 1) + fib(n − 2), for n > 1.

Write a program in MATLAB to compute fib(25). Going through
the following steps might help you if you are not yet so familiar
with MATLAB.

1. Click on file → new → m-file. This opens a new m-file. In
this file we can now write the instructions for the algorithm.
But before we do that, name the file fib.m and open it in an
editor.



The syntax should look like:

function result = fib(n)

if(n == 0)

result = ...

elseif(n == 1)

result = ...

else

result = ...

end

Fill in the blanks . . . and save the file. Now you can call the
function in the directory in which you saved the file form the
command line in MATLAB:

>> fib (25)



Second exercise

copy the following function in a m-file and save it with the name of
the function.

function result = fun(x)

tmp = x + sin(x);

result = tmp .^2;

1. Which result is computed by this function?

2. Plot the function on the interval I = [0, 1] at 10 equidistant
points. This can be achieved in MATLAB by the instruction
v = 0 : 0.1 : 1; and calling plot (v, fun(v), ’r-’);

3. Functions can have more than one parameter for input and
output, e.g.:
function[res1, res2] = fun2(x,A,c)



Third exercise

Compute the value of the polynomial

p(x) = 0.01x3 + 5.7x − 45

at the points x = −3,−1, 1, 3, 5. Which predefined functions
within MATLAB can be used? Consider MATLAB help.



Forth exercise

Write a program in MATLAB to approximate the exponential
function

ex =
∞∑
k=0

xk

k!
, x ∈ R

by the Taylor sum

Tn(x) =
n∑

k=0

xk

k!
, x ∈ R, n ∈ N.

Plot the relative error for n ∈ [0, 20] and points
x ∈ {10, 1,−1,−10}. What do you observe?
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First exercise

Write a program in MATLAB to estimate the machine precision ε.
It is by definition the smallest floating-point number with the
property that

1 + ε > 1.



Second exercise

In a textbook from 1988, I found the following interesting exercise.
Let us evaluate the expression

f (x) =
(x + 1)2 − 1

x
(1)

at x = .1, .01, .001, . . . using a computer program on an IBM 370.
The results are reported in table 1. Expanding the expression
in eq. (1) we get

f (x) =
(x + 1)2 − 1

x
=

x2 + 2x + 1− 1

x
= x + 2.



x Computed f (x) Correct f (x)

10−1 2.1000 2.1000
10−2 2.0098 2.0100
10−3 1.9999 2.0010
10−4 1.9836 2.0001
10−5 1.9073 2.0000
10−6 1.9073 2.0000
10−7 0.0000 2.0000

Table: Value of f (x) computed.

Write a program in MATLAB to compute the values in eq. (1) and
compare your results to the reported results. What do you
abserve? How can you explain your observations?



Third exercise

Archimedes approximated π by calculating the perimeters of
polygons inscribing and circumscribing a circle, starting with
hexagons, and successively doubling the number of sides. Two
forms of the recurrence formula for the circumscribed polygon are:

t0 =
1√
3
, ti+1 =

√
t2i + 1− 1

ti
first form,

ti+1 =
ti√

t2i + 1 + 1
second form.

The value of π is approximated by

π ≈ 6 · 2i · ti .

Write a MATLAB program for the approximation of π to compare
both forms. Hint: Use the instruction format long in MATLAB
to show more digits.
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First exercise

We are interested in solving the following problem

x = e−x . (2)

Which different ways to solve (2) come to your mind? What are
the differences between those solution methods? What do they
have in common?



Second exercise

Let us solve
x = e−x .

numerically. We approximate the solution by a sequence x1, x2, . . .
using the rule

xk+1 = e−xk . (3)

Write a MATLAB program which implements (3). Think of a
suitable start value for x0. Print the values of k and xk in a table.
What do you observe? How accurate is the approximation? How
accurate could it be?



Second exercise

The equation
x = e−x .

can equivalently be written as

x = − log x .

Formulate a similar approximation as (3). Write a program in
MATLAB which implements your approximation. What is a good
start value in this implementation? Print the values for k and xk in
a table again. Compare the result to the results you got before
with iteration (3).



Third exercise

What is a good stopping criterion for the iterations you
implemented? What is a good stopping criterion in general?
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First exercise

The unit sphere with respect to a vector norm ‖·‖ on Rn is defined
by

S :=
{
x ∈ Rn :‖x‖ = 1

}
.

Sketch the spheres in R2 corresponding to the l1-norm, the
euclidian norm and the l∞-norm:

‖x‖1 = |x1|+|x2| , ‖x‖2 =

√
|x1|2 +|x2|2, ‖x‖∞ = max

{
|x1| ,|x2|

}
.

How do the unit spheres corresponding to the general lp-norms
look like?



Second exercise
Write a program in MATLAB which implements the Gram-Schmidt
algorithm for orthonormalizing a set of linearly independent
vectors.

1. Apply your program to the following vectors:

v1 =


1
−2
1
1
−4

 , v2 =


−9
4
4
1
9

 , v3 =


6
1
−5
−2
1

 , v4 =


−8
3
2
3
9

 , v5 =


−6
2
3
1
5

 .

Make sure they are linearly independent before you try to
apply the Gram-Schmidt algorithm.

2. Check the orthogonality after you applied the algorithm for
each pair of vectors:

(wi ,wj)
??
= 0 for i 6= j , i , j = 1, . . . , 5,

where wi , i = 1, . . . , 5 are the vectors after orthonormalizing.



Third exercise

For the matrices

A1 =

2 −1 2
1 2 −2
2 2 2

 , A2 =

 5 5 0
−1 5 4
2 3 8

 ,

compute

1. ‖A1‖1 ,‖A2‖1,

2. ‖A1‖2 ,‖A2‖2,

3. ‖A1‖∞ ,‖A2‖∞.



Forth exercise

Given the matrix

A =

 1 0.1 −0.2
0 2 0.4
−0.2 0 3

 ,

1. apply the Gerschgorin-Hadamard theorem to obtain the
Gerschgorin circles,

2. draw a sketch of the circles you got in 1,

3. derive the eigenvalues of A.



Fifth exercise
Consider the linear system

.550x1 + .423x2 = .127

.484x1 + .372x2 = .112,

which corresponds to

Ax = b with A =

(
.550 .423
.484 .372

)
and b =

(
.127
.112

)
.

Suppose that you are given two candidate solutions,

x̃ =

(
1.7
−1.91

)
and x̄ =

(
1.01
−.99

)
.

1. Decide depending on the residual b − Ax which of the two
candidates is a “better” solution.

2. Compute the exact solution.
3. Compute ther erros to the exact solution:

‖x̃ − x‖∞ , ‖x̄ − x‖∞ .
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First exercise

1. Implement a backward and a forward solve of lower left and
upper right triangular systems in MATLAB.

2. Implement the Gaussian elimination in MATLAB. A
description of the algorithm can be found in the lecture notes,
see chapter 3.2. Use the implementation of the backward and
forward solve.



Second exercise

Apply your algorithm to the following problem

10−16x1 + x2 = 1,

x1 + x2 = 2.

Compare your result to the exact result. Where does the
discrepancy come from?



Third exercise

Implement the pivoting strategy into your Gaussian elimination.
Apply the pivoted algorithm to the system

10−16x1 + x2 = 1,

x1 + x2 = 2.
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Errors

Numerical methods require use of computers and therefore
precision is limited. The methods we use have to be analyzed in
view of the finite precision.

Absolute error
Let x̃ be an approximation to x . The absolute error e is defined as

e = |x − x̃ | , x ∈ R, e =‖x − x̃‖ , x ∈ Rn.

The absolute error e might be big just because |x | or ‖x‖ is big.
This gives rise to the following definition.



Relative error
For x 6= 0, we define the relative error between x and its
approximation x̃ as

eR =
|x − x̃ |
|x |

, x ∈ R, eR =
‖x − x̃‖
‖x‖

, x ∈ Rn.

Errors may have different reasons. But one of them is the already
mentioned finite precision. This is connected with the computer’s
represenatation of numbers.



Floating-point representation

In scientific computuations, floating-point numbers are typically
used. The three digit floating-point representation of
π = 3.1415926 . . . is

+.314× 101.

Decimal floating-point number

The fraction .314 is called the mantissa, 10 is called the base, and
1 is called the exponent. Generally, n-digit decimal floating-point
numbers have the form

±.d1d2 · · · dn × 10p,

where the digits d1 through dn are integers between 0 and 9 and
d1 is never zero except in the case d1 = d2 = · · · = dn = 0.



Arithmetic operations an cancellation

Errors in finite arithmetic occur in

I representing numbers,

I performing arithmetic operations.

The result after an operation may be not representable even if the
input numbers both were representable. The result needs to be
rounded or truncated to be representable.
The result of a floating point operation satifies

fl(a op b) = (a op b)(1 + δ)

where op is one of the basic operations +,−, · :. Usually,
properties of exact mathematic operations are not valid in
arithmetic operations as

fl(fl(x + y) + z) 6= fl(x + fl(y + z)).
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Example for loss of precision

Since the convergence radius of the exponential series is infinity
which means it converges for all numbers x ∈ R the power-series
expansion

exp(x) =
∞∑
k=0

xk

k!
= 1 + x +

1

2
x2 +

1

3!
x3 + · · · (4)

is a good candidate for computations.
However, for negative values of x , the convergence is very bad with
a high relative error.

Reason
When the expansion eq. (4) is applied to any negative argument,
the terms alternate in sign. Subtraction is required to compute the
approximation. The large relative error is caused by rounding in
combination with subtraction.
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Conditioning

Condition
A problem is well conditioned if small changes in problem
parameters produce small changes in the outcome.

Remark
The property to be well or ill conditioned is a property of the
problem itself. It does not have to do anything with an algorithm
applied to solve a certain problem. Especially, it is independent of
computation and rounding errors.



Example

Let us consider the problem of determining the roots of the
polynomial

(x − 1)4 = 0, (5)

whose four routs are all exactly equal to 1. Now we suppose that
the right-hand side is perturbed by 10−8 such that the perturbed
problem of eq. (5) now reads

(x − 1)4 = 10−8, (6)

and it can be equivalently written as

(x − 1)4 − 10−8 =(
x − 99

100

)(
x − 101

100

)(
x − 1 +

i

100

)(
x − 1− i

100

)
,

where i ∈ C is the imaginary number such that i2 = −1.



I That means one root has changed by 10−2 compared to the
root of eq. (5).

I The change in the solution is six orders larger in comparison
to the size of the perturbation.

So we say that this problem is ill conditioned.



Stability

Stability

An algorithm is stable if small changes in algorithm parameters
have a small effect on the algorithm’s output.



An unstable algorithm

Example

Consider the example of solving the equation

x = e−x or equivalently x = − ln(x).

The iteration procedure

xk+1 = − ln(xk) (7)

produces approximations which diverge from the root except if you
choose the solution x as the starting guess x1 = x . This algorithm
is unstable since each iteration amplifies the error.



Iteration cobweb for f (x) = − ln(x), x1 = 0.5

f (x) = x
f (x)

x

x1

f (x1)

x2

f (x2)

x3

f (x3)

x4

f (x4)



An stable algorithm

Example

As contrast to the unstable iteration xk+1 = − ln(xk) let us look at
a stable iteration which is given as

xk+1 = exp(−xk). (8)

Beginning with the starting value x1 = 1, this algorithm produces
convergent iterates to the root.



Iteration cobweb for f (x) = exp(−x), x1 = 1

f (x) = x
f (x)

x

x1x2

f (x1)

x3

f (x2)

x4

f (x3)

x5

f (x4)
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Good to know

Direct methods

I are known to be very robust.

I are well applicable to moderate sized problems.

I become infeasible for large systems due to their usually high
storage requirements and high computational complexity.

Today, moderate size systems are of dimensions up to n ≈ 105 –
106.



Triangular linear systems
We will consider to solve systems of the form

Ax = b

with a quadratic matrix A and vectors x and b of suitable sizes.
Systems which have a triangular form are particularly easy to solve.
In the case of an upper triangular system, the matrix A has the
coefficient matrix

A =


a11 a12 . . . a1n

a22 . . . a2n
. . .

...
ann


and the coresponding linear system looks like

a11x1 + a12x2 + . . . + a1nxn = b1
a22x2 + . . . + a2nxn = b2

. . .
...

annxn = bn

.
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1. For ann 6= 0, we obtain xn = bn
ann

and plug this into the second
last equation to compute xn−1.

2. If we progress in that manner and in case ajj 6= 0, j = 1, . . . , n,
we derive the solution as

xn =
bn
ann

, xj =
1

ajj

 n∑
k=j+1

ajkxk

 , j = n − 1, . . . 1.

Remark
The same operations to obtain a solution can be applied to a lower
triangular system in opposite order.



Example

x1 + x2 + 2x3 = 3
x2 − 3x3 = − 4

−19x3 = − 19
.

In the first step we obtain x3 = 1. After inserting it in the second
equation we derive

x1 + x2 + 2 = 3
x2 − 3 = − 4

x3 = 1

and find that x2 = −1. In the last step we solve the system and get

x1 = 2
x2 = − 1

x3 = 1
.
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Gaussian elimination

The elimination method of Gauss

1. transforms the system Ax = b in several elimination steps into
an upper triangular form,

2. and then applies the backward solve procedure just described.

Only elimination steps that do not change the solution are allowed.
These are the following:

I permutation of two rows of the matrix,

I permutation of two colums of the matrix, inlcuding according
renumbering of the unkowns xi ,

I addition of a scalar multiple of a row to another row of the
matrix.
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Algorithm for Gaussian elimination

Since we assumed the matrix to be regular, there exists an element

a
(0)
r1 6= 0, 1 ≤ r ≤ n.

First step

Permute the first and the r th row. We call the result
(
Ã(0), b̃(0)

)
.

Each remaining row subtracts qj1 = ã
(0)
j1 /ã(0)11 times the first row.
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Permute the first and the r th row. We call the result
(
Ã(0), b̃(0)

)
.

Each remaining row subtracts qj1 = ã
(0)
j1 /ã(0)11 times the first row.



We arrive at

(
A(1), b(1)

)
=


ã
(0)
11 ã

(0)
12 · · · ã

(0)
1n b̃

(0)
1

0 a
(1)
22 · · · a

(1)
2n b

(1)
2

...
...

. . .
...

...

0 a
(1)
n2 · · · a

(1)
nn b

(1)
n

 ,

where the new entries are given as

a
(1)
j1 = ã

(0)
ji − qj1ã

(0)
1i , b̃

(0)
j − qj1b̃

(0)
1 , 2 ≤ i , j ≤ n.

Next step

The submatrix (a
(1)
jk ) is regular and we can repeat the same steps

which we applied to the matrix A(0)



After n − 1 of these elimination steps we arrive at the desired
upper triangular form

(
A(n−1), b(n−1)

)
=



ã
(0)
11 ã

(0)
12 ã

(0)
13 · · · ã

(0)
1n b̃

(0)
1

0 ã
(1)
22 ã

(1)
23 · · · ã

(1)
2n b̃

(1)
2

0 0 ã
(2)
33 · · · ã

(2)
3n b̃

(2)
3

...
...

. . .
...

...

0 0 0 a
(n−1)
nn b

(n−1)
n


.



Since all the permitted actions are linear manipulations they can
be described in terms of matrices:(

Ã(0), b̃(0)
)

= P1

(
A(0), b(0)

)
,
(
A(1), b(1)

)
= G1

(
Ã(0), b̃(0)

)
,

where P1 is a permutation matrix and G1 is a Frobenius matrix
given by

P1 =

1 r



0 · · · 1 1
1

...
. . .

...
1

1 · · · 0 r
1

. . .

1

,G1 =


1
−q21 1

...
. . .

−qn1 1





Both matrices P1 and G1 are regular with determinants
det(P1) = det(G1) = 1 and there holds

P−11 = P1, G−11 =


1
q21 1

...
. . .

qn1 1

 .

Since there holds

Ax = b ⇔ A(1)x = G1P1Ax = G1P1b = b(1),

the systems Ax = b and A(1)x = b(1) have the same solution.
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the systems Ax = b and A(1)x = b(1) have the same solution.



After n − 1 elimination steps, we arrive at

(A, b)→
(
A(1), b(1)

)
→ · · · →

(
A(n−1), b(n−1)

)
=: (R, c) ,

where(
A(i), b(i)

)
= GiPi

(
A(i−1), b(i−1)

)
,
(
A(0), b(0)

)
:= (A, b) ,

with permutation matrics Pi and Frobenius matrics Gi of the form



Pi =

i r



1
. . .

1
0 · · · 1 i

1
...

. . .
...

1
1 · · · 0 r

1
. . .

1



Gi =

i



1
. . .

1 i
−qi+1,i 1

...
. . .

−qni 1

The end result

(R, c) = Gn−1Pn−1 · · ·G1P1 (A, b)

is an upper triangular system which has the same solution as the
original system.



An example for why pivoting is necessary

We solve the system

.001x1 + x2 = 1,

x1 + x2 = 2.

If we assume to use exact arithmetic, we obtain the upper
triangular system

.001x1 + x2 = 1,

−999x2 = −998,

which has the solution

x2 =
998

999
≈ .999,

x1 =
1− x2
.001

=
1− 998/999

.001
=

1000

999
≈ 1.001.
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However, if we assume to use two-digit decimal floating-point
arithmetic with rounding, we would derive the following upper
triangular system

.001x1 + x2 = 1,

(1− 1000)x2 = 2− 1000.

Evaluating the first difference, the computer produces

1−1000 ≈ fl(1−1000) = fl(−999) = fl(−.999×103) = −1.0×103.

For the second difference, the computer derives

2−1000 ≈ fl(2−1000) = fl(−998) = fl(−.998×103) = −1.0×103.
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The upper triangular system that results from two-digit decimal
floating-point arithmetic is

.001x1 + x2 = 1,

−1000x2 = −1000.

By backward substitution, the solution is given as

x2 =
−1000

−1000
= 1,

x1 =
1− x2
.001

= 0.



The error in x1 is 100% since the computed x1 is zero while the
correct solution for x1 is close to 1.
As you observe, the upper triangular systems in

.001x1 + x2 = 1,

(1− 1000)x2 = 2− 1000.

and
.001x1 + x2 = 1,

−1000x2 = −1000.

do not differ a lot from each other.
The crucial step is the backward substitution where we compute
1−x2
.001 .

Here, cancellation happens due to the fact that x2 is close to one.
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Avoid this dilemma

Change the two equations to

x1 + x2 = 2,

.001x1 + x2 = 1.

Applying two-digit decimal floating-point arithmetic to this system
yields the upper triangular system

x1 + x2 = 2,

x2 = 1.

With backward substitution the solution x2 = x1 = 1 is derived.
This is in much better agreement with the exact solution.

This process is called pivoting.
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Pivoting

Pivot element
The element ar1 = ã

(0)
11 in the elimination process is called pivot

element and the whole substep of its determination is called pivot
search. For reasons of numerical stability, usually the chioce

|ar1| = max
j=1,...,n

∣∣aj1∣∣
is made.
The whole process inluding permuation of rows is called column
pivoting. If the elements of the matrix A are of very different size,
total pivoting is advisable. This consists in the choice

|ars | = max
k,j=1,...,n

∣∣ajk ∣∣
and subsequent permutation of the 1st row with the r th row and
the 1st column with the sth column.



Pivoting
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is made.
The whole process inluding permuation of rows is called column
pivoting. If the elements of the matrix A are of very different size,
total pivoting is advisable. This consists in the choice
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and subsequent permutation of the 1st row with the r th row and
the 1st column with the sth column.



Remark
According to the column permutation also the unknowns xk have
to be renumbered. Total pivoting is costly so that column pivoting
is usually preferred.



LR factorization

The matrices

L =


1 0
l21 1
...

. . .
. . .

ln1 · · · ln,n−11

 , R =


r11 r12 · · · r1n

r22 · · · r2n
. . .

...
0 rnn


are factors in the (multiplicative) decomposition of the matrix PA,

PA = LR, P := Pn−1 · · ·P1.



If there exists such a decomposition with P = I , then it is uniquely
determined.
Once an LR decomposition is computed, the solution of the linear
system Ax = b can be achieved by successively solving two
triangular systems

Ly = Pb, Rx = y

by forward and backward substitution, respectively.



If there exists such a decomposition with P = I , then it is uniquely
determined.
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Conditioning of Gaussian elimination

For any (regular) matrix A there exists an LR decomposition like
PA = LR. We derive

R = L−1PA, R−1 = (PA)−1L

for R and its inverse R−1. Due to column pivoting, all the
elements of L and L−1 are less or equal one and there holds

cond∞(L) =‖L‖∞
∥∥∥L−1∥∥∥

∞
≤ n2.

Therefore,

cond∞(R) =‖R‖∞
∥∥∥R−1∥∥∥

∞
=
∥∥∥L−1PA∥∥∥

∞

∥∥∥(PA)−1L
∥∥∥
∞

≤
∥∥∥L−1∥∥∥

∞
‖PA‖∞

∥∥∥(PA)−1
∥∥∥
∞
‖L‖∞ ≤ n2 cond∞(PA).
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Perturbation of the right-hand side

Applying the perturmation theorem, we obtain the estimate for the
solution of the equation LRx = Pb (considering only perturbation
of the right-hand side b, δA = 0)

‖δx‖∞
‖x‖∞

≤ cond∞(L) cond∞(R)
‖δPb‖∞
‖Pb‖∞

≤ n4 cond∞(PA)
‖δPb‖∞
‖Pb‖∞

.

Hence, the conditioning of the original system Ax = b by the LR
decomposition is amplified by n4 in the worst case. However, this
is an extremely pessimistic estimate which can be significantly
improve.
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Symmetric matrices
For symmetric matrices A = AT we would like that the symmetry
is also reflected in the LR factorization. It should be only half the
work to achive this.
Let us assume that there exists a decomposition such that
A = LR, where L is the a unit lower triangular matrix and R is a
upper triangular matrix. From the symmerty of A it follows that

LR = A = AT = (LR)T = (LDR̃)T = R̃TDLT ,

where

R̃ =


1 r12/r11 · · · r1n/r11

. . .
. . .

...
1 rn−1,n/rn−1,n−1

0 1

 , D =


r11 0

. . .

0 rnn

 .

The uniqueness of the LR decomposition implies that L = R̃T and
R = DLT such that A may be written as

A = LDLT .
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Cholesky decomposition

Symmetric positive definite matrices allow for a Cholesky
decomposition

A = LDLT = L̃L̃T

with the matrix L̃ := LD1/2. For computing the Cholesky
decomposition it suffices to compute the matrices D and L. This
reduces the required work to half the work for the LR
decomposition.



Cholesky decomposition – algorithm

The algorithm starts from the relation A = L̃L̃T which is
˜l11 0
...

. . .

l̃n1 · · · l̃nn




˜l11 · · · l̃n1
. . .

...

0 l̃nn

 =


a11 · · · ann

...
. . .

...
an1 · · · ann


and yields equations to determine the first column of L̃:

l̃211 = a11, l̃21 l̃11 = a21, . . . , l̃n1 l̃11 = an1,

from which

l̃11 =
√
a11, for j = 2, . . . , n : l̃21 =

a21

l̃11
=

a21√
a11

.

is obtained.



Let now for some i ∈ {2, . . . , n} the elements
l̃jk , k = 1, . . . , i − 1, j = k, . . . , n be already computed. Then, via

l̃2i1 + l̃2i2 + . . . l̃2ii = aii , l̃ii > 0,

l̃j1 l̃i1 + l̃j2 l̃i2 + . . .+ l̃ji l̃ii = aji ,

the next elements l̃ii and l̃ji , j = i + 1, . . . , n can be obtained as

l̃ii =
√
aii − l̃2i1 − l̃2i2 − . . .− l̃2i ,i−1,

l̃ji = l̃−1ii

{
aji − l̃j1 l̃i1 − l̃j2 l̃i2 − . . .− l̃j ,i−1 l̃i ,i−1

}
,



Orthogonal decomposition

Let A ∈ Rm×n be a not necessarily quadratic matrix and b ∈ Rm a
right-hand side vector. We consider the system

Ax = b

for x ∈ Rn. We seek a vector x̃ ∈ Rn with minimal defect norm
‖b − Ax‖. A solution is obtained by solving the normal equation

ATAx = ATb.



QR decomposition

Let A ∈ Rm×n be a rectangular matrix with m ≥ n and
rank(A) = n. Then there exists a uniquely determined othonormal
matrix Q ∈ Rm×n with the property

QTQ = I

and a uniquely determined upper triangular matrix R ∈ Rn×n with
diagonal rii > 0, i = 1 . . . , n, such that

A = QR.



Householder transformation

For any normalized vector v ∈ Rm,‖v‖2 = 1, the matrix

S = I − 2vvT ∈ Rm×m

is called Householder transformation and the vector v is called
Householder vector. Householder transformations are symmetric
S = ST and orthonormal STS = SST = I .



Geometric interpretation

For the geometric interpretation of the Householder transformation
S , let us consider an arbitrary normed vector v ∈ R2,‖v‖2 = 1.

The two vectors
{
v , v⊥

}
form a basis of R2, where vT v⊥ = 0.

For an arbitrary vector u = αv + βv⊥ ∈ R2, there holds

Su =
(
I − 2vvT

)(
αv + βv⊥

)
= αv + βv⊥ − 2α(v vT )v︸ ︷︷ ︸

=1

−2β(v vT )v⊥︸ ︷︷ ︸
=0

= −αv + βv⊥.
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Householder algorithm

Starting from a matrix A ∈ Rm×n the Householder algorithm
generates a sequence of matrices

A := A(0) → · · · → A(i) → · · · → A(n) = R̃,

where A(i) has the form

A(i) =

i



∗ · · · · · · ∗
. . .

...
∗ · · · ∗
∗ · · · ∗ i

0
...

. . .
...

∗ · · · ∗



In the ith step the Householder transformation Si ∈ Km×m is
determined such that

SiA
(i−1) = A(i).

After n steps the result is

R̃ = A(n) = SnSn−1 · · · sqA = Q̃TA,

where Q̃ ∈ Rm×m as product of unitary matrices is also unitary
and R̃ ∈ Rm×m has the form

R̃ =


r11 · · · r1n

. . .
...

0 rnn

0 · · · 0


 n

m .

Therefore we have the representation

A = ST
1 · · · ST

n R̃ = Q̃R̃.
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Obtain QR decomposition

We obtain the desired QR decomposition of A by removing the
last m − n columns in Q̃ and the last m − n rows in R̃:

A =

 Q ∗

︸ ︷︷ ︸
n

︸︷︷︸
m − n

 ·


R

0



 n

m − n

= QR.



Step 1

As a first step of this process, we construct a Householder matrix
S1 which transforms a1 (the first column of A) into a multiple of
e1, the first coordinate vector.
This results in a vector which has just a first component.
Depending on the sign of a11 we choose one of the axes
span{a1 +‖a1‖ e1} or span{a1 −‖a1‖ e1} in order to reduce
round-off errors. In case a11 ≥ 0 we choose

v1 =
a1 +‖a1‖2 e1∥∥a1 +‖a1‖2 e1

∥∥
2

, v⊥1 =
a1 −‖a1‖2 e1∥∥a1 −‖a1‖2 e1∥∥2 .
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Then the matrix A(1) = (I − 2v1v
T
1 )A has the column vectors

a
(1)
1 = (I − 2v1v

T
1 )a1 = −‖a1‖2 e1,

a
(1)
k = (I − 2v1v

T
1 )ak = ak − 2(ak , v1)v1, k = 2, . . . , n.

Remark
In contrast to the first step of the Gaussian elimination, the first
row of the resulting matrix is changed.



Step i

Let the transformed matrix A(i−1) be already computed. The
Householder transformation is given as

Si = I−2viv
T
i =


I 0

0 I − 2ṽi ṽ
T

︸ ︷︷ ︸
i − 1


, vi =


0
...
0
ṽi


 i − 1

m.



The application of the (orthonormal) matrix Si to A(i−1) leaves the
first i − 1 rows and columns of A(i−1) unchanged. For the
construction of vi , we use the considerations of step 1 for the
submatrix

Ã(i−1) =


ã
(i−1)
ii · · · ã

(i−1)
in

...
. . .

...

ã
(i−1)
mi · · · ã

(i−1)
mn

 =
(
ã
(i−1)
1 , . . . , ã

(i−1)
n

)
.



Thus, it follows that

ṽi =
ã
(i−1)
ii −

∥∥∥ã(i−1)ii

∥∥∥
2
ẽi∥∥∥∥ã(i−1)ii −

∥∥∥ã(i−1)ii

∥∥∥
2
ẽi

∥∥∥∥
2

, ṽi =
ã
(i−1)
ii +

∥∥∥ã(i−1)ii

∥∥∥
2
ẽi∥∥∥∥ã(i−1)ii +

∥∥∥ã(i−1)ii

∥∥∥
2
ẽi

∥∥∥∥
2

,

and the matrix A(i) has the column vectors

a
(i)
k = a

(i−1)
k , k = 1, . . . , i − 1,

a
(i)
i =

(
a
(i−1)
1i , . . . , a

(i−1)
i−1,i ,

∥∥∥ã(i−1)i

∥∥∥
2
, 0, . . . , 0

)T

,

a
(i)
k = a

(i−1)
k − 2

(
ã
(i−1)
k , ṽi

)
vi , k = i + 1, . . . , n.

Remark
For a quadratic matrix A ∈ Rn×n the costs for a QR
decomposition are about double the costs for a LR decomposition.



Programming

Implement the Householder algortihm to orthogonalize the vectors
from prestudy 4.2.
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