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Remarks to Arnoldi method

Remark
Typically, the Ritz eigenvalues converge to the extreme (maximal)
eigenvalues of A. If one is interested in the smallest eigenvalues,
i.e. those which are closest to zero, the methos has to be applied
to the inverse matrix A−1, similar to the approach used in the
Inverse Iteration.
In this case the main work goes into the generation of the Krylov
space Km = span{q,A−1q, . . . , (A−1)m−1q} which requires the
successive solution of linear systems

v0 := q, Av1 = v0, · · · , Avm = vm−1.
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Remark
Due to practical storage consideration, common implementation of
Arnoldi methods typically restart after some number of iterations.
Theoretical results have shown that convergence improves with an
increase in the Krylov subspace dimension m.
However, an a priori value of m which would lead to optimal
convergence is not known. Recently, a dynamic switching strategy
has been proposed which fluctuates the dimension m before each
restart and thus leads to acceleration of convergence.
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Remark
The modified Gram-Schmidt algorithm can also be used for the
stable orthonormalization of a general basis {v1, . . . , vm} ⊂ Cn:

u1 =
v1∥∥v1∥∥

2

, t = 2, . . . ,m : j = 1, . . . , t − 1 :

ut,1 = v t

ut,j+1 = ut,j − projuj (u
t,j), ut =

ut,t

‖ut,t‖2
.

Both algorithms have the same arithmetical complexity. In each
step a vector is determined orthogonal to its preceding one and
also orthogonal to any errors introduced in the computation, which
enhances stability. This supported by the following stability
estimate for the resulting orthonormal matrix U = (u1, . . . , um)∥∥∥ŪTU − I

∥∥∥
2
≤ c1 cond2(A)

1− c2 cond2(A)
ε.
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Remark

1. Other orthogonalization algorithms use Householder
transformations or Givens rotations.

2. The algoritm using Householder transformations are more
stable than the stabilized Gram-Schmidt process.

3. On the other hand, the Gram-Schmidt process produces the
tth orthogonalized vector after the tth iteration, while
orthogonalization using Householder refelctions produces all
the vectors only at the end.

This makes only the Gram-Schmidt process applicable for iterative
methods like the Arnoldi iteration.
However, in quantum mechanics there are several
orthogonalization schemes with characteristics even better suited
for applications than the Gram-Schmidt algorithm.
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Hermitian case

Suppose that the matrix A is hermitian. Then, the recurrence
formula of the Arnoldi method

q̃t = Aqt−1 −
t−1∑
j=1

(Aqt−1, qj)2q
j , t = 2, . . . ,m + 1,

because of (Aqt−1, qj)2 = (qt−1,Aqj)2 = 0, j = 1, . . . , t − 3,
simplifies to

q̃t = Aqt−1 − (Aqt−1, qt−1)2q
t−1 − (Aqt−1, qt−2)2q

t−2

= Aqt−1 − αt−1q
t−1 − βt−2qt−2.



Clearly, αt−1 ∈ R since A is hermitian. Further, multiplying this
identity by qt yields∥∥q̃t∥∥ = (qt , q̃t)2

= (qt ,Aqt−1 − αt−1q
t−1 − βt−2qt−2)2

= (qt ,Aqt−1)2 = (Aqt , qt−1)2 = βt−1.

This implies that also βt−1 ∈ R and βt−1q
t = q̃t . Collecting the

foregoing relations, we obtain

Aqt−1 = βt−1q
t + αt−1q

t−1 + βt−2q
t−2, t = 2, . . . ,m + 1.



These equations can be written in matrix form as follows

AQ(m) = Q(m)



α1 β2 0 · · · · · · 0
β2 α2 β3 0 · · · 0

0 β3 α3
. . .

. . .
...

...
. . .

. . .
. . . βm−1 0

...
. . . 0 βm−1 αm−1 βm

0 · · · · · · 0 βm αm


+ βm


0
...
0

qm+1


= Q(m)T (m) + βm(0, . . . , 0, qm+1),

where the matrix T (m) ∈ Rm×m is real symmetric.
From this Lanczos relation we finally obtain

Q(m)TAQ(m) = T (m).



These equations can be written in matrix form as follows

AQ(m) = Q(m)



α1 β2 0 · · · · · · 0
β2 α2 β3 0 · · · 0

0 β3 α3
. . .

. . .
...

...
. . .

. . .
. . . βm−1 0

...
. . . 0 βm−1 αm−1 βm

0 · · · · · · 0 βm αm


+ βm


0
...
0

qm+1


= Q(m)T (m) + βm(0, . . . , 0, qm+1),

where the matrix T (m) ∈ Rm×m is real symmetric.
From this Lanczos relation we finally obtain

Q(m)TAQ(m) = T (m).



Lanczos Algorithm

For a hermitian matrix A ∈ Cn×n the Lanczos method determines
a set of orthonormal vectors {q1, . . . , qm},m� n by applying the
modified Gram-Schmidt method to the basis {q,Aq, . . . ,Am−1q}
of the Krylov space Km.

Starting vector: q1 = q
‖q‖2

, q0 = 1, β1 = 0.

Iterate for 1 ≤ t ≤ m − 1: r t = Aqt , αt = (r t , qt)2,

st = r t − αtq
t − βtqt−1,

βt+1 =
∥∥st∥∥

2
, qt+1 = st

βt+1
,

rm = Aqm, αm = (rm, qm)2.
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1. After the matrix T (m) is calculated, one can compute its
eigenvalues λi and their corresponding eigenvectors w i , e.g.
by the QR alpgorithm.

2. The eigenvalue and eigenvectors of T (m) can be obtained in
as little as O(m2) work.

3. It can be proved that the eigenvalues are approximate
eigenvalues of the original matrix A.
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The Newton method in R

Let f be a function on the interval [a, b] which is continuously
differentiable. To approximate a zero of f , we compute the
tangent to f (x) to determine its zero. The tangent is given as

T (x) = f ′(xt)(x − xt) + f (xt).

Its zero xt+1 is determined through

xt+1 = xt −
f (xt)

f ′(xt)
.

This iteration is only possible if the values of f ′(xt) do not become
too small. It allows us to approximate simple zeros of f .



Theorem (Newton method)
The function f ∈ C 2[a, b] is assumed to have a zero z in the inner
of [a, b]. Further, let

m := min
a≤x≤b

∣∣f ′(x)
∣∣ > 0, M := max

a≤x≤b

∣∣f ′′(x)
∣∣ .

Let ρ > 0 be chosen such that

q :=
M

2m
ρ < 1, Kρ(z) := {x ∈ R : |x − z | ≤ ρ} ⊂ [a, b].

Then, the Newton iterates xt ∈ Kρ(z) are defined and converge
towards the zero z for any starting value x0 ∈ Kρ(z). There holds
the a priori estimate

|xt − z | ≤ 2m

M
q(2

t), t ∈ N,

and the a posteriori estimate

|xt − z | ≤ 1

m

∣∣f (xt)
∣∣ ≤ M

2m
|xt − x |2 , t ∈ N.
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Remark
There exists a Kρ(z) in case that f ∈ C 2[a, b] and f (z) = 0 but
f ′(z) 6= 0. It might be very small. The biggest problem for the
Newton method is to find a good starting value. If there happens
to be one, the Newton method converges extremely fast towards
the zero of f .



Compute the root
The nth root of a number a > 0 is the root of the function
f (z) = xn − a. The method for its approximation is given as

xt+1 = xt −
xnt − a

nxn−1t

=
1

n

(
(n − 1) xt +

a

xn−1t

)
In case n = 2, we get the following estimates for a starting value

1

1
√

2

∣∣∣x0 −√a∣∣∣ < 1 and
∣∣∣x0 −√a∣∣∣ < 2

√
a.

Further, we have the relationship

a

xt
≤
√
a ≤ xt ,

which can be translated into a stopping criterion

0 ≤ et := xt −
a

xt
≤ ε.
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Damped Newton method

Often, the range of possible starting values is very small. In this
case, we use a damped version of the Newton method which is
defined by

xt+1 = xt − λt
f (xt)

f ′(xt)
,

with a damping paramter λt ∈ (0, 1]. The determination of this
damping parameter λt is a whole new other story.



More than one root

In the critical case that the root of f (z) is also a root of f ′(z) = 0.
Let f ′′(z) 6= 0. Then the Newton method reads

xt+1 = xt −
f (xt)− f (z)

f ′(xt)− f ′(z)
= xt −

f ′(ζt)

f ′′(µt)

with points ζt , µt ∈ [xt , z ].
This idea can be used for higher order roots as well.
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Simplified Newton Method

If the computation of f ′(xt) in each iteration step is costly, a
simplified version of the Newton method can be used. It reads

xt+1 = xt −
f (xt)

f ′(c)
,

where c is suitably chosen.
This iteration is a version of the general fixed point iteration

xt+1 = xt + σf (xt)

with σ chosen suitably.
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Interpolation methods

The aim of interpolation methods is to avoid evaluation of the
derivative of f but be more efficient than interval bisection
methods. Instead of using the tangent to the function f as in the
Newton method, we use a secant through the points
(xt−1, f (xt−1)) and (xt , f (xt)). The secant is given by

s(x) = f (xt) + (x − xt)
f (xt)− f (xt−1)

xt − xt−1
,

and the secant iteration reads

xt+1 = xt − f (xt)
xt − xt−1

f (xt)− f (xt−1)
.



Fibonacci numbers

The Fibonacci numbers defines as

γ0 = γ1 = 1, γt+1 = γt + γt−1, t ∈ N,

play an important role in the convergence of the secant method.



Theorem (Secant method)
Let f be in C 2[a, b] and assume that f has a zero in the inner of
[a, b]. Moreover, let

m := min
a≤x≤b

∣∣f ′(x)
∣∣ > 0, M := max

a≤x≤b

∣∣f ′′(x)
∣∣ <∞,

and let ρ > 0 be chosen such that

q =
M

2m
ρ < 1, Kρ(z) = {x ∈ R : |x − z | ≤ ρ} ⊂ [a, b].

Then the secant method is well defined for any two starting values
x0, x1 ∈ Kρ(z , x0 6= x1) and the method converges towards the zero
of f . We have the following a priori estimate

|xt − z | ≤ 2m

M
qγt , t ∈ N,

where γt ∼ 0.723 · (1.618)t , and the a posteriori estimate

|xt − z | ≤ 1

m

∣∣f (xt)
∣∣ ≤ M

2m
|xt − xt−1||xt − xt−2| , t ∈ N.
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Successive approximation in Rn

We would like to investigate methods for nonlinear problems in Rn

fi (x1, . . . , xn) = 0, i = 1, . . . , n,

or f (x) = 0 with f = (f 1, . . . , fn)T and x = (x1, . . . , xn)T .

Successive approximation method

x t+1 = x t + C−1f (x t), t = 0, 1, 2, . . .

with a regular matrix C ∈ Rn×n.
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Theorem (Successive approximation)

Let G ⊂ Rn be a non empty, closed set and let g : G → G defined
by g(x) := x + C−1f (x) be a contraction. Then there exists a
uniquely defined fixed point z ∈ G and the Successive
approximation converges for any starting point x0 ∈ G .
There hold the a priori and a posteriori estimates

∥∥x t − z
∥∥ ≤ q

1− q

∥∥∥x t − x t−1
∥∥∥ ≤ qt

1− q

∥∥∥x1 − x0
∥∥∥ ,

where q is the Lipschitz constant in∥∥g(x)− g(y)
∥∥ ≤ q‖x − y‖ , x , y ∈ G , q < 1.
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Newton method in Rn

The Newton method for the solution of nonlinear systems with a
differentiable function f : D ⊂ Rn → Rn reads

x t+1 = x t − f ′(x t)−1f (x t), t = 0, 1, 2, . . . ,

with the Jacobi matrix f ′(·) of f .
In each iteration step a system of the form

f ′(x t)x t+1 = f ′(x t)x t − f (x t), t = 0, 1, 2, . . . ,

has to be solved.
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Newton as a defect correction method

The Newton method can equivalently be written as

f ′(x t)δx t = −f (x t), x t+1 = x t + δx t , t = 0, 1, 2, . . . ,



Some examples

1. Compute the root of f (x) = xn − a, a > 0.

2. Compute the zero of f (x) = sin(x) with an error smaller than
10−6. Compare

2.1 the fixed point iteration xt = xt−1 + f (xt−1) with starting
value x0 = 4.

2.2 the Newton iteration xt = xt−1 − f ′(xt−1)−1f (xt−1) with
starting value x0 = 4.

3. Solve the equation x + ln(x) = 0 with

3.1 xt = exp(−xt−1),
3.2 xt = 1

2 (xt−1 + exp(−xt−1))
3.3 Can you find an even better iteration?



More examples

1. Compute the root A
1
2 ∈ Rn×n of a positive definite matrix

A ∈ Rn×n via the funtion

g(X ) =
1

2
(X 2 + B), B = I − A.

2. The eigenvalue problem Ax = λx for a matrix A ∈ Rn×n is
equivalent to solving the nonlinear problem

Ax − λx = 0,

‖x‖22 − 1 = 0,

of n + 1 equations and n + 1 unknowns x1, . . . , xn, λ.
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