Tutorial Identity Mixer & Overview ABC4Trust

Jan Camenisch
IBM Research – Zurich
vision:
a secure and privacy-protecting e-world
Online security & trust today:

- SSL/TLS does encryption and server-side authentication
- Client-side authentication by username-password
- Mostly self-claimed attributes

Alternative approaches exist

- e.g., SAML, OpenID, Facebook Connect, X.509…

... but have privacy and security issues
what is an identity?
Identities – need to be managed

- **ID**: set of attributes shared w/ someone
 - attributes are not static: user & party can add

- **ID Management**: make ID useful
 - ID comes w/ authentication means
 - transport attributes between parties

- **Privacy & Security**: user in control of transport
 - Policies
 - request definition
 - allowed usage (audience)
 - polices authored by user or party
 - E-commerce
 - social networks, delegation
 - policies are enforced technically (Security....)
 - No side information is revealed
 - anonymous credentials, encryption, etc
Example Scenario: Access to a Teenage Chat Room

- **Goal:** Only teenagers in the chat room

- **Solution 1:**
 Use electronic identity cards

 - eID
 - Use digital signatures to issue certificate
 - Show certificate to chatroom
Solution 1: Traditional PKI

- **User**: I am Alice Doe and I'm a teenager
- **Issuer**: Convince me!
 - btw ... I trust the Issuer
- **Verifier**: credential

© 2013 IBM Corporation
Solution 1: Traditional PKI

credential / certificate

- signed list of attribute-value pairs

name = Alice Doe

birth date = 1997/01/26

signed by the issuer
Solution 1: Traditional PKI

e.g., X.509 certificates

In the beginning…
Solution 1: Traditional PKI

e.g., X.509 certificates

Obtaining a certificate...

name = Alice Doe,
birth date = 1997/01/26,

pk =
Solution 1: Traditional PKI
e.g., X.509 certificates

Using a certificate...

- **Name**: Alice Doe
- **Birth Date**: 1997/01/26
- **Public Key**: ...

Full attribute disclosure

Linkable by certificate & public key
Solution 1: Traditional PKI

e.g., X.509 certificates

Using a certificate again...

name = Alice Doe, birth date = 1997/01/26, pk =

linkable when used multiple times
Access to a teenage chatroom

- **Goal:** Only teenagers in the chat room

- **Solution 1:**
 - Use electronic identity cards

- **Problem:**
 - Chat room gets much more information

- **Solution 2:**
 - Use anonymous credential to *prove just age*
Solution 2: private credentials

Government issues eID

containing “birth date = April 3, 1997”
Solution 2: private credentials

Government issues eID

containing “birth date = April 3, 1997”

Teenage Chat Room
Solution 2: private credentials

Teenager wants to chat goes off-line

- valid subscription
- 12 < age < 16
Solution 2: private credentials

..and reveals only minimal information

Using identity mixer, user can transform (different) token(s) into a new single one that, however, still verifies w.r.t. original signers' public keys.

- valid subscription
- eID with 12< age < 16
Access to a Teenage Chat Room

- **Goal:** Only teenagers in the chat room

- **Solution 1:**
 Use electronic identity cards

- **Solution 2:**
 Use anonymous credential to prove just age

- **Problem: Abuse?**
 - Parent could use teenager's card...
 - Cannot investigate...

- **Can handle these; but compare other solutions**
Anonymous credentials vs. classical certificates

Each issuer has public key of signature scheme

Each user has a single secret key but many public keys

Certificate = signature on user's secret key + attributes

Attributes might be hidden from issuer

Prove knowledge of certificate
 - Prove that different certificates contain same secret key
 - Selectively reveal attributes

Using certificate

Certificate = signature on user's public key + attributes

Reveal certificate
Access to a Teenage Chat Room

Demo Time
Extended Features
If car is broken: ID with insurance needs be retrieved
Can verifiably encrypt any certified attribute (*optional*)
TTP is off-line & can be distributed to lessen trust
Other Properties: Revocation

If Alice was speeding, license needs to be revoked!

There are many different use cases and many solutions

• Variants of CRL work (using crypto to maintain anonymity)
 • Accumulators
 • Signing entries & Proof,

• Limited validity – certs need to be updated
 • For proving age, a revoked driver's license still works
Limits of anonymity possible *(optional)*:

If Alice and Eve are on-line together they are caught!

Use Limitation – anonymous until:

• If Alice used certs > 100 times total...
• ... or > 10'000 times with Bob

Alice's cert can be bound to hardware token (e.g., TPM)
Privacy Preserving Access Control [CDN09]

Simple case: DB learns not who accesses DB

Better: Oblivious Access to Database (OT with AC)

• Server must not learn *who* accesses
• *which* record
• Still, Alice can access only records she is *authorized* for
Suitable signatures scheme
Digital Signature Schemes 4 Privacy

- Sign blocks of messages m1, … , mk
- Compatible with proof protocols
- Some known schemes:
 - Brands/U-Prove (Discrete Log/Blind Signature)
 - Camenisch-Lysyanskaya (Strong RSA)
 - Camenisch-Lysyanskaya (Bilinear Maps; LRSW, q-SDH)
 - …a number of others, but not really practical yet
 - P-Signatures – Belinkiy et al. (q-SDH)
 - Lattice-based ones (Gordon et al.)
CL Signature Scheme

SRSA Variant
RSA Signature Scheme (for reference)

Rivest, Shamir, and Adlemann 1978

Secret Key: two random primes p and q

Public Key: $n = pq$, prime e, and collision-free hash function $H: \{0,1\}^* \rightarrow \{0,1\}^\ell$

Computing signature on a message $m \in \{0,1\}^*$

$$d = 1/e \mod (p-1)(q-1)$$

$$s = H(m)^d \mod n$$

Verification signature on a message $m \in \{0,1\}^*$

$$s^e = H(m) \pmod n$$
Signature Scheme based on SRSA \cite{CL01}

Public key of signer: RSA modulus n and $a_i, b, d \in \mathbb{QR}_n$

Secret key: factors of n

To sign k messages $m_1, \ldots, m_k \in \{0,1\}^\ell$:

- choose random prime $e > 2^\ell$ and integer $s \approx n$
- compute c such that

$$d = a_1^{m_1} \cdots a_k^{m_k} b^s c^e \mod n$$

- signature is (c,e,s)
A signature \((c,e,s)\) on messages \(m_1, \ldots, m_k\) is valid iff:

- \(m_1, \ldots, m_k \in \{0,1\}^\ell\):
- \(e > 2^\ell\)
- \(d = a_1^{m_1} \cdot \ldots \cdot a_k^{m_k} b^s c^e \mod n\)

Theorem: Signature scheme is secure against adaptively chosen message attacks under Strong RSA assumption.
Schnorr Protocol
(also called signature of knowledge)
From Protocol To Signature

Protocol: \(PK\{(\alpha) : y = g^\alpha \} \)

Prover:
- Random \(r \in \mathbb{Z}_q \)
- \(t := g^r \)
- \(s := r - cx \mod q \)

Verifier:
- Random \(c \in \{0,1\} \)
- \(t = g^s y^c \)
From Protocol To Signature

Signature \(\text{SPK}\{ (\alpha) \}: \ y = g^\alpha \}(m) : \)

Signing a message \(m \):
- chose random \(r \in \mathbb{Z}_q \) and
- compute \((c,s) := (H(g^r || m), r - cx(q)) \)

Verifying a signature \((c,s) \) on a message \(m \):
- check \(c = H(g^s y^c || m) \) ?

Security:
- Discrete Logarithm Assumption holds
- Hash function \(H(.) \) behaves as a random oracle.
Zero Knowledge Proofs

Non-interactive (Fiat-Shamir heuristic):

$$PK\{(\alpha): \ y = g^\alpha \} (m)$$

Logical combinations:

$$PK\{(\alpha,\beta): \ y = g^\alpha \land z = g^\beta \land u = g^\beta h^\alpha \}$$

$$PK\{(\alpha,\beta): \ y = g^\alpha \land z = g^\beta \}$$

Intervals and groups of different order (under SRSA):

$$PK\{(\alpha): \ y = g^\alpha \land \alpha \in [A,B] \}$$

$$PK\{(\alpha): \ y = g^\alpha \land z = g^\alpha \land \alpha \in [0,\min\{\text{ord}(g),\text{ord}(g)\}] \}$$
U-Prove Signature Scheme
U-Prove seen as a Signature Scheme [Brands93,..]

Public key of signer: Group $G = \langle g \rangle$ and $g_0, g_1, ..., g_k, g_{k+1}, y = g^x$

Secret key: x

To sign k messages $m_1, ..., m_k \in \mathbb{Z}_q$:

I. Choose random $a \in \mathbb{Z}_q$

II. Compute $h = (g_0 g_1^{m_1} ... g_k^{m_k} g_{k+1}^{ctype})^a$ and $z = h^x$

III. Compute $(c, s) = \text{SPK}((x): y = g^x \land z = h^x)(z, h)$

IV. Signature is $(a, h, z, (c, s))$

where $ctype$ is a fixed non-zero value derived from public key and an application identifier.

Note: a could be fixed value if we are only interested in sign. scheme.
U-Prove seen as a Signature Scheme [Brands93,..]

Public key of signer: Group $G = \langle g \rangle$ and $g_0, g_1, \ldots, g_k, g_{k+1}, y$

To verify signature $(a, h, z, (c, s))$ on k messages $m_1, \ldots, m_k \in \mathbb{Z}_q$:

I. check $h = (g_0 g_1^{m_1} \cdots g_k^{m_k} g_{k+1}^{ctype})^a$

II. verify $(c, s) = \text{SPK}((x): y = g^x \land z = h^x)(z,h)$

Security:

- requires DL to be hard ...

- … but assumption is that scheme is secure (no reduction known)
Alternative Signature Schemes

Signature schemes that follow the same paradigm
- SRSA-based (just presented)
- Bi-linear maps based: LRSW-Assumption
- Bi-linear maps based: q-SDH-Assumption

.... Brands DL-based scheme (uProve)
- Blind signatures (use once)
- No security proofs

... a number of schemes geared towards GS-proofs
- not efficient enough yet
Proving possession of a signature
Recall Goal...

containing statements
- possession of driver’s license ,
- age (as stated in driver’s) > 20,
- possession of insurance policy

Verify(), = yes
Recall Verification of Signature

A signature \((c, e, s)\) on messages \(m_1, \ldots, m_k\) is valid iff:

- \(m_1, \ldots, m_k \in \{0,1\}^\ell\):
- \(e > 2^\ell\)
- \(d = a_1^{m_1} \cdots a_k^{m_k} b^s c^e \mod n\)

Thus to prove knowledge of values \(m_1, \ldots, m_k, e, s, c\) such that the above equations hold.

Problem: \(c\) is not an exponent...
Proof of Knowledge of a CL Signature

Solution randomize c:

- Let $c' = c \cdot b^{s'} \mod n$ with random s'
- then $d = c'^e \cdot a_1^{m_1} \cdot \ldots \cdot a_k^{m_k} \cdot b^{s*} \mod n$ holds,
 i.e., $(c', e, s*)$ is also a valid signature!

Therefore, to prove knowledge of signature on hidden msgs:

- provide c'
- $PK((e, m_1, \ldots, m_k, s)) : d = c'^e \cdot a_1^{m_1} \cdot \ldots \cdot a_k^{m_k} \cdot b^{s}$

 $\land \, m_i \in \{0,1\}^\ell \land \, e \in 2^{\ell+1} \pm \{0,1\}^\ell \}$
Proof of Knowledge of a CL Signature

.....revealing some of the messages

• Randomise, $c' = c b^{s'} \mod n$
• provide c'
• $PK\{(e, m_3, ..., m_k, s) :$

 \[
 d/(a_1^{m_1} a_2^{m_2}) = c' e a_3^{m_3} \cdot ... \cdot a_k^{m_k} b^s
 \]

 \[\land \, m_i \in \{0,1\}^l \land e \in 2^{l+1} \pm \{0,1\}^l\]
Proving Possession of a U-Prove Signature
Presentation of U-Prove Tokens

Recall: To verify signature \((a, h, z, (c, s))\) on \(k\) messages \(m_1, \ldots, m_k \in \mathbb{Z}_q\):

- Check \(h = (g_0 g_1^{m_1} \cdots g_k^{m_k} g_{k+1}^{ctype})^a\)
- verify \((c, s) = \text{SPK\{(x): } y = g^x \land z = h^x \}\{z, h\}\)

To prove possession of signature \((a, h, z, (c, s))\) on messages \(m_i\):

- \((c', s_i) = \text{SPK\{(mi, a): } 1/(g_0 g_{k+1}^{ctype}) = h^{-1/a} g_1^{m_1} \cdots g_k^{mk}\}\)
- \((c, s) = \text{SPK\{(x): } y = g^x \land z = h^x \}\{z, h\}\)
So we can already do anonymous tokens (or minimal disclosure tokens)

Includes:
- On-line e-cash (merchant checks validity of cash w/bank)

But not
- predicates over attribute, revocation, tracing, etc,....
Pseudonyms
(Cryptographic) Pseudonyms

Algebraic Setting: Group $G = \langle g \rangle$ of order q.

Pseudonyms:
- Secret identity: $sk \in \mathbb{Z}_q$.
- Pseudonym: pick random $r \in \mathbb{Z}_q$ and compute $P = g^{sk} h^r$.
- Scope exclusive pseudonym:
 - let $g_d = H(scope)$. Then compute $P = g_d^{sk}$.
 Thus domain pseudonym as unique (per secret identity)

Security:
- Pseudonyms are perfectly unlinkeable.
- Domain pseudonyms are unlinkeable provided
 - Discrete logarithm assumption holds and
 - $H(scope)$ is a random function.
Issuing Credentials Extended
- To Pseudonyms
- Hidden Messages
CL Signature Scheme
Issuing a credential to hidden messages (idemix)

\[U := a_1^{m_1} a_2^{m_2} b^{s'} \]

PK\{(m_1, m_2, s') : \quad U = a_1^{m_1} a_2^{m_2} b^{s'} \land m_i \in \{0,1\}^{\ell} \} \]
Issuing a credential to hidden messages (idemix)

\[U := a_1^{m_1} a_2^{m_2} b^{s'} \]

Choose \(e, s'' \)

\[c = \left(\frac{d}{(U a_3^{m_3} b^{s''})} \right)^{1/e} \mod n \]

\[d = a_1^{m_1} a_2^{m_2} a_3^{m_3} b^{s'' + s'} c^e \mod n \]
Issuing a Credential to a Pseudonym (idemix)

\[P := g^{sk} h^r \]
Issuing a Credential to a Pseudonym (idemix)

\[P := g^{sk} h^r \]
\[U := a_1^{sk} a_2^r b^{s'} \]

\[\text{PK}\{(sk,r,s') : P = g^{sk} h^r \land U = a_1^{sk} a_2^r b^{s'} \land sk, r \in \{0,1\}^\ell \} \]

.... and then issue credential just as before
Issuing on Hidden & Committed Attributes

\[\text{Com} := g_1^{m_1} g_2^{m_2} h^r \]

\[U := a_1^{sk} a_2^{m_1} a_3^{m_2} b^{s'} \]

\[\text{PK}\{(sk,m_1,m_2,r,s') : \text{Com} = g_1^{m_1} g_2^{m_2} h^r \land U = a_1^{sk} a_2^{m_1} a_3^{m_2} b^{s'} \} \]

Example use case: issue credential on last name
- Commit to last name
- Prove correctness using Government credential
- Get new credential issued
U-Prove Signature Scheme
... Issuing U-Prove Signatures/Credentials

- A kind of blind signature scheme to ensure privacy
- Security
 - Based on blind signatures, but not quite
 - Does *not* reduce to assuming U-Prove Signatures are secure

random $a \in \mathbb{Z}_q$

$h = h'^a$

$h' = g_0 g_1^{m_1} \cdots g_k^{m_k} g_{k+1}^{ctype}$

$\text{PK}(x): y = g^x \land z' = h'^x$

$\text{SPK}(x): y = g^x \land z = h^x$

(z,h)
Issuing on Pseudonyms: essentially the same....

\[P := g^{sk} h^r \]

\[PK\{(sk, r, s') : P = g^{sk} h^r \land U = g_1^{sk} g_2^r \} \]

\[U := g_1^{sk} g_2^r g_k^{s'} g_k^{s'} \]

random \(a \in \mathbb{Z}_q \)

\[h = h'^a \]

\[h' = U \cdot g_0 \cdot g_3 \cdots g_{k-1}^{mk-1} g_{k+1}^{ctype} \]

\[PK\{(x) : y = g^x \land z' = h'^x \} \]

\[SPK\{(x) : y = g^x \land z = h^x \}(z, h) \]
Example: Polling
Polling: Scenario and Requirements

- User obtain credential that they are eligible under ID

- User can voice opinion anonymously
 - Different polls must not be linkable

- User can do so only once per poll
 - or if they do multiple times, only one voice counts – first, last?
Polling: Solution

- User generates pseudonym (Id for registration)
- User obtains credential on pseudonym stating that she is eligible for polls
- Credential can contain attributes about her
Proving a credential w.r.t. a Pseudonym

\[P_D := g_D^{sk} \]

\[P_D = g_D^{sk} \land \]

\[d = c^e a_1^{sk} a_2^r a_3^{m3} \cdots a_k^{mk} b^s \land \]

\[sk, r, mi \in \{0,1\}^\ell \land e \in 2^{\ell+1} \pm \{0,1\}^\ell \]

(opinion)

Scope exclusive pseudonym different for each poll, e.g.,\n\[g_D = f(poll) \]
Polling: Extension

Can require several credentials, e.g.,

- User registers with university and obtains student credential

- User takes course and exam and gets a second credential on different pseudonym

- When polling, user proves w.r.t. domain pseudonym possession of
 - Student credential
 - Course credential
Verifiable Encryption
Motivation: Tracing & Attribute Escrow (Opt-In)

If car is broken: ID with insurance needs be retrieved
Can verifiably encrypt any certified attribute (*optional*)
TTP is off-line & can be distributed to lessen trust
Public Key Encryption: algorithms

Security Definitions (far from trivial...)

- Semantic security: ciphertext does not leak if scheme is used once only.

- Adaptive security: if used continuously.
Verifiable Encryption with Label
Verifiable Encryption with Label
Verifiable Encryption

- Of attributes (discrete logarithm)
 - Camenisch-Shoup (SRSA) – based on Paillier Encryption

- Of pseudonyms (group elements)
 - Cramer-Shoup (DL) or rarely ElGamal (DL)

- Otherwise
 - Camenisch-Damgaard, works for any scheme, but much less efficient

-Open Problem to find new ones!
ElGamal Encryption
(for Pseudonyms & Tracing)
ElGamal Encryption scheme

Public Key: Group $G = \langle g \rangle$ of order q $y := g^x$

Secret Key: $x \in \mathbb{Z}_q$

Encryption of a message $m \in G$:
- Choose $r \in \mathbb{Z}_q$
- Compute ciphertext (c_1, c_2) as: $c_1 := g^r$, $c_2 := y^rm$

Decryption of a ciphertext (c_1, c_2):
- Compute $m' = c_2 c_1^{-x}$ ($= y^r mg^{-rx} = y^r my^{-r} = m$)

Semantically secure under Discrete Log assumption. Cramer-Shoup encryption scheme is adaptive secure extension that should be used.
Tracing: Encryption of a Certified Pseudonym

Public Key Of Tracer: Group $G = \langle g \rangle$ of order q \(y := g^x \)

Pseudonym with issuer: \(P := g^{sk} h^r \)

...by definition of credential by issuer \(d = c^e a_1^{sk} a_2^r a_3^{m3} \ldots a_k^{mk} b^s \)

To make a traceable presentation of credential, user

- Chooses rand. r and computes $c_1 := g^{r'}$, $c_2 := y^{r'} P$ ($= y^{r'} g^{sk} h^r$)
- Computes $c' = c b^{s'} \mod n$ with random s'
- Sends $(c', (c_1, c_2))$ to verifier
- Computes $SPK((sk, r, m2, \ldots, mk)):
 c_1 := g^{r'}$, $c_2 := y^{r'} g^{sk} h^r$ \(\land \)
 \(d = c'^e a_1^{sk} a_2^r a_3^{m3} \ldots a_k^{mk} b^s \)\}(c_1, c_2, tr_policy)
Excursus: Accountability
Making the User Accountable: Discussion

Scenario:
- User registers pseudonym with issuer
- Get credential from the issuer
- Presents credential to verifier with tracing (encryption of registered pseudonym)
- TTP traces a presentation proof and points to a user

Problems/attacks:
- How can one prove that it really was the user?
- Could the issuer just generate another pseudonym and credential and then blame the user?
Making the User Accountable: Solution

Assume: user has traditional government issued signing key and certificate

Then:

- User generates pseudonym P and *signs it* with gov't issued signing key, registers pseudonym and sign with issuer.
- Gets credential issued on pseudonym.
- Presents credential with tracing enabled (encryption of pseudonym) – *needs to be non-interactive presentation/signature.*
- Tracers claims this was the user holding pseudonym P ????

Convincing a judge:

- Verify users' non-interactive presentation proof
- Tracer needs to prove that encryption in presentation proof indeed contains P
- Issuer needs provide user's signature with gov't issued key on P
Revocation Methods
Alice should be able to convince verifier that her credential is not revoked (yet)!
Different Methods

CRL based methods
- traditional serial number & proof of non-membership
 - Best method uses signatures on pairs of succeeding revoked serial numbers
- Accumulator based solution
 - Presentation proof is efficient, but users need to update for each revoked credential

Short lived credentials
- Re-issuing (can always be done done, but requires interaction....)
- Publishing updates of credentials (define validity epochs), compute updates off-line

Verifier-Local “revocation”
- Essentially uses domain pseudonym and

Notes:
- Choice on method depend on use case and can also be combined
- All methods work for both U-Prove and idemix signatures - excepts off-line credential update does not work for U-Prove signature scheme (needs interaction)
Revocation: Zeroth Solution

Re-issue certificates (off-line – interaction might be too expensive)

- Recall issuing for identity mixer:

\[U := a_1^{m_1} a_2^{m_2} b^{s'} \]

Choose \(e, s'' \)

\[c = \left(d / (U a_3^{m_3} a_4^{\text{time}} b^{s''}) \right)^{1/e} \mod n \]

\((c, e, s'') \)
Revocation: Zeroth Solution

Re-issue certificates (off-line – interaction might be too expensive)

- Idea: just repeat last step for each new time time':

$$cn = \left(\frac{d}{(Ca_3^{m3'} a_4^{\text{time}' b^{sn''})^{1/en}}} \right) \mod n$$

Choose en, sn''
Revocable Credentials: First Solution

- Include into credential some credential ID \(\# \) as message, e.g.,
 \[
d = c^{e} a_{1}^{sk} a_{2}^{\#} b^{s'' + s'} \pmod{n}
\]

- Publish list of all valid (or invalid) \(\# \)'s.
 \((\#1, ..., \#k)\)

- Alice proves that her \(\# \) is (or is not) on the list.
 - Compute \(U_{j} = g^{\#j} \) for \(\#j \) in \((\#1, ..., \#k)\)
 - Prove \(\text{PK}\{(\varepsilon, \mu, \rho, \sigma): \quad d = c'^{\varepsilon} a_{1}^{\rho} a_{2}^{\mu} b^{\sigma} \pmod{n} \wedge \\
 (U_{1} = g^{\mu} \lor \cdot \cdot \cdot \lor U_{k} = g^{\mu})\}\)

- Not very efficient, i.e., linear in size \(k \) of list :-(

A better implementation of this idea where the issuer signs pairs of serial numbers (i.e., \(\text{sig}(\#i, \#i+1) \)) and have the user prove knowledge of \(\text{sig}(\#i, \#i+1) \) such that \(\#i < \# < \#i+1 \) (c.f. Anja’s presentation).
Revocable Credentials: Second Solution

- Include into credential some credential ID \(\#i \) as message, e.g.,
 \[
 d = c^e a_1^{s_k} a_2^{\#i} b^{s''} + s' \pmod{n}
 \]

- Publish list of all invalid \(\#i \)'s.
 \((\#1,..., \#k)\)

- Alice proves that her \(ui \) is on the list.
 - Choose random \(h \) and compute \(U = h^{\#i} \)
 - Prove \(PK\{ (\varepsilon, \mu, \rho, \sigma) : d = c^' \varepsilon a_1^\rho a_2^\mu b^\sigma \pmod{n} \land U = h^\mu \} \)
 - Verifier checks whether \(U = h^{\#j} \) for all \(\#j \) on the list.

- Better, as only verifier needs to do linear work (and it can be improved using so-call batch-verification...)

- What happens if we make the list of all valid \(\#i \)'s public?
Revocable Credentials: Second Solution

Variation: verifier could choose h and keep it fixed for a while

- Can pre-compute list $U_i = h^{x_i}$
- -> single table lookup

- BUT: if user comes again, verifier can link!!!

- ALSO: verifier could not change h at all! or use the same as other verifiers!
 - one way out $h = H(\text{verifier}, \text{date})$, so user can check correctness.
 - date could be the time up to seconds and the verifier could just store all the lists, i.e., pre-compute it.

Note: This is the method implemented in TPM's Direct Anonymous Attestation, where $#i$ is a secret only known to the user. Thus credentials cannot be reused, but if TPM is broken, many secrets are extracted, which is
Revocable Credentials: Third Solution

Using so-called cryptographic accumulators:

- Accumulate:

- Prove that your key is in accumulator: requires witness
Revocable Credentials: Third Solution

Using so-called cryptographic accumulators:

- **Key setup**: RSA modulus n, seed v

- **Accumulate**:
 - values are primes e_i
 - accumulator value: $z = v \prod e_i \mod n$
 - publish z and n
 - witness value x for e_j : s.t. $z = x^{e_j} \mod n$
 can be computed as $x = v^{e_1 \cdot \cdots \cdot e_{j-1} \cdot e_{j+1} \cdot \cdots \cdot e_k} \mod n$

- **Show that your value e is contained in accumulator**:
 - provide x for e
 - verifier checks $z = x^e \mod n$
Revocable Credentials: Third Solution

Security of accumulator: show that e s.t. $z = x^e \mod n$ for e that is not contained in accumulator:
- For fixed e: Equivalent to RSA assumption
- Any e: Equivalent to Strong RSA assumption

Revocation: Each cert is associated with an e and each user gets witness x with certificate. But we still need:
- Efficient protocol to prove that committed value is contained in accumulator.
- Dynamic accumulator, i.e., ability to remove and add values to accumulator as certificates come and go.
Revocable Credentials: Third Solution

- Prove that your key is in accumulator:
 - choose random s and g and compute $U_1 = x h^s$
 (where h is a publicly known value such that it is assured that x lies in $\langle h \rangle$) and
 compute $U_2 = g^s$ and reveal U_1, U_2, g
 - Run proof-protocol with verifier

\[
PK\{ (\varepsilon, \mu, \rho, \sigma, \xi, \delta) : \\
 d = c'^\varepsilon a_1^\rho a_2^\mu b^\sigma \pmod{n} \land \\
 z = U_1^\mu (1/h)^\xi \pmod{n} \\
 \land \\
 1 = U_2^\mu (1/g)^\xi \pmod{n} \land \\
 U_2 = g^\delta \pmod{n}\}
\]
Revocable Credentials: Third Solution

- **Analysis**
 - No information about x and e is revealed:
 - (U_1, U_2) is a secure commitment to x
 - proof-protocol is zero-knowledge

 - Proof is indeed proving that e contained in the certificate is also contained in the accumulator:
 a) $1 = U_2^\mu (1/g)^\xi = (g^\delta)^\mu (1/g)^\xi \pmod{n}$
 $\Rightarrow \xi = \delta \mu$
 b) $z = U_1^\mu (1/v)^\xi = U_1^\mu (1/v)^\delta \mu = (U_1/v^{\delta})^\mu \pmod{n}$
 c) $d = c^{c \cdot \varepsilon} a_1^\rho a_2^\mu b^{\sigma} \pmod{n}$
Revocation: Third Solution

Dynamic Accumulator

- When a new user gets a certificate containing e_{enew}
 - Recall: $z = v \prod e_i \mod n$
 - Thus: $z' = z^{e_{\text{enew}}} \mod n$
 - But: then all witnesses are no longer valid, i.e., need to be updated $x' = x^{e_{\text{enew}}} \mod n$
Revocation: Third Solution

Dynamic Accumulator

- When a certificate containing $erev$ revoked
 - Now $z' = v \prod e_i = z^{1/erev} \mod n$
 - Witness:
 - Use Ext. Euclid to compute a and b
 such that $a \cdot eown + b \cdot erev = 1$
 - Now $x' = x^b z'^a \mod n$
 - Why: $x'^{eown} = ((x^b z'^a)^{eown})^{erev^{1/erev}} \mod n$
 $= ((x^b z'^a)^{eown \cdot erev})^{1/erev} \mod n$
 $= ((x^{eown})^{b \cdot erev} (z'^{erev} \cdot a \cdot eown))^{1/erev} \mod n$
 $= (z^{b \cdot erev} z^{a \cdot eown})^{1/erev} \mod n$
 $= z^{1/erev} \mod n$
Dynamic Accumulator: in case the issuer knows the factorization of n

- When a new user gets a certificate containing e_{new}
 - Recall: $z = v \prod e_i \mod n$
 - Actually v never occurs anywhere...
 so: $v' = v^{1/\text{new}} \mod n$ and $x = z^{1/\text{new}} \mod n$
 - Thus z needs not to be changed in case new member joins!

- Witnesses need to be recomputed upon revocation only!
Architecture and Policies
User – Verifier interaction: an architectural view [abc4trust.eu]
Concepts of ABC technologies to be defined

Technology-agnostic XML schemas for “external” artefacts, including:

Issuance
- Pseudonyms
- Issuer parameters
- Credential specification
- Issuance policies
- Issuance token

Using credentials
- Verifier parameters
- (Pseudonyms)
- Presentation policies
- Presentation tokens

Revocation, Issuer & Verifier driven
- Revocation authority parameters
- cf. Presentation token

Inspection
- Inspector parameter
- cf. Presentation token – Inspection grounds
Credential specification

E.g., School credentials

```xml
<CredentialSpecification Version="1.0" KeyBinding="true" Revocable="true">  
  <AttributeDescriptions MaxLength="32">
    <AttributeDescription Type="http://abc4trust.eu/wp6/credspec/credSchool/firstName"
      DataType="xs:string" Encoding="abc:sha256"/>
    <AttributeDescription Type="http://abc4trust.eu/wp6/credspec/credSchool/lastName"
      DataType="xs:string" Encoding="abc:sha256"/>
    <AttributeDescription Type="http://abc4trust.eu/wp6/credspec/credSchool/civicNr"
      DataType="xs:integer" Encoding="abc:plain"/>
    <AttributeDescription Type="http://abc4trust.eu/wp6/credspec/credSchool/gender"
      DataType="xs:boolean" Encoding="abc:zero-one"/>
    <AttributeDescription Type="http://abc4trust.eu/wp6/credspec/credSchool/school"
      DataType="xs:string" Encoding="xenc:sha256"/>
  </AttributeDescriptions>
</CredentialSpecification>
```
<IssuerParameters>
 <ParametersUID>http://abc4trust.eu/wp6/soderhamn/IssParams/school</ParametersUID>
 <AlgorithmID>urn:com:microsoft:uprove</AlgorithmID>
 <SystemParameters>...</SystemParameters>
 <HashAlgorithm>http://www.w3.org/2001/04/xmldsig#sha256</HashAlgorithm>
 <CryptoParams>...</CryptoParams>
 <KeyBindingInfo>...</KeyBindingInfo>
</IssuerParameters>
Presentation policy

“reveal civic number from school credential”

```xml
<PresentationPolicyAlternatives>
  <PresentationPolicy PolicyUID="revealCivicNr">
    <Message>
      <Nonce>bkgdHEQWDR4TZzbxJkYUpjVM=</Nonce>
    </Message>
    <Credential Alias="schoolcred">
      <CredentialSpecAlternatives>
        <CredentialSpecUID>http://abc4trust.eu/wp6/credspec/credschool</CredentialSpecUID>
      </CredentialSpecAlternatives>
    </Credential>
  </PresentationPolicy>
</PresentationPolicyAlternatives>
```
Presentation token

“reveal civic number from school credential”

```xml
<PresentationToken>
  <PresentationTokenDescription PolicyUID="revealCivicNr">
    <Message>
      <Nonce>bKQydHBQWDR4TUZzbXJKYUphdVM="</Nonce>
    </Message>
    <Credential Alias="schoolcred">
      <IssuerParametersUID>http://abc4trust.eu/wp6/soderhamn/IssParams/school</IssuerParametersUID>
      <DisclosedAttribute AttributeType="http://abc4trust.eu/wp6/credspec/credSchool/civicNr">
        <AttributeValue>199802251234</AttributeValue>
      </DisclosedAttribute>
    </Credential>
  </PresentationTokenDescription>
  <CryptoEvidence>
    ...
  </CryptoEvidence>
</PresentationToken>
```
Issuance policy

Carry over key from school credential to course credential

```
<IssuancePolicy>
  <PresentationPolicy PolicyUID="revealCivicNr">
    <Credential Alias="schoolcred">
      <CredentialSpecAlternatives>
        <CredentialSpecUID>http://abc4trust.eu/wp6/credspec/credschool</CredentialSpecUID>
      </CredentialSpecAlternatives>
    </Credential>
  </PresentationPolicy>
  <CredentialTemplate SameKeyBindingAs="schoolcred">
    <CredentialSpecUID>http://abc4trust.eu/wp6/credspec/credcourse</CredentialSpecUID>
    <IssuerParametersUID>http://abc4trust.eu/wp6/soderhamn/issparams/course</IssuerParametersUID>
  </CredentialTemplate>
</IssuancePolicy>
```
Presentation policy

- Boys older than 12 taking English
- Civic number recoverable by school inspector
Presentation policy (cont.)

- Boys older than 12 taking English
- Civic number recoverable by school inspector

```xml
<Credential Alias="subject" SameKeyBindingAs="school">
    <CredentialSpecAlternatives>
        <CredentialSpecUID>http://abc4trust.eu/wp6/credspec/credSubject</CredentialSpecUID>
    </CredentialSpecAlternatives>
    <IssuerAlternatives>
        <IssuerParametersUID>http://abc4trust.eu/wp6/soderhamn/IssParams/subject</IssuerParametersUID>
    </IssuerAlternatives>
</Credential>

ATTRIBUTE_PREDICATE_FUNCTION=urn:oasis:names:tc:xacml:1.0:function:boolean-equal
    <ConstantValue>false</ConstantValue>
</ATTRIBUTE_PREDICATE_FUNCTION>

ATTRIBUTE_PREDICATE_FUNCTION=urn:oasis:names:tc:xacml:1.0:function:integer-less-than
    <Attribute CredentialAlias="school" AttributeType="http://abc4trust.eu/wp6/credspec/credSchool/civicNr"/>
    <ConstantValue>200002139999</ConstantValue>
</ATTRIBUTE_PREDICATE_FUNCTION>

ATTRIBUTE_PREDICATE_FUNCTION=urn:oasis:names:tc:xacml:1.0:function:string-equal
    <Attribute CredentialAlias="subject" AttributeType="http://abc4trust.eu/wp6/credspec/credSubject/subject"/>
    <ConstantValue>English</ConstantValue>
</ATTRIBUTE_PREDICATE_FUNCTION>
</PresentationPolicy>
</PresentationPolicyAlternatives>
```
Overview ABC4Trust
State of the Art & Project Goals

Attribute based credentials require crypto algorithms different from those currently used:
- RSA to sign credentials/certificates as done today would not work ...

U-Prove and Identity Mixer provide such crypto algorithms.

Attribute based authentication is a paradigm shift in authentication:

Attributes instead of name-based identifiers
- Teenage chat room: „Between 12 and 15“ instead of name-based identifier

Paradigm shift and interoperability in trustworthy infrastructures require:
- Abstraction and unification of different crypto algorithms
- Interaction flows & Architecture
- Policies (Claims language)
- Data formats
- Reference implementation
- Validation by real world pilots in the eID space
Work Packages

1) Architectures & Components
 - Modular Decomposition
 - Common Formats and APIs
 - Protocol Definitions

2) Comparison
 - Comparison of Different Implementations of Components
 - Security Proofs & Perturbation Analysis

3) Reference Implementation
 - At least two different ones (guess what)

4) Application Requirements
 - Common Base & Infrastructure for Prototypes

5) Community Interactions Among Pupils
 - Swedish Community

6) Course Rating by Certified Students
 - Greek Ministry of Education

7) Dissemination

8) Management
References

- www.abc4trust.eu
- https://github.com/p2abcengine/p2abcengine